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Abstract: In this paper, an implantable microstrip antenna design is introduced to cover the Medical Implant Com-

munications Service (MICS, 402−405 MHz) band for biomedical telemetry systems. The radiating layer of the antenna

comprises two concentric square split-ring elements and a metallic pad placed between them. A shorting pin is also used

for miniaturization purposes, directly connecting the outer ring element to the ground plane. It is numerically demon-

strated that the proposed antenna offers approximately 7% impedance bandwidth and gains of 1.9 dBi at the designated

frequency band. In addition, effects of some critical design parameters on the antenna performance are numerically

examined in the paper, noting that the full-wave analysis of the implant antenna is carried out using CST Microwave

Studio.
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1. Introduction

In recent years, considerable progress has been made to develop implantable sensors that can continually monitor

the physiological therapies of patients. The implanted sensors must be able to communicate with external

devices, thus requiring integrated compact antennas. Designing antennas that would operate in a tissue is an

extremely demanding task. Factors such as tissue conductivity, impedance matching, antenna size, low power

requirements, and biocompatibility play significant roles in the design [1–8]. For a realistic antenna simulation,

the dielectric properties and geometry of the tissue should be taken into consideration. Microstrip patch designs

are currently receiving considerable attention for implantable antennas because they are highly flexible in shape

and conformability. Meander-shaped dipole elements [1–3], split-ring elements [4], and different types of slot

elements [5,6] are used in such designs. A detailed review of the implant antenna designs can be found in [7,8].

Implantable antennas are designed to operate at specific frequency bands, namely the Medical Implant

Communications Service (MICS, 402–405 MHz) and/or the Industrial Scientific and Medical (ISM, 2.4–2.48

GHz) [9,10] bands. In this study, we introduce a novel split-ring resonator (SRR)-shaped microstrip antenna

design for biomedical telemetry applications in the MICS band. Due to their compact size and inherent prop-

erties, SRRs have been preferred in microstrip antenna and filter applications [11–14]. Considering implantable

antenna designs in the literature [1–8], the proposed low-loss and low-cost antenna has a compact size of 14 ×
14 × 2.54 mm3 (∼0.02 λ0× 0.02 λ0) at 403 MHz, and thus the proposed design can be a good candidate for

MICS-band biomedical applications.

The full-wave analysis of the proposed design has been carried out using CST Microwave Studio, utilizing
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the time-domain finite-integration technique. In this paper, the simulated antenna performance (S11 , radiation

pattern, electric field distribution, and SAR) is presented. Note that this paper is an extended version of [15],

which was previously presented at the ICECCO’2013 conference.

2. Numerical design of the implant antenna

The proposed antenna configuration is depicted in Figure 1. As seen, the radiating layer of the antenna is

composed of a pair of concentric square split-ring elements. A metallic pad with a size of 1 × 1 mm is placed

between the rings near the outer gap. The separation between the outer and inner ring elements is 1 mm

and a coaxial feed is used for excitation. All the metallic elements are sandwiched with substrate/superstrate

structure (Rogers RO3210) with a total thickness of 2h = 2.55 mm, and εr = 10.2 (tanδ = 0.003). A shorting

pin directly connects the outer ring element to the ground plane (GP), allowing for miniaturization. In practical

implementations, the implantable antenna must be operated in a skin, and thus we modeled the antennas at a

depth of 3 mm of a skin (εr = 31.29).

The input reflection coefficient (S11) characteristic of the implant antenna is displayed in Figure 2. As can

be seen, the proposed antenna provides an approximately 7% impedance bandwidth (389−416 MHz) covering

the designated MICS band. Note that the |S11| ≤ −10 dB criterion with 50 Ω system impedance is considered.
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Figure 1. The proposed implantable antenna design: L0

= 14, L1 = 12, W1 = 1.7, g = 1, S = 2.8, F = 11.2, h

= 1.27, d = 3 (all in mm), εr = 10.2.

Figure 2. The simulated return loss characteristics of the

implantable antenna design.

In designing, the size of the loops, the placement of the metallic pad, and the position of the shorting pin

were determined to be critical parameters for achieving the preferred antenna performance in the frequency

band of interest. The design steps depicted in Figure 3 have been employed to reach the optimum S11
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performance (Figure 2). Figure 4 shows the simulated corresponding frequency response of each design step.

First, configuration #1 is constructed by utilizing only a pair of split-ring elements providing a single-band

operation centered 1.08 GHz. Second, by employing a shorting pin in an appropriate position that connects

the outer ring to the GP (#2), the center of resonance frequency shifts from 1.08 GHz to 578 MHz. Finally, by

inclusion of a metallic pad element connecting the outer ring to the inner ring (#3), the projected implantable

antenna is achieved and the resonance frequency shifts from 578 MHz to 403 MHz, covering the designated

MICS band (402–405 MHz).

#1 #2 #3

feed

pin metallic pad

Figure 3. The design steps for the proposed antenna.

In Figure 5, radiation patterns of the proposed antenna at 403 MHz are displayed. As seen, the antenna

has a bidirectional radiation pattern in both φ = 0◦ and φ = 90◦ planes. Note that the computed directive

gain of the implant antenna design is around 1.9 dBi.
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Figure 4. The simulated S11 characteristics of the cor-

responding design steps #1, #2, and #3 as depicted in

Figure 3.

Figure 5. The radiation patterns of the implantable an-

tenna design.

In addition, the computed specific absorption rate (SAR) results have been considered. As shown in

Figure 6, a peak 1-g averaged SAR value of 139 W/kg can be obtained, assuming that 1 W is delivered by

the proposed antenna. We remark that the delivered power should be decreased to ≤11.5 mW to satisfy the

practical standard SAR limitation of ≤1.6 W/kg [16].
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Moreover, the electric field distribution of the proposed implanted antenna at 403 MHz is depicted in

Figure 7, where it is observed that the field distribution is mainly concentrated along the ring elements and the

metallic pad connecting them, proving the critical role of those elements in the proposed antenna’s performance.

Figure 6. The computed specific absorption rate (SAR)

of the implantable antenna design embedded in a simu-

lated part of skin tissue at 403 MHz.

Figure 7. The electric field distribution at 403 MHz.

3. Parametric studies

In order to evaluate the performance of the implantable antenna, a series of parametric studies have been carried

out to display the effects of the critical antenna parameters, namely the feed location, the shorting pin location,

the metallic pad location, and the inner gap location. Below, we briefly discuss these studies.

3.1. Feed location

The proposed antenna is excited by a standard coaxial probe feed and the location of the feed is expected to

change mainly the antenna impedance matching. As can be seen from Figure 8, S11 levels change by changing

the feed location without any shift in the resonance frequency.

3.2. Shorting pin location

A shorting pin can act as a GP and can reduce the electrical size of the antenna [1] for a given frequency. Hence,

by including a shorting pin in the proposed design, the resonance frequency is observed to shift from 738 MHz

to 403 MHz (see Figure 9). It is also observed that the pin location not only affects resonance frequency but

also affects the antenna matching.

3.3. Metallic pad location

The concentric split-ring elements are connected by a 1 × 1 mm metallic pad and the location of the pad

changes the performance of the antenna. To demonstrate the effects of the pad location, we carried out a series

of simulations based on the different pad locations depicted in Figure 10. As can be seen from Figure 11, the

pad location affects both the impedance matching and the resonance frequency of the proposed antenna over
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the band of 400–580 MHz. For the optimum S11 level and maximum miniaturization effect, the #0 location

for the metallic pad is selected in the ultimate antenna configuration.
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Figure 8. The effects of feed point location on the S11

performance.

Figure 9. The effects of shorting pin location on the S11

performance.
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Figure 10. Different metallic pad locations. Figure 11. S11 performance of the proposed antenna

design with respect to different pad locations depicted in

Figure 10.

3.4. Inner gap location

The inner square ring element has a size of a 1.7 × 1 mm gap, and the location of this gap may affect the

frequency response of the antenna. The S11 performances of the proposed antenna design with respect to the

different inner gap locations (Figure 12) are depicted in Figure 13. As seen, the inner gap location slightly affects

the resonance frequency (max. 10 MHz). Because of the maximum miniaturization effect, the #0 location is
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selected in the final antenna configuration. It has also been determined that the inner gap size has a slight

effect on the resonance frequency. The optimum design is achieved where the gap size is 1 mm.
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Figure 12. Different inner gap locations. Figure 13. S11 performance of the proposed antenna de-

sign with respect to different inner gap locations as shown

in Figure 12.

4. Conclusions

In this paper, we have introduced a novel implantable antenna design for biomedical telemetry applications in

the MICS (402–405 MHz) band. The proposed compact antenna design (∼0.02 λ0 × 0.02 λ0 @ 403 MHz)

has a pair of concentric square split-ring elements, a metallic pad, and a shorting pin configuration and is

excited by a standard coaxial feed structure. As the shorting pin and the metallic pad play critical roles in the

miniaturization of the antenna, the proposed design provides at least 7% impedance bandwidth performance

with 1.9 dBi directive gain in the designated frequency band. The effects of some critical design parameters on

the antenna performance are also examined. By using a similar antenna configuration, a dual-band performance

in the MICS/ISM bands could be obtained.
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