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Abstract: The analysis of underwater acoustic signals, especially ship-radiated noise received by passive sonar, is of

great importance in the fields of defense, military, and scientific research. In this paper, we investigate multiple kernel

learning graph embedding using auditory model features in the application of ship-radiated noise feature extraction. We

use an auditory model to get auditory model features for each signal sample. In order to have more effective features,

iterative multiple kernel learning methods are adopted to conduct dimensionality reduction. Validated by experiments,

the proposed method outperforms ordinary kernel-based graph embedding methods. The experiments show that the

multiple kernel learning method can automatically choose relatively appropriate kernel combinations in dimensionality

reduction for ship-radiated noise using auditory model features. In addition, some worthwhile conclusions can be drawn

from our experiments and analysis.
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1. Introduction

Ship-radiated noise comes from propellers, machinery and hydrodynamic components, etc. Therefore, the noise

is complex in both artificial and machine analysis. As a necessary step of signal analysis and target recognition,

feature extraction of ship-radiated noise is important in both civilian and military fields. Many methods have

been proposed to solve the problem [1–4], but they are either based on analyzing the spectrum of signals [1,2]

or underwater physical characteristics [3,4]. Most parts of those algorithms relied on a priori information to

a great extent, which could lead to difficulties in signal detection, feature extraction, and target recognition

when the conditions change or the methods improve. For those reasons, learning methods and models should

be conducted.

Some algorithms on manifold learning have appeared in academic research work in recent years. Taking

locally linear embedding (LLE) [5], Laplacian eigenmaps [6], isomaps [7], and Hessian LLE [8] for example, we

can find that those algorithms could solve a number of dimensionality reduction problems based on keeping

structures of manifolds, which play a role in linking high-dimension and low-dimension space. Extensions

connecting the stages of training and testing are then raised, such as neighborhood preserving embedding [9],

locality preserving projections (LPPs) [10], and so on. Those methods were proved effective by experiments,

which mostly appeared in the field of image and speech signal feature extraction and recognition. A graph

embedding framework was built in [11]. This framework combined manifold learning with discriminant analysis

∗Correspondence: radar256@gmail.com

2374



XU et al./Turk J Elec Eng & Comp Sci

methods. Marginal Fisher analysis (MFA) was proposed in the meantime to introduce marginal supervised

factors and to overcome some faults (the number of projecting directions, etc.) in cultural discriminant analysis.

Some algorithms related to graph embedding frameworks have been used in papers, such as locally discriminant

embedding (LDE) [12] and semisupervised discriminant analysis (SDA) [13].

Kernel methods were originally adopted in support vector machines [14,15] to adapt the application of

nonlinear classification. The utility of the kernel method was then extended to linear discriminant analysis

(LDA) or Fisher discriminant analysis (FDA) [16–19] and principal component analysis (PCA) [18,19], named

kernel Fisher discriminant analysis or kernel linear discriminant analysis (KLDA) [20,21] and kernel principal

component analysis [19,22], respectively. Multiple kernel learning [23–26] is known as an improved form of

kernel methods, enlarging the application region of ordinary algorithms. The optimization of determining the

forms and parameters of kernels has turned into a promising field in machine learning.

In modeling the human auditory system [27–30], the modeling of the cochlea, including its basilar

membrane and hair cells, can be regarded as a critical part of auditory modeling. Yang et al. [30] proposed a

detailed model, which similarly achieved the simulation of the auditory mechanism, involving the modeling of

the modules above and the lateral inhibition of the human nervous system.

A novel algorithm based on multiple kernel graph embedding and an auditory model is proposed to

implement feature extraction and recognition of ship-radiated noise. We use an auditory model to achieve

feature acquisition. Methods related to graph embedding with mapping according to multiple kernel learning

are then adopted to carry out feature extraction. Compared with the works in [31–34], our method aims to

extract effective factors with existing auditory model features, rather than exploring new categories of features.

The main contributions of this paper are as follows. An auditory model is used in underwater acoustic

signal processing and effective features are generated; algorithms for a graph embedding framework are adopted

to solve feature extraction of ship-radiated noise; and multiple kernel learning and its optimization are em-

bedded in the mapping form of graph embedding, which can solve feature extraction of ship-radiated noise by

dimensionality reduction.

2. Related work

2.1. Ship-radiated noise and auditory model

Studies of ship-radiated noise, as well as its feature extraction and target recognition, appeared when underwater

crafts and ships were widely used in military and other aspects. Experts are able to deal with the signals with

significant features; however, it is still difficult to analyze signals in complex conditions. These methods were

mostly based on experiences of experts, though some of the methods are based on classic signal processing

methods [1–4]. For these reasons, the applicability and automation of these methods could be relatively modest.

Methods based on auditory perception mechanisms [31–34] were then proposed to solve the problems with the

development of underwater acoustic signal processing and speech signal processing.

The auditory model can be seen as the modeling of the cochlea, including cochlea filters on the basilar

membrane, the transduction of hair cells, and processing of auditory nerves. Those modules were researched

respectively. Yang et al. proposed an integral computational model of the auditory system in [30]. Teolis et

al. [31] adopted this auditory model and artificial neural networks to solve transient signal classification, which

was proved effective. Some other researchers also focused on feature extraction and classification of underwater

signals by auditory modeling from different points of view.

As to the employment of auditory mechanisms in analyzing underwater acoustic signal, Tucker et al.
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[32,33] found the perceptual characteristics affecting underwater signals. They then proposed an algorithm to

classify underwater signals by considering the features of timbre, material, and multiscale analysis.

2.2. Manifold learning and multiple kernel graph embedding

A manifold can be considered as a bridge connecting high-dimensional space and low-dimensional space. The

goal of manifold learning is principally to find a manifold or manifolds, a fixed structure, between the two feature

spaces. LLE [5] maintains a local linear structure, while isomapping [7] holds the global geodesic distances.

Some other methods [8] keep different local models and build up final models by combining those local ones.

Graph embedding was first proposed by Yan et al. [11], the form of which is similar to discriminant analysis or

Rayleigh quotients.

The framework of graph embedding can be expressed as in Eq. (1):

argminyTBy=d

∑
i ̸=j

∥yi − yj∥2Wij = argminyTBy=d y
TLyB = Lp = Dp −W p or B = Λ, L = D −W, Dp

ij =


N∑

k=1

W p
ik, i = j

0, i ̸= j

,

Dij =


N∑

k=1

Wik, i = j

0, i ̸= j


(1)

where yi is the feature vector of sample i after dimensionality reduction. W and W p respectively represent

the intrinsic graph and penalty graph adjacency matrix. L and Lp respectively represent the Laplacian matrix

of W and W p . Λ is a diagonal scaling matrix. N is the number of training samples. d is a positive constant

value.

By graph embedding, PCA, LDA, LPP, SDA, etc. can be unified or transformed into this framework.

The linearization, kernelization, and tensorization of them are also included in the framework. The differences of

the graph embedding-related algorithms typically depend on the designing of graphs, including intrinsic graphs

and penalty graphs. Therefore, supervising or other information, which can reflect the relationship between

training samples, can be added by constructing proper graphs.

Multiple kernel learning [23–26] is often considered as the problem of how to choose the kernel or kernels

that best fit current samples. The optimization results change when initial kernels or composite structures of

kernels change. The linear combination of kernels [23–25] is now being focused on. As a kind of mapping,

multiple kernel learning plays an important role in dimensionality reduction of feature space, for its nonlinear

characteristics and wide applicability.

3. Algorithm

The goal of the algorithm is to get features that are optimum for classifying ship-radiated noise signals and

corresponding objects of them. As represented in Figure 1, first of all, preprocessing is designed to be applied

to underwater acoustic signals. An auditory model that can reconstruct input signals is adopted next. A

processed ‘frequency-discrete’ short-time spectrum is then achieved, by which one can easily obtain different

kinds of features to gain sufficient information for recognition. To complement dimensionality reduction as the

dimensionality of feature space grows large, methods of graph embedding are also discussed here. By means

of using training samples, mapping of dimensionality reduction will be generated for testing data. The whole
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process is divided into two steps, an experience-dependent step and sample-dependent step, respectively on

behalf of feature acquisition and dimensionality reduction.

Figure 1. The process of the whole recognition system.

3.1. Feature acquisition

3.1.1. Auditory model

As in [30], the first step of the auditory model is to comply with the basilar membrane filters, which can

simulate frequency decomposition of the human basilar membrane. Frequency distribution of the signal is in

approximately logarithmic form, which can be simulated by a series of band-pass filters, constructed by wavelet

or Gammatone filters.
y1(t, s) = h(t, s) ∗ x(t) (2)

where h(t, s)represents band-pass constant-Q basilar membrane filters, with separate filters by different band

characteristics. We use Gammatone filters [29] here to construct the membrane filters. Due to the manual

auditory procedures in underwater target recognition, parameters in the filters are the same as in common

auditory models.

The next step, as in Eq. (3), is energy conversion by inner hair cells. The step includes three parts,

which are the output of stereocilia, nonlinear saturation characteristics, and the low-pass filter representing the

process of the signal passing the hair cell membrane.

y2(t, s) = g(
∂y1(t, s)

∂t
) ∗ w(t) (3)

where ∂y1(t,s)
∂t indicates the output of stereocilia. g(•) indicates a nonlinear function. The mapping g(u) =

1
1+e−γu − 1

2 is employed here. γ is the gain parameter. w(t) represents the low-pass filter.

Processed by the steps above, a lateral inhibition network (LIN) is applied to be the later section of

the auditory model. The LIN modeling achieves enhancement of transition and effective information (spatial

differential term ∂
∂s and smoothing term v(s) in Eq. (4)).

y3(t, s) =
∂g(∂y1(t,s)

∂t )

∂s
∗t w(t) ∗s v(s) =

∂g(∂y1(t,s)
∂t )

∂s
∗ w(t, s) (4)

Eq. (5) successively represents the half-wave rectifier and the long-time constant integrator in the stage of LIN.

y5(t, s) =
1

T

∫ t

t−T

y4(r, s)dr =
1

T

∫ t

t−T

max(y3(r, s), 0)dr (5)
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where T is the time length of integration. The entire model is shown as in Eq. (6).

y(t, s) =
1

T

∫ t

t−T

max(
∂g(∂[h(r,s)∗x(r)]∂r )

∂s
∗r w(r) ∗s v(s), 0)dr (6)

The auditory model can be used as a process of acoustic signal reconstruction, by which signal enhancement

and denoising, as well as feature acquisition, are able to be achieved. Similarly, the processing is useful in the

conditions of underwater acoustic environments.

3.1.2. Feature acquisition

We first put the signal into the preprocess stage. The preprocessing procedure includes preemphasis and framing.

A high-pass filter is utilized in the process of preemphasis. After preemphasis, a Hamming window is adopted

in framing. The data are then normalized. After that, the preprocessed signal is input into the auditory model,

which approximately imitates the human auditory mechanism, to achieve features.

Since a signal is usually composed of frames by framing, frame features belonging to every channel group

are collected to do averaging. However, the output of the auditory model here is not the real spectrum because

of the limited number of channels and those filters simulating the basilar membrane being of different frequency

response characteristics of basilar membrane filters. Consequently, the output y5 from each channel is adopted

as final generated features by time integration.

3.2. Feature extraction based on multiple kernel graph embedding

Since the dimensionality of the initial feature space could be so high that it may cause the ‘dimensionality curse’,

dimensionality reduction methods must be used. Having completed the procedures above, we bring methods

based on graph embedding framework and multiple kernel learning [23–25] into dimensionality reduction.

3.2.1. Graph embedding framework

Graph embedding is a framework involving most existing dimensionality reduction methods, including some

manifold learning methods. It is obvious from Eq. (1) that the formula can be represented as in Eq. (7) when

B is not diagonal:

argmin
a

Sc

Sp
= argmin

a

aTXLXTa

aTXBXTa
= argmin

a

aTX(D −W )XTa

aTX(Dp −W p)XTa
(7)

where a stands for the mapping direction of the data. For training samples, the original sample set is

X = (x1, x2, ..., xN ). The mapping adopted in Eq. (7) is linear, while the form of kernelization is shown

in Eq. (8):

argmin
α

Sϕ
c

Sϕ
p

= argmin
α

frac(ϕ(X)α)Tϕ(X)LϕT (X)(ϕ(X)α)(ϕ(X)α)Tϕ(X)BϕT (X)(ϕ(X)α) = argmin
α

αTKLKα

αTKBKα

(8)

where ϕ(X) = (ϕ(x1), ϕ(x2), ..., ϕ(xN )). Its column vector ϕ(xi) means xi mapping to reproducing kernel

Hilbert space (RKHS), which is commonly high-dimensional.

One of the most indispensable parts of graph embedding is the designing of embedding graphs. Some

methods’ graphs are shown in Appendix A, with supervised or unsupervised information. It is worth noting
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that an algorithm in accordance with graph embedding might have different forms, owing to optimization or

some other reasons.

3.2.2. Multiple kernel graph embedding

Kernelization methods with a single kernel are sometimes not appropriate to describe data with complex

distributions. Additionally, how to choose a kernel or kernel parameters could be another problem. Thus,

multiple kernel learning [25] is utilized here. The linear type of kernel combination is frequently seen in different

multiple kernel learning algorithms, because of its simple and direct form. When kernel m (m = 1, 2, ...,M)

is adopted, we assume that the weighted high-dimensional feature vector of sample xi (i = 1, 2, ..., N) is

ϕ′
m(xi) =

√
θmϕm(xi), where the parameter θm ≥ 0 and M is the number of different categories of kernels.

The element of row i and column j in the Gram matrix is:

Kij = k(xi, xj) =
M∑

m=1

ϕ
′T
m (xi)ϕ

′
m(xj) =

M∑
m=1

θmkm(xi, xj) (9)

This form looks clearly more acceptable than the average combination of kernels, every θm being equal to 1 or

1/M . For sample xi , its new feature space by multiple kernels is represented as:

aTϕ(xi) = αTϕT (X)ϕ(xi) = αTΩ(i)Θ (Θ = (θ1, θ2, ..., θM )T ) (10)

where a is the linear mapping direction for RKHS samples. It can be represented by columns of ϕ(X). Suppose

A = (α1, α2, ..., αnr ) is represented by vectors α , where nr is the number of projection directions. For sample

xi , its multiple kernel matrix Ω(i) is represented as in Eq. (11).

Ω(i) =


K1(1, i) K2(1, i) · · · KM (1, i)

K1(2, i) K2(2, i) · · · KM (2, i)

...
...

. . .
...

K1(N, i) K2(N, i) · · · KM (N, i)

 (11)

Hence, according to the primal form of graph embedding in Eq. (1), the optimization form of multiple kernel

graph embedding can be expressed as in Eq. (12) [24,25], with multiple mapping directions.

argmin
A,Θ

N∑
i=1

N∑
j=1

∥∥ATΩ(i)Θ−ATΩ(j)Θ
∥∥2 Wij

s.t.
N∑
i=1

N∑
j=1

∥∥ATΩ(i)Θ−ATΩ(j)Θ
∥∥2 W p

ij = 1 , θm ≥ 0 (m = 1, 2, ...,M)

(12)

where W and W p respectively represent intrinsic and penalty graphs. When the penalty graph is replaced by

a scale transformation, the equality constraint in Eq. (12) changes, as Eq. (13), with Lp replaced by B = Λ.

argmin
A,Θ

N∑
i=1

N∑
j=1

∥∥ATΩ(i)Θ−ATΩ(j)Θ
∥∥2 Wij

s.t.
N∑
i=1

∥∥ATΩ(i)Θ
∥∥2 Bii =

∥∥∥∥AT (
N∑
i=1

ρiΩ
(i))Θ

∥∥∥∥2 = 1 , θm ≥ 0 (B = Λ = diag(ρ1, ρ2, ..., ρN ))

(13)
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where m = 1, 2, ...,M . A method was proposed in [24,25] based on the alternative optimization of the two

variables, A and Θ, in the graph embedding framework.

Optimization of A :

When B = Lp , the optimization is shown as in Eq. (14).

argmin
A

tr[AT (
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))ΘΘT (Ω(i) − Ω(j))TWij)A]

s.t. tr[AT (
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))ΘΘT (Ω(i) − Ω(j))TW p
ij)A] = 1

(14)

The solution of Eq. (14) is easy to draw, as Eq. (15).

(
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))ΘΘT (Ω(i) − Ω(j))TWij)α

= λ(
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))ΘΘT (Ω(i) − Ω(j))TW p
ij)α

(15)

When B = Λ, similarly, the solution is according to Eq. (16).

(
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))ΘΘT (Ω(i) − Ω(j))TWij)α = λ(
N∑
i=1

Ω(i)ΘΘTΩ(i)TBii)α (16)

Optimization of Θ:

When B = Lp , the optimization of Θ is shown as in Eq. (17).

argmin
Θ

ΘT (
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))TAAT (Ω(i) − Ω(j))Wij)Θ

s.t. ΘT (
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))TAAT (Ω(i) − Ω(j))W p
ij)Θ = 1 , θm ≥ 0 (m = 1, 2, ...,M)

(17)

Since Eq. (17) is a quadratically constrained quadratic program nonconvex problem, by adding an auxiliary

part [24,25], the optimization of Eq. (17) changes into Eq. (18), as the semidefinite programming (SDP) form,

which can be solved according to the common SDP method. The semidefinite relaxations of this problem were

given in [35].

argmin
Θ,P

tr[P (
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))TAAT (Ω(i) − Ω(j))Wij)]

s.t. tr[P (
N∑
i=1

N∑
j=1

(Ω(i) − Ω(j))TAAT (Ω(i) − Ω(j))W p
ij)] = 1, θm ≥ 0,

[
P Θ

ΘT 1

]
≻0

(18)

where m = 1, 2, ...,M . The same as in the discussion above, when B is diagonal, the optimization is easy

to draw and thus is not mentioned here. The SDP problems of Eq. (18) can be solved by either the existing

toolbox or by implementing the module by programming.
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4. Experiments

4.1. Preparations

According to the algorithm above, features are generated by the auditory model and its auxiliary courses. The

number of the filters of the auditory model here is fixed as 64, which means that the dimensionality of generated

features is 63. The filers are selected as Gammatone filters [29], using the toolbox of [36].

For SDA, the parameter τ in Appendix A is chosen as c/N , where c is the number of classes. For LPP,

MFA (LDE), and SDA, the number of neighbors is determined according to the number of training samples.

It is worth noting that neighbors in kernelization, average multiple kernels, and multiple kernel learning are

determined by distances of each two feature vectors in RKHS with high dimensionality, for example, in the

kernelization of MFA, LPP, and SDA. The distances can be represented by elements of Gram matrices.

The kernels of the multiple kernel methods are three Gaussian kernels with different parameters, as was

proposed in [23]. In multiple kernel learning, the kernelization and average kernelization separately means a

single Gaussian kernel and several kernels combined with the same weight. Multiple kernel learning graph

embedding aims to achieve a relatively appropriate linear combination of different kinds of kernels in the graph

embedding framework. The generalized eigenvalue problems for kernelization and the multiple kernel condition

can be solved according to Appendix B.

The iteration process of the optimization by multiple kernel learning can start from either the mapping

of dimensionality reduction, A = (α1, α2, ..., αnr
), or the linear combination coefficients, Θ = (θ1, θ2, ..., θM )T .

The initial values of A and Θ are chosen merely as was described in [24,25]. The classifiers adopted in the

experiments are k-nearest neighbor [18,19] classifiers. The performances of feature extraction algorithms can

be roughly described in that way.

4.2. Experiments on simulation data

The simulation database contains 3 categories’ ship-radiated signal segments. It simulates radiated noise from

different kinds of ships, with differences in propeller speed modulation, propeller blades, propeller cavitation

noise, and some other aspects. Additionally, the difference between every two kinds of ship signals is set to

be small in this database. The number of training and testing samples, which are randomly selected from the

original database, are respectively 120 and 900. Both in training and testing data sets, every class shares the

same number of samples. We repeat the experiments with random choices of training and testing samples.

Figure 2 shows recognition rates of KLDA and KSDA when the dimensions change, as well as their

average multiple kernel combination form and multiple kernel learning form. For convenience, the three kinds

of mapping are separately written as K-Map (kernel mapping), AMK-Map (average multiple kernel mapping),

and MKL-Map (multiple kernel learning mapping). The two subfigures show the contrast of K-Map, AMK-

Map, and MKL-Map according to different embedding graphs above. Table 1 shows the best low-dimensional

recognition rates of LPP, MFA, LDA, and SDA in the conditions of different combinations of kernels.

It can be concluded from Figure 2 and Table 1 that the graph embedding algorithms with multiple kernel

learning perform comparatively better than ordinary kernel graph embedding methods in most conditions,

especially for low-dimensional conditions of KLDA and KSDA. From Figure 2, when the kernels have different

parameters, it is obvious that MKL-Map methods usually ‘trail’ the comparatively better kernels.

Nevertheless, sometimes it is not obvious to find the differences of performance amount for K-Map, AMK-

Map, and MKL-Map. Disturbances when the generalized eigenvalue problems are solved, as well as calculation

accuracy, the objective function of optimization, and other factors, could lead to the problem.
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Figure 2. Recognition rates on simulation database in low-dimension space. (a) KLDA, AMK-LDA, and MKL-LDA.

(b) KSDA, AMK-SDA, and MKL-SDA.

Table 1. The best recognition rates (in bold) in low-dimension space of simulation data (%).

Methods Kernel 1 Kernel 2 Kernel 3 AMK MKL
LPP 81.96 89.60 76.46 88.71 89.21
MFA (LDE) 97.78 95.66 96.93 94.79 98.96
LDA (FDA) 99.56 98.22 99.54 98.33 99.67
SDA 99.44 97.89 99.41 97.67 99.44

4.3. Experiments on real data

The real database includes 6 categories’ ship propeller-radiated signals, which are achieved according to under-

water measurement. The samples are from different ships and different underwater acoustic source conditions.

The measurements are conducted in a lake by passive sonar. We obtain the data from various types of ships in

nearly the same outside conditions of wind speed, temperature, weather, etc. In the experiments on simulation

data, the numbers of training samples and testing samples are respectively 189 and 747 with random selections

here, also with repeated experiments

Figures 3a and 3b show 6 frames’ original signal and auditory model features respectively from those 6

categories’ samples, which are collected in an underwater environment and have already been preprocessed as

well as normalized. The horizontal axis of Figure 3b shows the corresponding feature marks in the horizontal

axis. Figure 4 is similar to Figure 2, showing the unweighted recognition rates of different dimensions for

different embedding graphs and kernelization mappings.

It can be learned from Figure 4 and Table 2 that the close recognition rates between supervised and

unsupervised methods show the validity of auditory model features from a certain point. The baseline recognition

rate with original auditory model features is only 78.20%, which means that dimensionality reduction can

improve the performance.

Table 2. The best recognition rates (in bold) in low-dimension space of real data (%).

Methods Kernel 1 Kernel 2 Kernel 3 AMK MKL
LPP 85.23 83.99 85.74 83.94 86.52
MFA (LDE) 85.58 85.41 86.21 85.39 86.32
LDA (FDA) 85.77 85.72 85.97 84.81 86.59
SDA 84.93 84.67 85.89 84.42 85.53
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To combine Figure 2, Figure 4, Table 1, and Table 2, the multiple kernel learning graph embedding

methods track the relatively better mapping directions as the number of dimensions changes in most instances.

However, the methods are not always pleasing, owing to the objective functions in the iteration process and the

number of alternative kernels, as well as the number of training samples’ classes. The upgrades of effects for

some methods are not so obvious.
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Figure 3. (a) Original ship-radiated signal frames from 6 categories. (b) Auditory model features respectively from 6

categories of ship-radiated noise.
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According to [25], for image signal processing, the performance of multiple kernel learning graph em-

bedding algorithms is able to exceed that of all the alternative kernels’ methods. However, the performance of

multiple kernel learning could not achieve that level here for underwater acoustic signals. Concluding the pos-

sible reasons for this, we deduce that the computation process of the objective function, the choices of kernels,

and characteristics of different kinds of signals could be the key causes.

From the view of optimization, the objective functions are often changed when the generalized eigenvalue

problems are solved to constrain the small eigenvalues in kernel conditions according to Appendix B. This could

affect the performance of multiple kernel learning. Therefore, new optimization designs should be adopted when

the mapping directions are solved in multiple kernel graph embedding. In addition, the mapping directions are

not originally orthogonal between each other. This is another factor influencing the performance of feature

extraction.
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Figure 4. Recognition rates on real database in low-dimension space. (a) KLPP, AMK-LPP, and MKL-LPP. (b) KMFA,

AMK-MFA, and MKL-MFA. (c) KLDA, AMK-LDA, and MKL-LDA. (d) KSDA, AMK-SDA, and MKL-SDA.

5. Conclusions and future work

We use multiple kernel learning and an auditory model to solve the feature extraction problem in underwater

ship-radiated noise analysis in this paper. For each sample, original features are first generated by the auditory

model. We then adopt multiple kernel learning in a graph embedding framework to achieve dimensionality

reduction for the features. By these procedures, we can extract effective features for ship-radiated noise.

Compared with the existing spectrum analysis-based methods, the proposed method is valid, especially when

the underwater conditions change, and it can be wholly automatic in the task of underwater acoustic signal

analysis and classification of categories of ships. The experiments on both simulation and real data also validate

our algorithm by comparing it with the ordinary kernelized graph-based methods, which only solve optimization

problems by controlling one set of parameters.
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However, some aspects below, which may affect the performance of the method in this paper, are worth

being considered. First, we only choose a small number of Gaussian kernels in the experiments by our experience.

Choosing appropriate kernels for the multiple kernel matrix can greatly raise the performance. Second, the

objective functions in this paper are usually not so proper to describe data relations due to the inaccurate

embedding graphs. Selecting a reasonable graph will lead the iterative optimization into a correct direction.

Finally, the optimization goal keeps changing in each iterative step in multiple kernel learning, because of the

computational errors in solving the generalized eigenvalue problem when kernelization is adopted. We can

change optimization methods or reduce the computational errors in our future research.
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Appendix A

The choices of embedding graphs are provided below, with the adjacency matrices WLPP , WLDA , WMFA ,

WLDE , and WSDA for LPP, LDA, MFA, LDE, and SDA respectively.

LPP [6,10]:

WLPP
ij =

{
1 or e−

∥xi−xj∥2

t , i ∈ Nk1
(j) or j ∈ Nk1

(i)
0, otherwise

, BLPP = DLPP (DLPP
ij =


N∑

k=1

WLPP
ik , i = j

0, i ̸= j

)

(19)

where the parameter t > 0. Nk1(j) is the k1 -neighboring of sample j .

LDA [11,16–19]: Here we talk about a multiclass situation instead of a two-class situation.

 LLDA = I −
NC∑
c=1

1
nc
ececT ⇐ WLDA =

NC∑
c=1

1
nc
ececT

LpLDA = BLDA = I − 1
N eeT ⇐ W pLDA = 1

N eeT
(20)

where ec represents the column vectors with the elements corresponding to class c being equal to 1. e is a

column vector with all elements equal to 1. nc is the number of samples in class c . Nc is the number of classes.

MFA [11]:

WMFA
ij =

{
1, i ∈ Nk1

(j) or j ∈ Nk1
(i)

0, otherwise
, W pMFA

ij =

{
1, i ∈ N−

k2
(j) or j ∈ N−

k2
(i)

0, otherwise

(21)

where Nk1(i) is the set of xi ’s k1 nearest neighbors. j ∈ N−
k2
(i) represents the set for which xj belongs to

xi ’s k2 nearest neighbors, while xi and xj are of two different classes.

LDE [12]: The optimization form of LDE is equal to that of MFA by using WLDE
ij = WMFA

ij −W pMFA
ij

only when k1 = k2 .

SDA [13,25]: For the special circumstance that all of the training samples are labeled, being similar to

the form of LDA, the supervised form of SDA is represented as in Eq. (22).

argmax
a

aTSba
aT (St+τXLX)a

= argmin
a

aT (Sw+τXLXT )a
aT (St+τXLXT )a

= argmin
a

aTX[(I+τD)−(
NC∑
c=1

1
nc

ececT+τS)]XT a

aTX[(I+τD)−( 1
N eeT+τS)]XT a

(22)

where Sw is a within-class scatter matrix, while Sb is a between-class scatter matrix. St = Sb+Sw . Parameter

τ ≥ 0. L here is Laplacian matrix of S :

L = D − S

Sij =

{
1, i ∈ Nk(j) or j ∈ Nk(i)
0, otherwise

, Dij =


N∑

k=1

Sik, i = j

0, i ̸= j

(23)

From Eqs. (22) and (23), τ can be considered as the parameter connecting neighboring and label information.

1
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It can be concluded from Eq. (22) that the graph is as shown in Eq. (24).

WSDA =

NC∑
c=1

1

nc
ececT + τS, W pSDA =

1

N
eeT + τS (24)

Suppose there are l labeled samples. Then we generalize the method to a semisupervised condition, as is stated

in Eq. (25).

W̃SDA =

 (
NC∑
c=1

1
nc
ececT )l×l 0

0 0


N×N

+ τSN×N , W̃ pSDA =

[
( 1
N eeT )l×l 0

0 0

]
N×N

+ τSN×N (25)

Appendix B

The solution method of Eqs. (15) and (16) can be written as KLK = λKBKα . K of the equation is just like

in Eq. (9) of the body part, as well as in ordinary kernelization methods. Since K is a symmetric matrix, it can

be decomposed into UKDKUT
K by SVD decomposition. The matrix DK can be seen as a partitioned matrix

including large eigenvalue part D′
K and small eigenvalue part D′′

K . The corresponding eigenvectors’ matrix is

U ′
K and U ′′

K .

K = UKDKUT
K ≈ U ′

KD′
KU

′T
K = K̃ (DK =

[
D′

K 0
0 D”K

]
, UK =

[
U ′
K U”K

]
) (26)

The generalized eigenvalue problem is converted into:

U ′
KD′

K(U
′T
K LU ′

K)D′
KU

′T
K α = λU ′

KD′
K(U

′T
K BU ′

K)D′
KU

′T
K α (27)

The two sides are simultaneously multiplied by D
′−1
K U

′T
K :

(U
′T
K LU ′

K)(D′
KU

′T
K α) = λ(U

′T
K BU ′

K)(D′
KU

′T
K α) (28)

Suppose α = U ′
KD

′−1
K β . The equation can be written as:

(U
′T
K LU ′

K)β = λ(U
′T
K BU ′

K)β ⇒ L̃β = λB̃β (29)

Since the ranks of L̃ and B̃ can be approximately considered as full rank matrices, B̃ can be decomposed as:

B̃ = UB̃D
1
2

B̃
D

1
2

B̃
UT
B̃
. Then D

− 1
2

B̃
UT
B̃
L̃β = λD

1
2

B̃
UT
B̃
β .

Suppose β = UB̃D
− 1

2

B̃
γ . Then D

− 1
2

B̃
UT
B̃
L̃UB̃D

− 1
2

B̃
γ = λγ .

The mapping of kernelization problems is consequently α = U ′
KD′−1

K UB̃D
− 1

2

B̃
γ

2
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