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Abstract: In this paper, we propose the application of polynomial matrix eigenvalue decomposition (PEVD) to the

problem of fetal electrocardiogram (ECG) extraction from real ECG recordings obtained from abdominal leads. We

model the fetal ECG extraction problem as a broadband sensor array signal processing problem in order to account for

the broadband nature of the ECG noise present in the recordings. An algorithm for providing an approximate PEVD

is used in order to estimate the broadband noise subspace. Suppression of the broadband noise and maternal ECG is

achieved by carrying out an orthonormal projection of the recordings onto the estimated fetal subspace. The proposed

scheme was evaluated with multichannel synthetic ECG signals and real ECG data from the PhysioNet Challenge

database and is shown to perform favorably as compared to prior-art methods. Results indicate that our method is more

robust than the prior-art ones for the task of fetal ECG estimation.

Key words: Fetal electrocardiogram extraction, polynomial matrix eigenvalue decomposition, broadband subspace

decomposition

1. Introduction

The accurate estimation of the QRS complexes of fetal electrocardiogram (FECG) waveforms is an essential

part of prenatal diagnosis of fetal heart conditions [1]. The antepartum FECG can be measured noninvasively

from electrodes on the mother’s skin. However, FECG signals are very weak compared to the background

interference, the strongest of which is the maternal ECG (MECG) signal. Other noise sources, such as uterine

electromyographic noise, baseline wander, and muscle noise, also cause problems [2]. As a consequence, the

estimation of the FECG has remained an open problem.

The FECG extraction problem has been addressed in the past using various methods, such as neural

networks [3,4], Bayesian inference [5], adaptive filtering [6−8], and blind source separation (BSS) [8−13].

Sameni et al. proposed a method based on both periodic independent component analysis (ICA) and generalized

eigenvalue decomposition, namely the periodic ICA (PiCA) algorithm, in [11]. It is known that if the FECG

signal power across all the channels is significantly less than that of the MECG, then decorrelation alone,

via principal component analysis (PCA) or singular-value decomposition (SVD) [12], can usually separate the

signals from the noise [13−16]. A drawback of this approach is that its performance depends on the electrode

positioning [15].

The muscle, observation, and quantization noises [10,13,17−19] picked up by the sensors have significant
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frequency extent (broadband), so they cannot be adequately related in terms of simple phase and amplitude

factors across the sensors. The consideration of only instantaneous correlation is suboptimal if not entirely

inappropriate; therefore, decorrelation over all relative time delays, i.e. strong decorrelation [20], is necessary.

Strong decorrelation can be imposed by application of a matrix of suitably chosen finite impulse response (FIR)

filters, or a polynomial matrix [21]. The required polynomial matrix is obtained via a polynomial matrix

eigenvalue decomposition (PEVD), which has received growing interest recently [22−27]. In [23], McWhirter et

al. proposed the second-order sequential best rotation (SBR2) algorithm. In [26], the authors introduced a new

variant of SBR2 modified for subband coding, namely SBR2C, which was shown to give improved performances.

In this paper, a novel approach to FECG signal extraction and fetal R-wave estimation is proposed that

uses the SBR2C algorithm of [26] for computing the PEVD of the cutaneous recordings, for which only initial

results were obtained using the SBR2 of [27]. PEVD enables the estimation of the broadband noise subspace

and maternal and fetal signal subspaces, from which the fetal R-waves are estimated.

1.1. Problem statement

The broadband noise contributions in the ECG recordings originate from sources that typically have colored

spectra and thus long-term correlations [17−19], which, if long enough, could mean that the coherence time

becomes large compared to the source waveforms. Consequently, the sampled sensor signals may look as if they

have been through a time-dispersive channel. In addition, the impinging signals may not be coherent across the

different sensors, i.e. weak correlation between sensor signals, which can be problematic for multichannel BSS

algorithms. We account for the lag-dependent correlations by modeling the source-to-sensor propagation as a

matrix of FIR filters, rather than a scalar matrix, akin to broadband array processing. The transfer function

of the FIR matrix forms a polynomial matrix, which accurately describes (matches) the possibly fractional [28]

pure delays between different sensors, as described in this section.

1.2. Preliminary

A matrix R is a Hermitian matrix if R =RH and a unitary matrix H ∈ Cp×p is one that satisfies HHH = Ip ,

where Ip is the p× p identity matrix. A polynomial matrix is a polynomial with matrix coefficients. A p× q

polynomial matrix in the indeterminate z−1 is denoted by

A (z) =

t2∑
τ=t1

A [τ ] z−τ , (1)

where τ ∈ Z , t1 ≤ t2 . Here we use the underscore notation to denote a polynomial (and Laurent polynomials)

or power series. The matrix A(z) has entries aik (z) =
∑t2

τ=t1
aik [τ ] z

−τ with aik [τ ] ∈ C ∀ikτ . A transform

pair in Eq. (1) is denoted as A (z) ↔ A[τ ] . The matrices A [t1] , . . . , A [t2] are referred to as the coefficient

matrices of A (z); e.g., A[0] is the coefficient matrix (plane) of order zero, i.e. coefficient matrix at z0 .

A polynomial matrix H (z) is paraunitary (PU) if the matrix H (z) |z=ejΩ = H
(
ejΩ
)
∈ Cp×p is unitary

for all frequencies Ω. Equivalently, H (z) H̃ (z) = H̃ (z)H (z) = Ip , where H̃ (z) is the paraconjugate

transpose of H (z), i.e. HH (1/z∗). In the context of linear system theory, H (z) represents a lossless

multiinput multioutput transfer function [29]. The matrix R (z) ∈ Cp×p is para-Hermitian if R̃ (z)=R (z); so

{R [τ ]}ik = rik [τ ] = r∗ki [−τ ] = {R [−τ ]}∗ki ,∀τ ∈ Z and ik = 1, 2 . . . p .
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1.3. Data model

Consider that q signals, s [t] ∈ Rq , from statistically independent sources, are received by p cutaneous sensors

producing the signals x [t] ∈ Rp , where p ≥ q . Since some source signals consist of an infinite number of

different frequency components, the sensor-weight values required to correct for the possibly fractional [28] time

delay between sensors are different for different frequencies. Frequency-dependent weights can be realized using

FIR filters, which form a frequency-dependent response for each sensor signal in order to compensate the phase

difference for the different frequency components. The sensors thus sample the propagating wave field in both

space and time. This processing can be expressed as

x [t] =

t2∑
τ=t1

A [τ ] s [t− τ ] + η [t] (2)

where A [t] ∈ Rp×q is the matrix of (unknown) FIR filter coefficients aik [t] , which corrupt the sources. The

mixing matrix A [t] is defined by the geometry of the body and sensor and the source positions. η [t] represents

the additive noise, which is independent from the source signals. Eq. (2) may also be written as:

x (z) = A (z) s (z) + η (z) (3)

where x (z) , s (z) and η (z) denote power series of the form x (z) =
∑∞

t=−∞ x [t] z−t .

Due to the process in Eq. (2), the signals x (z) will generally be correlated over multiple time lags.

Accordingly, the space-time covariance matrix, which is para-Hermitian,

R [τ ] = E
{
x [t]xH [t− τ ]

}
(4)

will generally not be diagonal, where E{·} denotes the expectation operator. It follows that the cross-spectral

density (CSD) matrix R (z) ↔ R[τ ] ,

R (z)=A (z)Rss (z) Ã (z) +Rηη (z) (5)

will also not be diagonal. Rss (z) and Rηη (z) are the CSD matrices of the q sources and p noise sources,

respectively, and are both diagonal because of the independence assumption.

2. Eigenvalue decomposition of para-Hermitian systems

In order to gain an estimate of the FECG subspace, the diagonalization of R (z) is required. In this section,

we provide a brief review of the PEVD and an algorithm for computing the PEVD, which is central to the

proposed method described in Section 3.

2.1. Polynomial matrix eigenvalue decomposition

The signals x [t] cannot be expressed in terms of simple amplitude and phase factors because they represent

broadband sensor signals. Usually, decorrelation by the SVD (or EVD) [12] is not adequate, so we are often

required to perform strong decorrelation:

E

{∑
t

xi [t]xk [t+ τ ]

}
= 0, ∀τ, i ̸= k (6)
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It turns out that to satisfy Eq. (6) we require a PU matrix H (z) ↔ H [τ ] , such that the transformed signal

vector,

w [t] =
∞∑

τ=−∞
H [τ ]x[t− τ ] (7)

is strongly decorrelated [23]. This requires that the CSD matrix, S (z), of the transformed signals w [t] ∈ Cp

be diagonalized, i.e.

S (z)=H (z)R (z) H̃ (z) = diag
{
s11 (z) . . . spp (z)

}
(8)

where S (z) ↔ S [τ ] is the covariance matrix S [τ ] = E{w [t]wH [t− τ ] of the transformed signals and diag{•}
denotes a diagonal matrix. The diagonal elements skk (z) are the polynomial eigenvalues of R (z), which have

the spectral majorization property [20], i.e. the power spectral densities (PSDs) S (z) |z=ejΩ = S
(
ejΩ
)
∈ Cp×p

satisfy

S11

(
ejΩ
)
≥ . . . ≥ Spp

(
ejΩ
)

∀Ω. (9)

Eqs. (8) and (9) give an extension of the ‘ordered’ EVD to polynomial matrices, which is referred to as

polynomial matrix EVD (or PEVD). Note that Eqs. (6) and (8) are equivalent statements in the sense that the

transformed signals, which satisfy Eq. (6), correspond to the diagonals of S (z). Also note that since H (z) is

PU, ∥R (z)∥F = ∥S (z)∥F , where ∥.∥F denotes the Frobenius norm. Eq. (9) may be viewed as analogous to

the ordering of the singular values by the SVD. If there is sufficient disparity in the powers of the broadband

source signals, then BSS may be achieved via the PEVD.

2.2. SBR2C algorithm

The SBR2 algorithm is an iterative, time-domain algorithm based on second-order statistics [23]. It generalizes

the classical Jacobi method to para-Hermitian polynomial matrices. The enhanced variant of SBR2 in [26],

namely the coding gain-based SBR2 (SBR2C), maximizes the coding gain function in [20] and gives improved

strong decorrelation and spectral majorization. Here we give a very short review of SBR2C as it forms the basis

of the proposed scheme in Section 3. Readers are referred to [26] for a thorough treatment of SBR2C.

The SBR2C algorithm computes an FIR PU matrix H(z) such that Eqs. (8) and (9) are satisfied to a

good approximation. The SBR2C algorithm can attain an approximate factorization of the form

SL (z)=HL (z) R̂ (z) H̃L (z) ≈ diag
{
sL,11 (z) . . . sL,pp (z)

}
(10)

after L iterations. R̂ (z) is an estimate of R (z) based on samples from x(z) in Eq. (3); SL (z) is a good

approximation to the diagonalized S (z) of Eq. (8). At each iteration l , SBR2C eliminates the largest normalized

magnitude-square off-diagonal term,

g =
|sL−1,m,n [τ ]|2

sL−1,m,m [0] sL−1,n,n [0]
, (11)

of Sl−1 (z), where sl−1,m,m [0] and sl−1,n,n [0] are variance of the mth and nth signals, respectively. The

matrix SL (z) is adequately diagonalized after L iterations, so that

max
m,n,m ̸=n,τ

g ≤ ϵ , (12)
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where ϵ is a predesignated arbitrarily small threshold parameter; and the polynomial matrices SL (z) and

HL (z) are as in Eq. (10). The PU matrix is obtained thus as

HL (z) =

(
1∏

l=L

Pl (z)

)
(13)

whereby the elementary PU matrix Pl (z) = UlΛl (z) consists of a Jacobi rotation matrix Ul and a PU (delay)

matrix Λl (z) [23]. For each l , an elementary PU matrix transfers energy from the off-diagonals of Sl−1[τl] to

its diagonals such that the larger diagonal element of the order-zero coefficient matrix, Sl−1[0] , lies higher up

on the diagonal, which during the iteration process leads to spectral majorization.

The accuracy of this decomposition depends on ϵ , the support of R̂ (z) and the method used to estimate

R (z)—-a procedure for calculating R̂ (z) is given in Section 3. Note that the order of H (z) cannot be

determined prior to applying SBR2C, which is in contrast to other methods (e.g., [25]), which design degree-

constrained PU matrices.

3. Proposed method for fetal ECG extraction

In this section, we describe a method that uses the SBR2C algorithm for estimating the FECG signal from

multichannel abdominal ECG recordings. The proposed method is an extension of the methodology reported

in [27], which used SBR2. The decomposition in Eq. (10) allows an estimate of the fetal subspace; projection

of the data onto this subspace produces estimates of the FECG, as discussed in the following section.

3.1. CSD matrix estimation

All current PEVD approximating algorithms, including SBR2C, are blind techniques in the sense that they do

not have prior knowledge of the sources or the mixing matrix, only necessitating knowledge of the space-time

covariance matrix R [τ ] in Eq. (5). For real-life applications, we calculate an estimate of R (z), using T

samples, say, of the input x [t] , i.e.

R̂ (z) ≜
W∑

τ=−W

R̂ [τ ] z−τ (14)

where

R̂ [τ ] ≜ 1

T

T−1∑
t=0

x [t]xH [t− τ ], τ ∈ Z, 0 ≤ t ≤ T − 1 (15)

It is assumed that the signals x [t] have zero mean, T ≫ W and R̂ [τ ] ∼= 0, for |τ | > W , where 2W + 1 is the

window length [23], so for broadband signals, R̂ [τ ] is negligibly small if |τ | is large compared to the coherence

time. The parameter W is often measured empirically; x [t] = 0 for t outside the interval [0, T − 1].

3.2. Application of the SBR2C algorithm

SBR2C (in Section 2) is used to strongly decorrelate the ECG signals x [t] derived from the electrodes placed

on the patient. The algorithm generates a PU matrix H (z) s.t.

H (z) R̂ (z) H̃ (z) = Ŝ (z) (16)
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where Ŝ (z) is approximately diagonal; more specifically,

Ŝ (z) ≈ diag
{
ŝ1 (z) , ŝ2 (z) , . . . , ŝp (z)

}
(17)

The lossless filter represented by H (z) is then applied to the input signals x [t] to produce the transformed

signals according to Eq. (7), or

w (z) = H (z)x (z) (18)

where the signals w (z) and x (z) are algebraic power series. To a good approximation, the signals w (z) are

strongly decorrelated and spectrally majorized for multichannel data [23]. The transformed signals w (z) have

signal contributions from the FECG, MECG, and noise signals and can be viewed as the polynomial principal

components of x (z).

3.3. Proposed method

A salient feature of SBR2C is its very strong tendency to produce spectrally majorized signals, thereby

compacting the maximum power into the least number of channels [26]. This enables it to be used for estimating

broadband signal and noise subspaces with the aim of performing a degree of BSS. Typically the power of the

MECG is sufficiently large enough compared to that of the FECG in the recordings so as to partition the

approximated CSD matrix, Ŝ (z), corresponding to w (z), as:

Ŝ (z) ≈ diag
{
ŝ1 (z) , ŝ2 (z) , Ŝη (z)

}
(19)

where ŝ1 (z) is an estimate of the polynomial eigenvalue associated with the MECG. If the FECG signal is

strong compared to the noise sources, then ŝ2 (z) is the polynomial eigenvalue associated with the FECG and

corresponds to an estimate of the fetal subspace; Ŝη (z) ≜ diag
{
ŝ3 (z) , . . . , ŝp (z)

}
is associated with sources

of noise. The polynomial eigenvectors of R̂ (z) constitute the columns of H (z) which span x (z). The noise

power usually dominates a very weak FECG signal, in which case the ordering of the polynomial eigenvalues in

Eq. (19) can be different. This may occur since SBR2C has a strong tendency to compact the most powerful

correlated components into w1 (z), and the next most powerful into w2 (z), and so on [26].

It is assumed that the three subspaces relating to ŝ1 (z) , ŝ2 (z) and Ŝη (z) are orthogonal. FECG

estimation is achieved by orthonormal projection of the data onto the fetal subspace, namely back projection,

given by

f̂ (z) = H̃ (z)Bw (z) (20)

where B ∈Zp×p , called the blocking matrix, is a diagonal matrix with the diagonal corresponding to the FECG

component set to unity. For example, in the case of Eq. (19),

B = diag

0 1 0 ... 0︸ ︷︷ ︸
p−2

 (21)

Eq. (20) is depicted in Figure 1. The p signals in f̂ (z) are estimates of the FECG, f(z). Conversely, for an

MECG estimate, the maternal component is back projected using B = diag{1 0 ... 0︸ ︷︷ ︸
p−1

} in Eq. (20).
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Figure 1. The proposed scheme for FECG extraction.

In practice, the correct choice of the blocking matrix B in Eq. (20) can be made by visually inspecting the

transformed signals w (z)—the signal with recurring fetal R-wave components and minimal MECG remnants

is used in Eq. (20). This process can be automated by finding the set {ωk (z)} in w (z) whose members have

a strong correlation with a reference of the maternal ECG, m (z). The reference m (z) can be obtained from a

thoracic sensor. Correlations between w (z) and m (z) are computed, and the signals ωk (z) with correlations

above a preselected threshold ζ ∈ (0, 1] are then omitted from Eq. (20). The indices k define the locations

of the zeros on the diagonal of B . The accuracy of this detection process depends on ζ and the estimated

cross-correlation between w (z) and m (z). A suitable value of ζ is found experimentally. In situations where

all in w (z) are highly correlated with m (z), the algorithm defaults to that in Eq. (21).

4. Results and discussion

In this section, a study of the performance of the proposed method for fetal ECG extraction is presented for

both synthetic abdominal ECG signals and real-world ECG recordings. Our method is compared to three other

multichannel algorithms for FECG estimation.

4.1. Experiments using synthetic ECG signals

The synthetic ECG data used in this paper are the 3-D, multichannel, dynamic model in [17] for body surface

ECG recordings, where the heart beat rate and noise level can be varied. In our simulations, different MECG,

FECG, and noise signals were synthesized. To improve the simulation realism, real muscle artifact, baseline

wander, and motion artifacts from the MIT-BIH Noise Stress Test Database [30,31] were used. This database

includes 3 half-hour recordings of noise typical in ambulatory ECG recordings. The data were anti-aliased

resampled from an original sampling frequency of 360 Hz to match that of the ECG signals (500 Hz); resampling

had minimal effect on the noise structure.

The signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) of the FECG signal were adjusted

with the noise and maternal signal power levels, respectively. The simulated maternal, fetal, noise, and synthetic

abdominal signals are shown in Figures 2a–2d, respectively. Corresponding spectra of these signals are shown

in Figures 2e–2h. The signals were simulated with an input SNR and SIR of −15 dB.

The SBR2C algorithm was applied to three synthetic abdominal ECG channels of the type in Figure

2d. The convergence of SBR2C for different values of the parameter W in Eq. (14) is shown by the graph of

g from Eq. (11) versus iteration number L in Figure 3. We see that SBR2C achieves lower values of g for

W = 20. SBR2C is seen to converge faster, in general, than the (original) SBR2 algorithm, whose convergence

for W = 20 is also included in Figure 3. The correct choice of W depends on the main lobe of the correlation

lag-extent of the ECG signals. Studies of these correlations for both synthetic and real ECG signals have shown

that, generally, W = 20 gives the best results, since the main lobe of the ECG correlations have a mean extent

of ∼ 40 samples with a standard deviation of 9%. In the following text, the proposed method uses SBR2C

with L = 125, which yielded g < 10−4 .
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Figure 2. Components of a single synthetic ECG signal: a) MECG signal with a heart rate of 61 bpm, b) FECG signal

with a heart rate of 149 bpm, c) real noise signal, and d) synthetic abdominal signal with SNR = SIR = −15 dB; e–h)

spectra of the MECG, FECG, noise, and abdominal signals.
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Figure 3. Convergence of SBR2C for W values in the case of 3 synthetic abdominal signals of the type in Figure 2d.

The proposed scheme was applied to the three synthetic abdominal ECG signals. Figures 4a–4c show the

principal components w(z) in Eq. (18) produced by SBR2C for the synthetic ECG in Figure 2. On inspection,

the 2nd component (2nd graph down from the top) looks to be a reasonable estimate of the fetal subspace since

the R-wave periodicity approximates that of the actual FECG in Figure 2b. The principal-component spectra

w (z) |z=ejΩ= w
(
ejΩ
)
are shown in Figures 4d–4f. Notice that SBR2C has performed energy compaction (i.e.

it has transferred most energy into as few channels as possible) and the first output channel has most of the

power, which is mostly due to the maternal ECG.

Back projection of the 2nd output from w(z) onto the ECG inputs using the blocking matrix in Eq. (21)

produces the FECG estimates shown in Figure 5. The first output in Figure 5a can be considered a reasonable

estimate of the actual FECG signal (in Figure 2b), with a signal-to-interference plus noise ratio (SINR) of 6.4
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dB. We define the SINR as

SINR =
∥f (t)∥2F∥∥∥f̂ (t)− f (t)

∥∥∥2
F

(22)

where f (t) is the actual fetal ECG component and ∥f (t)∥F is its Frobenius norm.
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Figure 4. Outputs from the proposed algorithm from processing synthetic abdominal ECG data: a–c) principal

components, w (z) from Eq. (18); d–f) spectra of w (z) .

The SINR performance of our method was assessed for different noise power levels using three synthetic

ECG channels. The input SNR was varied from −10 dB to −24 dB in steps of 2 dB, with SIR = 0 dB.

For each SNR, the SINR for the estimated FECG signal was calculated as an average over 150 independent

experiments. The correlation-based technique described in Section 3.3 was employed; the 1st ECG signal was

used as a reference with ζ = 0.65. Figure 6 shows the ensemble average SINR versus SNR.
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Figure 5. Simulation results from applying the proposed

method to three synthetic abdominal signals.

Figure 6. Ensemble SINR of the estimated FECG versus

input SNR for four FECG extraction methods.

The performances of three other multichannel methods for FECG estimation are included in Figure 6.

The methods evaluated are: 1) the well-known SVD-based method [15]; 2) the periodic component analysis
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(PiCA) algorithm [11]; 3) the method based on SBR2 in [27]. Both the SVD- and SBR2-based methods

were applied as described in [15] and [27], respectively, where the 2nd transformed component is used in the

orthonormal projection. The PiCA method was employed with FECG-beat synchronization, where the best

fetal ECG component extracted by the JADE algorithm [14], a BSS method, was used for fetal R-peak detection

and phase calculation, as suggested in [11]. Figure 6 illustrates the robustness of our method compared to the

other methods for SNR > −19 dB .

4.2. Experiments using Real ECG Recordings

We have also performed experiments on real-world ECG data from the noninvasive fetal ECG PhysioNet

Challenge 2013 database [30,32]. This database contains 175 four-channel abdominal FECG recordings over

durations of 60 s , 10 min, and 60 min from multiple subjects using a variety of instrumentations with differing

frequency responses. A sampling frequency of 1 kHz and 12-bit resolution were used. The database included

datasets Set-A and Set-B. The former is provided with reference annotations, which were used to check the

validity of our results, whereas reference annotations are not available for the latter dataset. The database

presents a difficult problem for BSS algorithms due to powerful broadband noise, which varies between datasets.

According to the current limited understanding of FECG processing, FECG estimates should satisfy at

least two criteria [7]: 1) the recurring fetal R-waves should be distinctly visible; and 2) there should be no visible

remnants of the MECG component. As such, our method obtains good estimates of the FECG for ∼ 71% of

the PhysioNet Challenge 2013. The Table shows the R-wave detection success rate of the proposed method for

Set-A of the Challenge 2013 database. For comparison, we include the performance of the considered prior-art

algorithms: PCA (via SVD) [15], PiCA (via JADE) [11], and SBR2 [27]. Note that the first output of the

algorithms was used in determining algorithm success.

Table. Comparison of the average R-wave detection performances for Set-A.

Method Success rate (%)
PCA [15] 41.13
PiCA [11] 63.91
SBR2-based [27] 65.85
Proposed method 71.64

The four-channel abdominal ECG recordings for three 10 s examples obtained from the PhysioNet

database are shown in Figures 7–9. Note that amplitude values are normalized. Figures 7–9 show segments

of the “a15”, “a40”, and “b08” ECG recordings, respectively. Notice the baseline wander, due to maternal

respiration, in Figures 7 and 8, and the very strong maternal signal present in Figure 9. Dataset “a40” is a

somewhat pathological example due to the structured noise.

The proposed method was set up as described in Section 4.1. Figure 10a shows the outputs w(z) of

Eq. (18) from SBR2C for the recordings in Figure 7. Note that longer recordings (10 min and 60 min) have

been analyzed using our method with similar outcomes. On inspection, the 4th component (from the top)

is a reasonable estimate of the fetal subspace. For most other datasets, however, the 2nd output channel

from SBR2C was dominated by the fetal component. Reasons for this behavior are given in Section 3.3. The

corresponding spectra, w
(
ejΩ
)
, are shown in Figure 10b. Notice that SBR2C has performed energy compaction

with the maternal ECG dominating the 1st output.
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Figure 7. Four abdominal ECG recordings from the

“a15” dataset (Set-A) of the ECG Challenge 2013 Phy-

sioNet Database.

Figure 8. Pathological example of four abdominal ECG

recordings from the “a40” dataset (Set-A) of the ECG

Challenge 2013 PhysioNet Database. Notice that the first

channel has much distortion.
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Figure 9. Four abdominal ECG recordings from the “b08” dataset (Set-B) of the ECG Challenge 2013 PhysioNet

Database.

Estimates of the FECG are obtained by back projecting the 4th signal, shown in Figure 11a. It can be

seen that the first two output signals are fairly clear estimates of the FECG, as verified by the ground truth.

Outputs 3 and 4 also have fetal cardiac contributions, but are corrupted by, possibly, baseline wander. The

corresponding frequency spectra are shown in Figure 11b. The fetal P- and T-waves are mainly low-frequency

components (25 Hz), whereas the fetal QRS complex is localized at higher frequencies (>20 Hz). From Figure

11b, we see harmonics relating to a fetal ECG; however, notice that there is little low-frequency content, which

suggests that the P- and T-wave components have been suppressed.

For comparison, the PiCA algorithm was also applied to these data, and the results are shown in Figure

12. Figure 12a shows the estimated FECG component (2nd from the top), in which the fetal contributions are

clearly visible. Notice that low-frequency components (<10 Hz) of the abdominal signal are preserved, which

may have more to do with baseline wander than the fetal P- and T-waves.
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Figure 10. a) Principal components, w (z) , extracted from the abdominal ECG dataset “a15” of Figure 7 using the

proposed algorithm; b) spectra of w (z) .
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Figure 11. a) FECG estimates, f̂ (z) , from Eq. (20), for the abdominal ECG dataset “a15” of Figure 7 by the proposed

algorithm; b) spectra of the FECG estimates.

The results from applying the proposed algorithm to segments from the “a40” and “b08” abdominal

ECG recordings in Figures 8 and 9, respectively, are shown in the 4th graph (from the top) of Figures 13a and

13b. For both of these datasets, the 1st output from SBR2C is back projected. These two datasets were also

processed by the SBR2-based method, PiCA, and classical SVD method; the output signal from each method

with the most visible FECG contributions is presented, respectively, in the 1st, 2nd, and 3rd sets of graphs

of Figure 13. In Figure 13a, the actual fetal R-wave locations (obtained from the reference annotations) are

indicated by downward-pointing arrows. The fetal heart rate is 144 bpm and the maternal heart rate is ∼ 77

bpm. In the FECG estimate produced by our method, the fetal R-waves can be seen to coincide with the actual

ones, with a few failures, indicated by upward-pointing arrows. Conversely, fetal components in the PCA, PiCA,

and SBR2-based method are not so clear.

Experiments using other datasets from the PhysioNet database were repeated. For lack of space, all

experimental results obtained from our investigation cannot be shown; however, about 65% of the results

observed were similar to the examples shown here.
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Figure 12. a) Periodic components extracted from the abdominal ECG dataset “a15” of Figure 7 using the PiCA; b)

spectra of the PiCA estimates.
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Figure 13. Comparison of the various methods for dataset a) “a40” of Figure 8 and b) “b08” of Figure 9: (from top to

bottom) the first output from the SVD, PiCA, SBR2-based method, and our method.

5. Conclusion

In this paper, we have established a method that uses broadband subspace decomposition for the estimation of

fetal ECG signals from multiple ECG abdominal recordings. Our method is based on a model that accounts

for the effective broadband sensor array processor that manifests as a consequence of the broadband noise

impinging on the sensors. Experiments with synthetic and real ECG data suggest that the proposed method

works reasonably well.

Real-life experiments were conducted for the PhysioNet Challenge 2013 database, which is a difficult

database because the fetal ECG signals are corrupted by the maternal ECG and broadband noises. The

proposed scheme has shown overall success in extracting the fetal ECG signal for most of the tested datasets.

Although the P- and T-waves were usually not discernable from the estimates provided by any of the methods

tested, the proposed method is able to estimate the fetal R-waves with good accuracy.

The proposed method has been shown to give improved accuracy and robustness as compared to the

prior-art. Our technique does not require preprocessing or postprocessing stages. Experiments indicate that its
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sensitivity to sensor placement is low. The method also does not require measurement of the maternal ECG as

a reference signal.

Future work consists of enhancing the automated back projection scheme with the development of an

adaptive R-wave detection technique, which would make the method more practicable. Efforts will also focus

on hardware implementation of the proposed algorithm, possibly on a field-programmable gate array, which

would significantly improve execution times.
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