
Turk J Elec Eng & Comp Sci

(2016) 24: 2498 – 2512

c⃝ TÜBİTAK
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Abstract: Curvelet decomposition is a multiscale analysis method defined for 2D and 3D signals that can represent

curve-like features with great sparsity. A genuine method based on histograms of curvelets is proposed for content-based

texture image retrieval. The accuracy of the method is analyzed for rotation invariance, curvelet scale-orientation size,

and bin size. The results are given with precision-recall graphs. Experimental results on the Brodatz database show

promising results for the proposed method compared to curvelet subband statistical features.

Key words: Histogram of curvelets, content-based image retrieval, Brodatz textures, Jeffrey divergence, precision recall

1. Introduction

Content-based image retrieval, a technique that uses visual contents to search images from large-scale image

databases according to users’ interests, has been an active and fast-advancing research area since the 1990s.

During the past decade, remarkable progress has been made in both theoretical research and system develop-

ment. However, there remain many challenging research problems that continue to attract researchers from

multiple disciplines. This study mainly focuses on curvelet-based feature extraction and content-based texture

retrieval. A genuine method called histograms of curvelets is proposed for this purpose.

The paper is organized as defining the used methods and materials in Section 2, defining the proposed

method in Section 3, giving experimental results in Section 4, and providing the conclusion in Section 5. In

Section 2, first the definitions of continuous curvelet transform and discrete curvelet transform are given, and

then the distance and performance measures are defined. Finally in Section 2, the main texture databases used

are introduced. In Section 3 the proposed method is defined and the implementations on deterministic signals

and rotated texture datasets are given. In Section 4 the accuracy of the proposed method is analyzed according

to the number of curvelet scales and orientations and bin size compared to statistical curvelet feature-based

retrieval methods. Lastly, the optimum scale-orientation and bin sizes are investigated in Section 4 according

to the accuracy of the classification.

1.1. Motivation

Curvelet decomposition can represent curve-like features with great sparsity. Reconstructions by small per-

centages of the curvelet coefficients result in by far greater signal-to-noise ratios compared to various other

transforms with the same coefficient percentages [1]. With these properties curvelet-based feature extraction is

gaining importance. Curvelet-based features are used in the field of content-based image retrieval by means of
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subband parameter estimation of the probability distribution that the coefficients may be drawn from. Instead

of estimating probability distribution parameters, utilization of histograms of curvelet subbands is proposed as

a genuine method.

1.2. Related work

Textures are repeating primary patterns. Texture analysis is the measure of variations in images based on

smoothness, coarseness, and regularity [2]. Texture features defined and used in the literature can be listed as

cooccurrence matrices [3], run-length statistics [4], spectral measures such as Fourier transform [5] and discrete

cosine transform [6], fractal dimensions [7], statistical moments [8], wavelets [9], Gabor filters [10], ridgelets [2],

and curvelets [11].

Curvelet transform was first introduced by Candes and Dohono in 2000 [12]. In the literature content-

based texture image retrieval based on curvelet features is gaining importance. In particular, the subband mean

and variance values’ cascaded feature vector is widely used as a benchmark classification result. In [13] for each

subband generalized Gaussian distribution parameter estimation was carried out and cascaded distribution

parameters were used as a feature vector.

1.3. Main contributions

A genuine method, namely histogram of curvelets (HoC), that utilizes histograms of absolute maximum nor-

malized curvelet coefficients is proposed with this study in content-based texture image retrieval. The effect of

coefficient normalization both spatially and in the curvelet domain is investigated on retrieval accuracy. The

effects of bin size and curvelet scale-orientation sizes are also given with precision-recall graphs to define the op-

timum parameter values. The experimental results show that the proposed method gives promising performance

compared to widely used curvelet statistical features.

In our previous work the proposed HoC method was used for synthetic aperture radar (SAR) image

land-use classification [14]. That previous work concluded that the use of HoC results in better classification

accuracies compared to other standard benchmark feature extraction methods used for SAR classification, as

HoC utilizes spatial locality.

2. Methods and materials

In this section continuous and discrete curvelet transforms are defined, distance and performance measures for

content-based image retrieval are given, and the dataset used is explained.

2.1. Curvelet transform

Multiscale directional transforms are closely related to the human visual system as the visual cortex handles

images with spatial locality, orientations, and scales. Such resemblance shows the necessity of multiscale

directional transforms in computer vision for interpreting images as we do. The curvelet transform is a multiscale

directional transform that allows an almost optimal nonadaptive sparse representation of objects with edges

[15]. The curvelet transform is used in image/video processing, seismic exploration, fluid mechanics, simulation

of partial differential equations, and compressed sensing.

Curvelet transform is closely related to wedge filters, short-time Fourier transform (STFT), wavelet

transform, Gabor wavelet transform, ridgelet transform, contourlet transform, and other directional wavelet

transforms. In STFT the signal is decomposed into fixed-size rectangular regions in the frequency domain;
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likewise, in wavelet transform, the signal is decomposed into fixed-area variable-size rectangular regions in the

frequency domain. Contrary to the two previous transforms, curvelet transform enables directional decomposi-

tion by means of wedge-like tiling in the frequency domain. Gabor wavelet transform is the decomposition of

the signal into elliptical directional tilings. The curvelet transform is derived from ridgelet transform and differs

in being locally applied ridgelets. The ancestor ridgelet transform can optimally represent straight line-like

features, whereas curvelet transform can represent curve-like features with great sparsity. Although contourlet

transform can be calculated faster than curvelet transform, contourlets are in the form of discrete filter banks

with directional but rectangular grids and result in more artifacts than curvelet transform [16].

Two generations of curvelet transform are defined in the literature, of which the second generation’s

approach enabled the use and understanding of curvelets easier. Second-generation curvelet transform is defined

in two forms, which are based on unequally spaced fast Fourier transforms and wrapping of specially selected

Fourier samples. Compared to first-generation curvelet transform, the second generation is faster and has

complexity of O(n2 log n) for an n × n image matrix [17].

2.1.1. Continuous curvelet transform

Continuous curvelet transform is defined in R2 with spatial variable x , frequency domain variable ω , frequency

domain polar coordinate variables r and θ , radial window function W , and 2π periodic angular window function

V . Given that W is supported for domain (1/2, 2) and V is supported for domain [−1, 1] and both are Meyer-

like windows, it is showed that both W and V satisfy the admissibility conditions [17]. Combining W and V

one gets U , which is a frequency domain polar wedge filter window function. Generalizing U for any scale 2−j

and any rotations θl the wedge filter family is obtained as given in Eq. (1). Here the parameters are taken as

r ≥ 0, θ ∈ [0, 2π), θl = 2π2−⌊j/2⌋l , and j, l ∈ N0 . It should also be noted that the rotation difference between

wedge filters is achieved by the translation of V .

Uj,l (r, θ) = 2−
3j
4 W

(
2−jr

)
V

(
2⌊j/2⌋(θ − θl)

2π

)
(1)

Scale variable j is taken as greater than or equal to an arbitrary j0 value, which is related to the coarse scale

curvelet. Nondirectional coarse scale curvelet Uj0(ω) can be given with the low-pass filter window W0 in Eq.

(2).

Uj0 (ω) = 2−j0W0

(
2−j0 |ω|

)
(2)

The continuous curvelet transform of a signal is defined as the inverse Fourier transform of the product of the

each element of the curvelet filter family (wedge filters) with the Fourier pair of the signal.

Spatially continuous curvelet transform can be given with a waveform φ (x), oscillatory in one direction

and low-pass in the other variable direction. Choosing as the Fourier pairs Uj0 (ω)
F−1

−→ φ (x), parabolically

rescaled with Dj (Eq. (3)), rotated with Rθl (Eq. (4)), and translated with k = (k1, k2) ∈ Z2 (Eq. (5)), one

can construct curvelets spatially. The coarse scale curvelet spatially is also given as in Eq. (6).

φj (x) = |Dj |φ (Djx) , Dj =

(
2j 0
0 2j/2

)
(3)

φj,l (x) = |Dj |φ (DjRθlx) , Rθl =

(
cosθl sinθl

−sinθl cosθl

)
(4)
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φj,l,k (x) = |Dj |φ (DjRθl (x− k)) (5)

φj0,k (x) = φj0

(
x− 2−j0k

)
(6)

Curvelet coefficients can be calculated then with the inner product of the function f ∈ R2 and the curvelets

given in Eq. (7).

c (j, l,k) = ⟨f, φj,l,k⟩ =

2(x)∫
R

¯φj,l,k (x)dx (7)

To obtain real-valued curvelets, wedges that are symmetric to the origin are taken into account as Uj,l (r, θ) +

Uj,l (r, θ+π). Combining all, the frequency domain tiling of curvelet coefficients is given in Figure 1a.

Figure 1. a) Continuous and b) discrete curvelet tilings in the frequency domain.

2.1.2. Discrete curvelet transform

Discrete curvelet transform is defined for Cartesian form functions in a similar way as in Eq. (7) and is given

by Eq. (8). For the discrete curvelet transform instead of polar wedge windows shear windows are constructed

from concentric squares for calculation convenience.

cD (j, l,k) =
∑

0≤t1,t2≤n
f [t1, t2]

¯φD
j,l,k [t1, t2] (8)

For a function ϕ that is supported for [−2, 2] and ranges between [0, 1], a low-pass profile 2D window Φ can

be constructed in the frequency domain given in Eq. (9).

Φj (ω1, ω2) = ϕ
(
2−jω1

)
ϕ
(
2−jω2

)
(9)

The Cartesian analogy of the circular window then can be given as in Eq. (10) for values of j ≥ 0.

Wj (ω) =
√(

Φ2
j+1 (ω)− Φ2

j (ω)
)

(10)
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The angular window with all possible rotations is defined in Eq. (11).

Vj,l (ω) = V
(
2⌊j/2⌋ω1/ω2 − l

)
(11)

Combining W and V , one gets U , which is a frequency domain shear filter window function. Generalizing U

for any scale 2−j and any rotations l the shear filter family is obtained. Using a similar approach to continuous

curvelets, with approximations on the shear windows, periodic wrapping, and choosing the Fourier pair as

Uj0 (ω)
F−1

−→ φD (t), discrete curvelets can be obtained spatially. Frequency domain tiling of discrete curvelet

transform is given in Figure 1b. The discrete curvelets in the spatial domain is illustrated in Figure 2 with

different scale and orientation values.

The coarse curvelet coefficients are given both spatially (Figure 3a) and in the frequency domain (Figure

3b), which can be approached as a low-pass filter.

Figure 2. Curvelets spatially via warping. Left to right orientations approximately at 3π/4 , π/2 , π/4 , 0. Top to

bottom scales 4, 3, 2.

Figure 3. a) Coarse curvelet spatially. b) Coarse curvelet in the frequency domain.
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2.2. Distance and performance measures

The Jeffrey divergence as a distance measure for image retrieval is defined and the overall performance measure

precision-recall values are explained in subsections.

2.2.1. Jeffrey divergence

In [18], RGB (red, green, blue) histograms, RGB moments, HSV (hue, saturation, value) values, and Gabor,

Tamura, and convolution-based features were tested on Corel collection with 14 different measures, given in three

main categories of geometric, information theoretical, and statistical, and it was concluded that the Canberra

metric, squared chord, Jeffrey divergence, and χ2 distances were the best-performing measures. As the proposed

method in this study is based on histograms and Jeffrey divergence is suitable for histogram distance, Jeffrey

divergence is selected as the measure to be used based on the results in [18].

Jeffrey divergence (djd) of A = (a1, a2, · · · , an) and B = (b1, b2, · · · , bn) that are the query instance and

test object instance respectively can be given in Eq. (12), where mi = (ai + bi)/2.

djd (A,B) =
n∑

i=1

(
ai log

ai
mi

+ bi log
bi
mi

)
(12)

Contrary to the widely used Kullback–Leibler divergence, Jeffrey divergence is numerically stable and symmetric

[18].

2.2.2. Precision Recall

The performance of the retrieval system is measured using the standard procedure in terms of precision and

recall values. Precision is the fraction of retrieved instances that are relevant, while recall is the fraction of

relevant instances that are retrieved [19]. They are defined by Eqs. (13) and (14).

Precision (P ) =
# of Relevant Retrieved

# of Total Retrieved
(13)

Recall (P ) =
# of Relevant Retrieved

# of Total Relevant
(14)

The precision values for corresponding recall values for each query image are averaged over all images and

the resulting precision-recall pairs are plotted as a graph with precision on the vertical axis and recall on the

horizontal axis. Higher precision values for the same recall values represent better performance.

2.3. Brodatz texture images

The Brodatz database is a widely used benchmark texture dataset for content-based image retrieval [20].

The images used for the purpose of content-based texture image retrieval are taken from a web source

(http://www.ux.uis.no/˜tranden/ brodatz.html). Although the dataset has 111 texture images, some are given

with negative light conditions and some are similar to each other; for instance, the ‘wood’ main title contains

tree bark, tree stump, and grain texture images and the total number of texture classes is lower than the number

of images. Using the relevance between the textures from the labeling information given in [20], 60 different

texture classes can be named. In this manner each image can belong to several texture classes. Given the
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relevance setup mentioned it can be said that for an image there are different numbers of relevant images in the

dataset.

The images are given with negative intensity mapping so images are used as intensities subtracted from

255. All of the 111 texture images are 640 × 640 pixel size except one that is 643 × 643 pixels. Images are

given in 8-bit gray levels and 94 of the images’ intensity values range between 0 and 255. For the rest of the

images intensity values range from 10 to 230.

For the purpose of content-based texture retrieval each texture image is divided into a total of 25

nonoverlapping subimages of 128 × 128 pixels in order to increase the number of samples, so a total of 2775

texture images are obtained (Dataset I). Samples for the constructed dataset are given in Figure 4.

Figure 4. Brodatz samples (Dataset I).

Evaluation of rotation invariance of the proposed method is tested on a smaller dataset extracted from

Brodatz given at the web source (http://sipi.usc.edu/database/database.php?volume=rotate). This dataset

includes 13 textures, each of 512 × 512 pixels, and has seven different rotations of the original textures at

angles of 0, 30, 60, 90, 120, 150, and 200 degrees (Dataset II). A sample from Dataset II with all rotation

combinations is given in Figure 5.

Figure 5. Rotated textures Brodatz dataset sample (from Dataset II).

3. Histogram of curvelets (HoC)

Histograms are probability distributions of data for evenly or unevenly distributed intervals that give more

accurate information about the dispersion of the data than mean, median, mode, standard deviation, skewness,
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kurtosis, and other single-value data representations. From the point of view of probability distribution, for any

random variable of a certain probability distribution, histogram calculation may give redundant data, whereas

estimation of distribution variables may suffice for the parameterization. However, in practice, a physical

variable cannot be fully explained even by a mixture of certain probability distributions.

Curvelet decomposition of a 2D signal is the inner product of the signal with the curvelets produced

from a mother curvelet with different orientations at different scales and translations. That results in several
decomposition level images, each representing curves from the original image with different sizes and orien-

tations. Curvelet-based feature extraction then turns out to be representing curvelet decomposition images

with discriminative characteristics. In this study, curvelet decomposition images are represented with cascaded

subband histograms, and the distance for the feature vectors are measured by Jeffrey divergence measure.

Steps of HoC feature extraction are given in Figure 6. The first step is the curvelet transform of the input

image, which is parameterized by the number of scales and number of orientations. The number of orientations

determines the angle step between two consequent curvelets. As the number of scales increases, the minimum

length of the curve-like feature that can be extracted decreases, resulting in better expression of the image. The

AbsMax normalization step is to scale the curvelet coefficients to fit in the [−1, 1] range without losing global

intensity differences. This is achieved by scaling all the curvelet coefficients with the maximum absolute value

of the coefficients. The histogram construction step is basically equidistant binning of the curvelet subbands.

The binning step is parameterized by the number of the bins. At last the subband histograms are cascaded to

form the feature vector.

Curvelet

Transform
IMAGE

CURVELET

IMAGES

NORMALIZED

CURVELET IMAGE

SUBBAND

HISTOGRAMS

HISTOGRAM of

CURVELETS

Absolute Maximum

Normalization

Binning

Feature

Cascading

Figure 6. HoC steps.

HoC steps are carried out on two sample texture images (Figures 7a and 7b), which results in the given

curvelet images (Figures 7c and 7d) and histograms (Figures 7e and 7f) illustrated in Figure 7.

3.1. HoC of deterministic signals

HoC features are extracted for predefined deterministic 2D signals in order to describe the potential and the

systematic of the proposed method. Used deterministic signals are given in Figure 8, which are a sinusoid

that propagates at î direction, sinusoid that propagates at î + ĵ direction, sinusoid that propagates at 2̂i + ĵ

direction, chirp at î sinusoid at ĵ , chirp that propagates at î+ ĵ direction, chirp that propagates at î direction,

sinusoid that propagates at î − ĵ direction, sinusoidal that propagates at 2̂i − ĵ direction, chirp at î sinusoid

at −ĵ , and chirp that propagates at î− ĵ direction (Dataset III (Figures 8a–8j).

HoC features for Dataset III are extracted with 2, 3, and 4 number of scales; 8 and 16 number of

orientations; and 8, 16, 32, and 64 bin sizes. According to Jeffrey divergence the distances between deterministic
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signals are calculated. The distances are arranged in order to emphasize the nearest sample to any given one

by means of nearest neighbor (1NN) classification. Table 1 gives distances to each sample for 2 scales, 16

orientations, and for 8 bins.

According to Table 1, the horizontal sinusoid (Figure 8a) and horizontal chirp (Figure 8f) are closest to

each other. Figures 8b and 8g, Figures 8c and 8h, and Figures 8d and 8i also show pairs that are closest to each

other, which can be taken as a hint for the rotation invariance of the proposed HoC method. At any scale with

fixed number of orientations considering the same signals with different elongations the curvelets also differ by

the elongation, yet the histograms calculated from the curvelet coefficients are almost identical. This reasoning
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Figure 7. a, b) Texture images; c, d) absolute maximum normalized curvelet coefficients; e, f) subband histograms of

curvelets.
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is valid to some extent as the numbers of orientations allow similar histogram calculations. For instance Figure

8e is closest to Figure 8d and Figure 8j is closest to Figure 8i, which shows that the number of orientations

overrides the rotation invariance. For 2 scales, 8 orientations, and 8 bins, the pair of Figures 8e and 8j pair

is the closest to each other. Distances calculated at 2 scales, 16 orientations, and 8 bins are mostly similar to

other parameter values.

Figure 8. Deterministic 2D signals: a) sinusoid propagates at î direction, b) sinusoid propagates at î + ĵ

direction, c) sinusoid propagates at 2̂i+ ĵ direction, d) chirp at î sinusoid at ĵ , e) chirp propagates at î+ ĵ direction,

f) chirp propagates at î direction, g) sinusoid propagates at î− ĵ direction, h) sinusoidal propagates at 2̂i− ĵ direction,

i) chirp at î sinusoid at −ĵ , j) chirp propagates at î− ĵ direction (Dataset III).

Table 1. Jeffrey distances for HoC of the deterministic signals.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
(a) - 9.21 9.38 9.84 10.13 2.13 9.22 9.37 9.83 10.05
(b) 9.21 - 0.92 1.15 2.14 9.51 0.21 1.13 1.12 1.98
(c) 9.38 0.92 - 1.17 1.71 9.87 0.98 0.45 1.27 2.07
(d) 9.84 1.15 1.17 - 1.16 9.29 1.32 1.18 0.36 1.71
(e) 10.13 2.14 1.71 1.16 - 10.38 2.14 1.9 1.26 2.35
(f) 2.13 9.51 9.87 9.29 10.38 - 9.52 9.88 9.29 10.27
(g) 9.22 0.21 0.98 1.32 2.14 9.52 - 1.25 1.25 2.09
(h) 9.37 1.13 0.45 1.18 1.90 9.88 1.25 - 1.23 2.19
(i) 9.83 1.12 1.27 0.36 1.26 9.29 1.25 1.23 - 1.53
(j) 10.05 1.98 2.07 1.71 2.35 10.27 2.09 2.19 1.53 -

Apart from the nearest samples for each deterministic signal, the second nearest samples for Figures

8a–8j can be listed as Figure 8b, Figure 8c, Figure 8b, Figure 8b, Figure 8i, Figure 8d, Figure 8c, Figure 8b,

Figure 8b, and Figure 8d, respectively.

3.2. Rotation Invariance of HoC

Dataset II is used to evaluate the rotation invariance of the proposed method with 2, 3, and 4 as number of

scales; 8 and 16 as number of orientations; and 8, 16, 32, and 64 as bin sizes with Jeffrey divergence metric. For
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the 91 instances (7 rotations of the original for each of the 13 textures), nearest neighbor (1NN) classification

results are obtained in leave-one-out manner. The results can be read as the proposed method preserving texture

features and even introducing various angle rotations to the original image. Figure 9 gives the accuracies for

different scale and bin sizes. Table 2 gives an example classification result for 2 scales, 8 orientations, and 8

bins. The results also show that increase in the number of bins increases the accuracy, whereas increase in the

number of scales decreases the accuracy for Dataset II.
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Figure 9. Dataset II accuracies for various bin and scale sizes.

Table 2. The 1NN results for HoC with different numbers of scales and orientations at 16 bins (in %).

bark brick bubbles grass leather pigskin raffia sand straw water weave wood wool
bark 7 - - - - - - - - - - - -
brick - 7 - - - - - - - - - - -
bubbles - - 7 - - - - - - - - - -
grass - - - 7 - - - - - - - - -
leather - - - - 7 - - - - - - - -
pigskin - - - - - 6 - - - - - - 1
raffia - - - - - - 7 - - - - - -
sand - - - - - - - 7 - - - - -
straw - - - - - - - - 7 - - - -
water - - - - - - - - - 7 - - -
weave - - - - - - - - - - 7 - -
wood - - - - - - - - - - - 7 -
wool - - - - - - - - - - - - 7

4. Experiments and results

The experiments are conducted on Dataset I to reveal the precision-recall accuracy of the proposed method

compared with widely used statistical curvelet features. Effects of the various parameters of the proposed

method, such as number of scales and orientations of the curvelet transform and the number of bins for histogram

evaluation, are also analyzed comparatively. Dataset I is decomposed and labeled as it is mentioned in Section

2.3. Analysis of spatial and curvelet domain coefficient normalization is also carried out and it is concluded that

the best performance is given by no normalization in the spatial domain but absolute maximum normalization
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in the curvelet domain. Other tested normalization alternatives were z-normalization, absolute maximum

normalization, linear normalization for the spatial domain, and subband linear normalization, z-normalization,

and subband absolute maximum normalization for the curvelet domain. HoC features are calculated for 2, 3,

and 4 number of scales; 8, 16, and 32 number of orientations; and 16, 32, 64, and 128 number of bins. The

precision-recall graphs are calculated for the retrieval of all relevant images for any given reference image.

4.1. Effect of number of scales and orientations on HoC

Effect of number of scales and orientations for curvelet transform on HoC is analyzed for a fixed number of bins

in Figure 10. Graphs are constructed for the x-axis showing different scale and orientation combinations (from

right to left, 2 scales and 8 orientations, 2s 16o, 2s 32o, 3s 8o, 3s 16o, 3s 32o, 4s 8o, 4s 16o, 4s 32o); the y-axis

is for recall values and the z-axis is for precision values. The results show that 3 scales and 16 orientations give

the best performance for any given bin size.
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Figure 10. Effect of number of scales and orientations for various bin sizes on HoC-based retrieval.

The 1NN classification results are also supplied as a measure for effect of number of scales and orientations

for HoC-based retrieval in Table 3 with a fixed number of 16 bins. These results correspond to precision values

for the smallest possible recall values. The best result is obtained for 3 scales and 16 orientations.

Table 3. Confusion matrix for Dataset II with 2 scales, 8 orientations, and 8 bins, classified by 1NN.

# of scales and orientations
1NN HoC 2s 8o 2s 16o 2s 32o 3s 8o 3s 16o 3s 32o 4s 8o 4s 16o 4s 32o
results 91.82 94.31 94.59 95.64 95.68 95.32 93.69 93.12 91.06

4.2. Effect of bin size on HoC

Effect of bin size on HoC-based retrieval is analyzed for a fixed number of scales and orientations. For each

combination of number of scales and orientations, such as 2 scales and 8 orientations, 2s 16o, 2s 32o, 3s 8o, 3s

2509



USLU and ALBAYRAK/Turk J Elec Eng & Comp Sci

16o, 3s 32o, 4s 8o, 4s 16o, and 4s 32o, the precision-recall graph is constructed separately with 16, 32, 64, and

128 bins. It can be seen from the results that as the number of bins increases the precision-recall graph is lifted

upwards, but the positive marginal accuracy decreases. This situation is given in Figure 11 for 2 scales and 16

orientations.

4.3. Comparison of HoC with curvelet subband µσ features

The best recall-precision graph for HoC is obtained for 3 scales, 16 orientations, and 16 bins as given in Figure

12 together with curvelet subband µσ features for Dataset I. The benchmark µσ features were described in

[13] and [21] as applying curvelet transform with 4 scales and 16 orientations to the subtextures and cascading

µσ values for only second and third scale curvelet subbands to construct the feature vector.
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Figure 11. Effect of number of bins on HoC-based re-

trieval.

Figure 12. Comparison of HoC and µ , σ statistical

curvelet features’ precision-recall graphs.

As precision-recall graphs give overall performance for retrieval of all relevant images, nearest neighbor-

hood classification results are also given by Table 3. For the proposed HoC method the 1NN classification

results are given for different scale and orientation combinations for 16 histogram bins. The 1NN classification

result for curvelet µσ features is obtained as 86.31%.

According to Table 3, 1NN classification results for the proposed method are higher than the µσ features.

The best 1NN result for HoC is obtained as 95.68% for 3 scales and 16 orientations.

4.4. Retrieval results

Two of the retrieval results are given in Figure 13. The results are for the first 15 retrieved images for the given

query image that is located at the top left. Retrieved images are given by texture numbers and 5 × 5 subimage

locations. Figure 13a can be considered as a good retrieval result whereas retrievals in Figure 13b are from

different textures other than the query images’ texture.

5. Conclusion

Curvelet transform is a popular multiresolution method with great sparsity for curve-like features. In content-

based texture retrieval curvelet transform was used in two different ways, such as subband µ, σ values and several
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Figure 13. Retrieval results for two texture subimages (query images are located at top left): a) example of a good

retrieval result, b) example of a poor retrieval result.

subband probability distribution fittings. In this work the use of absolute maximum normalized subband curvelet

histograms is proposed for texture retrieval. The effects of the number of scales, number of orientations, number

of bin sizes, and domain-wise normalizations are investigated on the datasets. The proposed HoC method is

analyzed on the deterministic signals, rotation texture dataset, and benchmark texture dataset. Experimental

results show that the proposed texture retrieval method provides rotation invariant classification to some extent

and performs better than curvelet subband µ, σ features.

As a next step, the authors would like to extend the use of the proposed HoC method to other application

areas such as image and hyperspectral remote sensing feature extraction. Since HoC would enable the utilization

of the spatial locality, it is expected to perform better in the noisy nature of remote sensing data.
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