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doi:10.3906/elk-1403-224

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

An efficient LOF-based long-range correlation filter for the restoration of salt and

pepper impulse corrupted digital images

Justin VARGHESE1,∗, Saudia SUBASH2, Mohamed SAMIULLA KHAN3,
Krishnan NALLAPERUMAL2, Bijoy BABU1, Mohammed RAMADAN SAADI4

1College of Computer Science, King Khalid University, Abha, Saudi Arabia
2Centre for Information Technology & Engineering, Manonmaniam Sundaranar University, India
3Department of Computer Science & Engineering, Manonmaniam Sundaranar University, India

4College of Science, South Valley University, Qena, Egypt

Received: 22.03.2014 • Accepted/Published Online: 14.08.2014 • Final Version: 15.04.2016

Abstract: The paper proposes an adaptive long-range correlation-based filter operator for the restoration of impulse

corrupted digital images. The impulse detection scheme of the proposed algorithm incorporates the local outlier factor

(LOF) to avoid the misclassification of uncorrupted pixels as noise. The restoration algorithm uses the local and remote

neighborhood of the same size to find structural similarity among pixels for ensuring better replacement of detected

impulses. The domain of the remote window is limited around the neighborhood of the impulsive pixel under concern

for maintaining image details and thereby producing a high quality restored image. For replacing impulses, the filter

uses a reference image and information about the corruption/purity status of the pixels in the image to determine the

most correlated uncorrupted pixel from the remote neighborhood. Experimental results show that the proposed filter is

capable of producing better results than the comparative filters in terms of subjective and objective metrics.
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1. Introduction

Salt and pepper impulses affecting digital images are noises that occur when acquired through digital sensors

or while transmitted through physical/electromagnetic media. These unwanted signals will affect the quality of

the image by making true image pixels noisy. The corrupted image pixels take a very large value as a positive

impulse or a very small value as a negative impulse and they respectively produce the visual salt and pepper-like

effect in the corrupted image [1]. The median filter is one of the traditional impulse noise removal filters and

is widely used due to its simplicity and detail preservation capability. A median filter replaces all the pixels of

the image uniformly by the median of adjacent pixels from the predefined neighborhood without considering

whether the pixel is corrupted or not [1]. With this background, many filters were proposed [1,2] to meet the

contradictory requirements of noise reduction and signal preservation. Numerous transform-based algorithms

[3–5] also evolved with different features to reduce noise while maintaining image perception quality. However,

their performance was inefficient due to the large number of arithmetic calculations needed for obtaining the

transformed image. Numerous switching schemes [6–14] also evolved by identifying the corrupted pixel positions

and by replacing them with suitable values determined from detected uncorrupted pixels. Mu et al. [15] proposed
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a fast and efficient median filter (FEMF) by addressing the limitation of the adaptive switching median filter

[10], but it failed to preserve structural details of the local neighborhood while restoring impulses. Shi et al.

[16] proposed a sorted switching median filter by incorporating histogram-based impulse detection and trimmed

median-based regularization to efficiently replace impulses, but it failed to avoid misclassification when the

image is corrupted at lower impulse noise levels. Although these algorithms performed better, they could not

meet the requirements of perfectly identifying the corrupted pixel positions and adequately replacing it with a

suitable value. The algorithm proposed by Awad [17] used a direction-based approach where optimal direction

is used as a reference for identifying corrupted pixels, but the algorithm is limited to perform better only at low

noise levels. Jafar et al. [18] addressed the limitations of boundary discriminative noise detection (BDND) [19]

by incorporating a clustering scheme to classify pixels by their corrupted/uncorrupted status. The LOF-based

boundary discriminative noise detection filter (LOFBDND) proposed by Wang et al. [20] incorporated the LOF

to quantify the distinctiveness of corrupted pixels. However, the algorithm failed to restore images corrupted

at higher quantum of impulse levels since it set the correction window size to 3 × 3 and also by considering all

pixels irrespective of them being corrupted or not to restore impulses.

Due to the detail preservation capability, many nonlocal correlation based algorithms were developed by

focusing on the replacement of impulses by one of the uncorrupted remote pixels that best suits the image local

conditions. The decision-based nonlocal mean (DNLM) filter [21] used a statistics-based classification scheme

to detect corrupted pixels and the corrupted pixels are replaced with suitable values by considering reference

image output along with nonlocal means. The algorithm proposed by Jie [22] used functional level evolution

(FLE) to identify the remote pixel to replace the detected impulses, but the algorithm introduced impulsive

patches in the restored image while restoring highly corrupted images. The long-range correlation (LRC) based

filter [23] works with the stages of impulse detection and noise cancellation. The signal estimate for replacing

impulses is obtained based on the mean square error measure between the nonimpulsive pixels of the local

window and the remote window. However, the impulse correction scheme fails in efficiently replacing impulses

at higher impulse noise ratios due to the difficulties in highly impulse corrupted environments where almost

all pixels of the remote window and the window under consideration are corrupted. This increases the time

complexity of the algorithm due to the search for neighborhoods with uncorrupted pixels. Moreover, it does not

account for the homogeneity of pixels in the local window and the remote window while determining the signal

restorer. Thus almost all filters in the literature could not simultaneously meet all the requirement of detection

and correction of impulses.

In this paper we propose an adaptive local outlier-based long-range correlation filter for the restoration

of salt and pepper impulse corrupted digital images by addressing the limitations of LRC, LOFBDND, and

DNLM filters. The paper is organized in four sections. Section 2 provides the proposed impulse restoration

filter. Experimental results and simulation analysis are given in Section 3. Conclusions are made finally in

Section 4.

2. The proposed algorithm

The proposed algorithm incorporates the distinct phases of impulse detection and correction. The impulse

detection algorithm is built in with the min–max and LOF criteria to efficiently identify impulsive positions

and thereby to avoid the misclassification of uncorrupted pixels as noise and vice versa. The proposed filter

is designed with the assumption that image pixels are smoothly varying and are separated by edges. The

noise model considered by our algorithm is only salt and pepper impulse noise, which means 1) only a portion
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of image pixels will be corrupted; 2) the corrupted pixel can take either a minimum or maximum value of

the dynamic range [1]. The proposed restoration algorithm is incorporated with long-range-based correlation

calculations to find the structural similarity for effectively replacing the detected impulses with the respective

remote pixels that better suit the local image conditions. The proposed filtering scheme is explained in the

following subsections.

2.1. The impulse detection stage

The impulse detection phase of the proposed filter aims at identifying the corrupted positions in a flag image,

f , of same size, M×N , as the given corrupted input image, X , where fi and Xi , respectively, provide the flag

and pixel value at positioni =(i1, i2) . We denote the impulsive and nonimpulsive positions of the corrupted

input image by setting the corresponding positions of the flag image,f , respectively as 1 and 0. As an initial

step, we set all spatial positions of the flag image f to ‘1’ by assuming that the entire image is corrupted, i.e.

f =
{
fi=(i1,i2) = 1/1 ≤ i1 ≤ M, 1 ≤ i2 ≤ N

}
(1)

The traditional min–max check is utilized to perform the initial assessment of corrupted/uncorrupted status of

each pixel. For each pixel at positioni = (i1, i2), we determine the minimum and maximum values of the image

pixels defined by the impulse detection window WD ×WD centered at position i to check the purity status of

respective image pixelXi. We generalize ΩW
i to denote the set of pixel positions in the window W ×W centered

at position i =(i1, i2) and is mathematically expressed as

ΩW
i = {j = (j1, j2)/i1−k ≤ j1 ≤ i1+k, i2−k ≤ j2 ≤ i2+k} (2)

Herek =(W − 1) /2and the purity status is recorded in the initial flag image, f I , as

f I
i =

{
0 if (Xi−m1)> 0 and (Xi−m2)< 0

1 otherwise
(3)

where

m1= min
{
Xj/j ∈ ΩWD

i

}
(4)

m2= max
{
Xj/j ∈ ΩWD

i

}
(5)

Here WD is an odd integer not smaller than 3.

Once the initial assessment of the flag image is made, since there are chances of wrongly detecting

uncorrupted pixels as noisy especially when the noise ratio is less, we refine the status of detected corrupted

pixels by determining its LOF from the set of nearest uncorrupted pixels, S , defined by

S =
{
Xj/m1 < Xj < m2 and j ∈ ΩWD

i

}
(6)

The LOF of Xi over the set of uncorrupted pixels, S , provides how much Xi is isolated from the detected

uncorrupted pixels. Note that this LOF calculation is possible only when there are sufficient pixels in the

uncorrupted set, S . If the cardinality of S is greater than a predefined threshold, T1 , indicating sufficient
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uncorrupted pixels in the set, S , to determine the outlier nature ofXi , we calculate LOF of Xi over the set of

uncorrupted pixels, S . For any pixel p , the r -neighbor LOFr (p) is defined by

LOFr (p) =


∑

B∈Nr(Xi)

lrdr (B)

/
lrdr (p)

|Nr (p)|

 , (7)

where lrdr (p) is the local reachability density of p from its r -distance pixels and |Nr (p)| is the cardinality of

set of pixels in r -distance neighborhood of p . Here the distance refers to the pixel intensity difference. Further,

the formulation and definitions of LOF can be found from [24]. If LOFr (Xi) is near to 1, it is a good indication

thatXi shows good correlation with its uncorrupted r -distance neighboring pixels from S and hence it need

to be declared uncorrupted. In our algorithm, we not only use LOFr (Xi) but also the 1-distance neighbor

LOFr (N1 (Xi)) (the LOF of the closest uncorrupted pixel fromXi) to better ensure the purity status of Xi .

We define the final refined flag image fi as

f
i
=

{
0 if (|LOFr (N1 (Xi))− LOFr (Xi)| ≤ T2) and f I

i = 1

f I
i otherwise

(8)

Here T2 is the threshold used for fixing the LOF tolerance level for changing the corrupted status of the pixels.

Since we incorporated a two-way LOF-based comparison to refine the detected corrupted pixels from the first

phase of impulse detection using traditional min–max check, many uncorrupted edge pixels that are similar to

the noise will escape from being misclassified as impulse.

2.2. The impulse correction stage

The proposed filter incorporates flag and reference images in the process of image restoration where the flag

imagef provides the corruption/purity status of pixels, whereas the reference image Uref is the filtered output

of another filter using the same flag image. We use the impulse correction phase of one of our previously

published work, adaptive switching median filter (ASMF) [10] to construct the reference image, Uref , by using

the flag image of this proposed impulse detection algorithm and it is utilized for the efficient replacement of

detected impulses by the proposed correction algorithm. The proposed algorithm makes use of local and remote

windows of same size, W1 ×W1 , to identify the better restorer of the search window from the neighborhood of

the corrupted pixel defined by the mask, W2 ×W2 . Note that W1< W 2 and W1 = 2k1 +1 and W2 = 2k2 +1.

The proposed restoration algorithm is described in the following steps:

Step 1: If the flag value fi of position, i =(i1, i2) of the pixel Ui is ‘0’, it is retained in the restored

image, Vi , since Ui is an uncorrupted pixel. Thus,

Vi = Ui (9)

Now the algorithm is continued from Step: 5.

Step 2: Otherwise if the flag value, fi of the pixel Ui is ‘1’, indicating an impulsive position, we use two

windows of sizes W1×W1 and W2×W2 such thatΩW1
i ⊂ ΩW2

i . For each corrupted pixel, in order to ensure the

structure preservation in the restored image V , we find the remote uncorrupted pixel Uj such that j ∈ ΩW2
i
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that best suits the local image conditions of the neighborhood of Ui . This Uj is found in R by considering

the corresponding neighboring pixels in the reference image, Uref , defined by the set of positions, ΩW1
j

, that

produces the least weighted mean square error with the neighboring pixels defined by ΩW1
i

of Uref
i as

R = argmin
Uj


k1∑

l1=−k1

k1∑
l2=−k1

Wtijl1l2 ×
(
Uref
i1+l1,i2+l2

− Uref
j1+l1,j2+l2

)2

k1∑
l1=−k1

k1∑
l2=−k1

Wtijl1l2

× di,j,l1,l2


j=(j1,j2)∈Ω

W2
i \(i1,i2)

(10)

where ‘\ ’ is the set difference operator and

Wti,j,l1,l2 =

(
1−

(
(fi1+l1,i2+l2 + fj1+l1,j2+l2)

3

))
(11)

The Wti,j,l1,l2 provides the weight for each squared pixel difference calculation and di,j,l1,l2 is the distance

between the positions (i1 + l1, i2 + l2) and (j1 + l1, j2 + l2). We have assigned minimum weight when both the

local and remote neighboring pixels from the reference image are corrupted.

Step 3: Here if |R− Ui| ≤ T3 , it indicates that there is a strong correlation between the center pixel Ui

with that of the found restorer R and hence we maintain the center pixel as in (9). Here T3 is a threshold used

for checking the correlation of the restoring value, R , with the central pixel, Ui .

Step 4: Otherwise if |R− Ui| > T3 , we replace the center pixel Ui by R as

Vi = R (12)

Step 5: Move to the next pixel and process it from step 1.

Unlike other algorithms [22,23], since the proposed algorithm makes use of the reference image while

replacing impulses, we always get a valid restorer in the first iteration itself and thereby it reduces the

computational complexity to a large extent. Moreover, the additional importance in terms of weights given

to the uncorrupted pixels while determining the weighted squared error helps the algorithm to identify the

remote pixel that better suits the local image structural properties while replacing impulses.

3. The experimental results and analysis

In this section, we compare the proposed algorithm in terms of efficiency and detail preservation capability with

other algorithms including simple median filter [1], center weighted median filter (CWMF) [2], rank ordered

mean (ROM) Filter [6], morphological median filter (MMF) [7], progressive switching median filter (PSMF)

[8], pixel restoring median filter (PRMF) [9], noise adaptive fuzzy switching median filter (NAFSMF) [11],

fuzzy mean linear aliasing window kernel filter (FMLAWKF) [12], pixel correlation based impulse filter (PCIF)

[13], switching-based adaptive weighted mean filter (SAWMF) [14], boundary discriminative noise detection

filter (BDNDF) [19], local outlier factor based boundary discriminative noise detection filter (LOFBDND) [20],

decision-based non-local means filter (DNLMF) [21], long range correlation filter (LRCF) [23], adaptive fuzzy

based switching weighted average (AFSWA) filter [25], and rank ordered adaptive median filter (RAMF) [26].

The various test images used for analyzing the subjective and objective performance of the proposed algorithm
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include Lena, Boats, Cameraman, Bridge, Barbara, and Baboon. The 8-bit Lena and Boats images of size 512

× 512 are used in this paper for experimental comparisons.

The objective comparison is made with peak signal to noise ratio (PSNR), the mean absolute error

(MAE), miss-detection (MD), and false alarm (FA). The formulations for PSNR and MAE are as defined in

AFSWA. MD provides the total number of misclassifications of impulses as signals whereas the FA provides the

total number of misclassifications of signals as impulses by the impulse detection algorithms. A better impulse

detection algorithm should produce fewer MDs and FAs by clearly isolating impulses from signals.

We use visual analysis of the restored outputs, percentage of not detected edges, ξ1 (%), and the

percentage of wrongly detected edges, ξ2 (%), to compare the subjective performance of the proposed algorithm

over other prominent filters. The metric ξ1 is the percentage of ratio of edge pixels present in the edge image

from the impulse-free image but not present in the edge image of the impulse filter’s output to the total number

of edge pixels present in the noise-free image, while ξ2 is the percentage of edges present in the edge image of

the restored output but not present in the edge image of the impulse-free image to the total number of nonedge

pixels present in the restored image. Figures 1 and 2 make the visual comparison of the outputs produced by

SAWMF, PCIF, NAFSMF, FMLAWKF, DNLMF, AFSWAF, and the proposed algorithm for impulse noise

ratios 10% and 50%, respectively, on the Lena image. Restored outputs produced by FMLAWKF, DNLMF,

AFSWAF, and the proposed algorithm from the Lena image corrupted with 90% noise are shown in Figure 3.

From visual analysis, it is very clear that the restored outputs produced by the proposed algorithm are better

than those of the other competitive algorithms.

(a)  (c)  (b)  (d)  

(e) (g) (f) (h) 

 

 

 

 

 

 

 

 

 

 

Figure 1. Outputs of different methods in restoring the Lena image corrupted at 10% noise level: (a) corrupted image,

(b) SAWMF, (c) PCIF, (d) NAFSM, (e) FMLAWK, (f) DNLN, (g) AFSWA, and (h) the proposed filter.

Figure 4 provides a visual comparison of the edge distortions in the restored outputs produced by SAWMF,

PCIF, NAFSMF, FMLAWKF, DNLMF, AFSWAF, and the proposed algorithm on the Lena image corrupted

with 10% noise. The correctly retained edges in the restored image the same as in the case of the noise-free
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image is represented by blue color. The edges present in the edge detected image of the impulse-free image but

not present in the edge detected image of the restored output by different filters are indicated by red color. In

addition, the edges that are present in the edge image of the restored output but are not present in the edge

image of the impulse-free image are indicated by blue color pixels. It is to be noted that the edge preservation

capability of the proposed algorithm is better when compared to other promising algorithms in the literature

as can be verified from Figure 4.

(e) (g) (f) (h) 

(a) (c)(b) (d)

Figure 2. Outputs of different methods in restoring the Lena image corrupted at 10% noise level: (a) corrupted image,

(b) SAWMF, (c) PCIF, (d) NAFSM, (e) FMLAWK, (f) DNLN, (g) AFSWA, and (h) the proposed filter.

(a) (c)(b) (d)

Figure 3. Outputs of different methods in restoring the Lena image corrupted at 90% noise level: (a) FMLAWK, (b)

DNLN, (c) AFSWA, and (d) the proposed filter.

Tables 1–3 respectively show the objective analysis of PSNR, MAE, ξ1 , ξ2 , MD, and FAs on the restored

images produced by different filters from the Lena image corrupted by 10%, 50%, and 90%. The analysis on

PSNR, MAE, ξ1 , ξ2 , MD, and FAs on the restored images produced by different filters from the Boats image

corrupted by 10%, 50%, and 90% are respectively shown in Tables 4–6. From Tables 1–6, it is very clear that

the objective performance of the proposed algorithm is better than that of the other comparative filters.
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(e) (g)(f) (h)

(a) (c)(b) (d)

Figure 4. Edge images by Canny method with correctly detected (green), not detected (red) and wrongly detected (blue)

edge positions of restored outputs of different filters from the Lena image corrupted with 10% noise: (a) uncorrupted

image, (b) SAWMF, (c) PCIF, (d) NAFSM, (e) FMLAWK, (f) DNLN, (g) AFSWA, and (h) the proposed filter.

Table 1. Objective metrics produced by different filters for Lena corrupted by 10% impulse noise.

Filters PSNR MAE ξ1 ξ2 MD FA

MMF 3×3 30.252 4.269 4.275 3.100 0 217,765

ROM 3×3 32.634 3.183 2.358 1.704 3 206,269

CWMF 3×3 33.577 1.749 1.609 1.413 144 93,306

Median 3×3 33.712 2.760 2.144 1.425 4 160,492

PSMF 33.961 0.794 0.936 1.320 11 76

RAMF 38.092 0.964 1.079 0.865 0 30,224

SAWMF 38.676 0.927 1.032 0.802 32 57

LRCF 38.799 0.493 0.839 0.674 47 58

PCIF 38.930 0.706 0.939 0.764 43 31

LOFBDND 40.784 0.394 0.676 0.656 123 32

BDND 41.152 0.348 0.619 0.564 0 3

NAFSM 41.860 0.432 0.730 0.656 0 15

FMLAWK 42.331 0.380 0.608 0.547 0 11

DNLM 42.405 0.377 0.633 0.558 0 10

AFSWA 42.413 0.377 0.595 0.528 1 0

Proposed 43.392 0.372 0.527 0.534 0 1
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Table 2. Objective metrics produced by different filters for Lena corrupted by 50% impulse noise.

Filters PSNR MAE ξ1 ξ2 MD FA

MMF 5×5 27.545 5.718 4.289 5.099 0 124,657

ROM 7×7 26.934 6.001 4.532 3.614 12 118,324

CWMF 7×7 27.139 5.573 4.305 3.500 81 96,078

Median 7×7 26.973 5.986 4.565 3.566 17 110,693

PSMF 28.335 3.376 3.369 2.931 29 4061

RAMF 29.820 3.144 2.987 2.936 0 3316

SAWMF 33.155 2.325 2.433 1.953 107 28

LRCF 28.135 3.666 3.011 2.637 105 16

PCIF 33.905 2.154 2.098 1.801 45 53

LOFBDND 30.110 3.202 3.165 2.042 83 10

BDND 29.995 3.001 2.747 2.822 0 114

NAFSM 33.01 2.371 2.195 1.996 0 1

FMLAWK 33.346 2.288 2.315 1.852 0 3

DNLM 33.724 2.205 2.193 1.608 0 4

AFSWA 33.597 2.184 2.055 1.713 0 0

Proposed 34.315 2.103 1.899 1.710 0 0

Table 3. Objective metrics produced by different filters for Lena corrupted by 90% impulse noise.

Filters PSNR MAE ξ1 ξ2 MD FA

MMF 9×9 12.330 49.871 6.384 8.499 4045 25,539

ROM 9×9 9.892 54.018 5.992 12.315 44159 25,168

CWMF 9×9 9.410 56.000 6.028 12.640 69175 18,762

Median 9×9 9.647 53.408 5.965 12.310 50017 22,894

PSMF 12.360 31.884 6.379 5.143 4224 12,800

RAMF 21.402 10.501 6.361 7.238 386 5

SAWMF 24.424 7.410 5.605 5.037 58 86

LRCF 7.356 85.775 6.203 10.473 536 763

PCIF 26.191 6.797 5.305 4.661 43 57

LOFBDND 23.110 7.202 5.765 5.042 320 10

BDND 16.181 13.354 6.182 5.064 102 539

NAFSM 24.600 7.265 5.213 5.944 549 9

FMLAWK 23.740 8.835 5.503 5.178 0 5

DNLM 26.636 6.309 5.457 4.563 0 3

AFSWA 26.210 6.332 4.956 5.092 0 0

Proposed 26.280 6.185 4.958 4.537 0 0
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Table 4. Objective metrics produced by different filters for Boats corrupted by 10% impulse noise.

Filters PSNR MAE ξ1 ξ2 MD FA

MMF 3×3 27.236 6.245 5.819 3.743 0 224,119

ROM 3×3 29.257 4.989 3.410 2.587 2 217,722

CWMF 3×3 30.572 2.895 2.682 2.113 166 107,691

Median 3×3 29.764 4.517 3.385 2.242 11 175,824

PSMF 32.796 0.986 1.459 1.263 35 677

RAMF 33.875 1.563 1.679 1.396 0 29,551

SAWMF 34.104 1.538 1.607 0.805 131 102

LRCF 31.476 1.129 1.670 1.594 98 107

PCIF 34.129 1.254 1.453 1.531 94 73

LOFBDND 37.603 0.616 1.033 1.065 965 114

BDND 36.565 0.636 1.024 0.945 0 8

NAFSM 37.850 0.694 1.068 0.936 0 7

FMLAWK 37.145 0.785 1.173 1.119 0 8

DNLM 38.409 0.606 0.929 0.865 0 119

AFSWA 38.258 0.590 0.986 0.915 0 0

Proposed 39.643 0.497 0.909 0.881 0 5

Table 5. Objective metrics produced by different filters for Boats corrupted by 50% impulse noise.

Filters PSNR MAE ξ1 ξ2 MD FA

MMF 5×5 24.547 8.599 7.925 4.511 0 126,940

ROM 7×7 23.832 9.200 8.457 5.035 14 122,900

CWMF 7×7 24.028 8.576 8.215 4.525 81 102,932

Median 7×7 23.767 9.187 8.410 5.118 20 116,372

PSMF 24.127 6.167 6.119 4.340 72 8241

RAMF 27.015 4.639 4.543 3.848 0 3319

SAWMF 29.307 3.696 3.799 1.957 32 341

LRCF 24.100 6.473 5.313 4.758 230 589

PCIF 30.231 3.361 3.099 2.814 17 34

LOFBDND 26.020 5.280 4.998 5.658 756 106

BDND 26.433 4.706 4.657 3.692 0 264

NAFSM 29.161 3.719 3.452 3.004 0 0

FMLAWK 29.457 3.850 3.821 3.096 0 3

DNLM 29.980 3.475 3.402 2.632 0 5

AFSWA 30.433 3.231 3.148 2.584 0 0

Proposed 30.606 3.193 3.046 4.470 0 0
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Table 6. Objective metrics produced by different filters for Boats corrupted by 90% impulse noise.

Filters PSNR MAE ξ1 ξ2 MD FA

MMF 9×9 12.450 49.434 9.562 8.1680 2986 25,878

ROM 9×9 9.707 57.019 9.026 12.413 43858 25,582

CWMF 9×9 9.404 57.808 9.022 11.969 68261 19,365

Median 9×9 9.462 57.192 8.957 12.380 51471 23,569

PSMF 12.101 34.838 9.268 4.837 665 14,878

RAMF 20.074 13.601 8.784 9.067 196 5

SAWMF 22.451 10.420 8.687 5.237 62 17

LRCF 7.169 90.369 9.268 9.798 636 914

PCIF 23.230 9.6190 8.137 5.831 21 28

LOFBDND 20.110 17.202 8.765 7.042 320 10

BDND 16.690 18.861 9.330 7.419 0 661

NAFSM 22.240 10.460 7.915 7.347 568 1

FMLAWK 20.635 14.578 8.786 6.724 0 2

DNLM 23.851 9.293 8.410 6.862 0 1

AFSWA 23.401 9.332 7.156 6.491 0 0

Proposed 24.437 9.267 7.100 6.238 0 0

The thresholds T1 , T2 , and T3 are used for fine tuning the performance of the proposed algorithm.

T1 decides the minimum number of uncorrupted pixels needed in the impulse free set, S , to perform LOF

calculations to refine the corrupted status of pixels. T3 decides the tolerance level to omit a pixel from replacing

it with a restoration value. We take a very small value in the range [0, 5] for set T3 . Among all thresholds, T2

plays an important role that affects the overall performance of the proposed filter and its behavior is explained

through the following cases as can be verified from Table 7.

Table 7. PSNR obtained from the Lena image for different T2 values against various impulse noise levels.

Noise ratio
PSNR for different T2values

T2 = 0.5 T2 = 1.0 T2 = 1.5 T2 = 2.0 T2 = 2.5 T2 = 3 T2 = 3.5 T2 = 4.0 T2 = 4.5

2 48.194 48.619 48.979 49.235 49.535 49.652 49.709 49.840 49.900

4 46.885 47.002 47.093 47.208 47.306 47.325 47.334 47.372 47.372

6 45.492 45.536 45.551 45.576 45.594 45.606 45.610 45.627 45.632

8 44.544 44.559 44.565 44.577 44.583 44.586 44.586 44.589 44.589

10 43.366 43.379 43.381 43.386 43.389 43.390 43.390 43.391 43.392

12 42.427 42.429 42.430 42.430 42.432 42.432 42.432 42.432 42.432

14 41.616 41.616 41.617 41.617 41.618 41.618 41.619 41.619 41.619

16 41.045 41.045 41.045 41.046 41.046 41.046 41.046 41.046 41.046

18 40.427 40.427 40.427 40.427 40.428 40.428 40.428 40.428 40.428

20 39.964 39.964 39.964 39.964 39.964 39.964 39.964 39.964 39.964
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Case 1: If the image is corrupted with low noise levels, many uncorrupted pixels in the window will

be misclassified as impulses by the min–max check in (3); all of them will participate in the 2-way LOF based

refinement. The threshold T2 in this case should be large enough to avoid misclassification of uncorrupted

pixels as noisy.

Case 2: If the image is corrupted with a higher quantum of impulse noise, much fewer uncorrupted

pixels in the window will be misclassified as impulses by the min–max check; all of them will participate in

the 2-way LOF-based refinement. Although the threshold T2 in this case is less obvious, it should be small

enough to avoid misclassification of corrupted pixels as uncorrupted. By empirical analysis on different images,

we formulated T2 as

T2 = (1−NR)× a1 (13)

Here a1 is a constant and the local noise ratio NR is determined by

NR =
(1− |S|)

WD ×WD
(14)

Here S is the set of uncorrupted pixels from (6) and || denotes its cardinality. The window sizes WD , W1 ,

and W2 are respectively set to 7, 7, and 3 for better performance of the algorithm. For the other algorithms,

we used the parameters as suggested in the respective papers.

4. Conclusion

The proposed adaptive long-range correlation-based filter operator for the restoration of impulse corrupted

digital images incorporates the LOF in its detection scheme to avoid the misclassification of uncorrupted pixels

as noise. Since the filter uses the reference image and information about the corruption/purity status of the

pixels in the image to determine the most correlated uncorrupted pixel from the remote limited neighborhood

around the pixel under concern, the errors while replacing impulses are reduced. Experimental results showed

that the outputs produced by the proposed filter are better than the results of other prominent filters in terms

of subjective and objective metrics.
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