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Abstract: In this paper, we propose a novel framework for abnormal event detection in crowded scenes. A new concept

of atomic event is introduced into this framework, which is the basic component of video events. Different from previous

bag-of-words (BoW) modeling-based methods that represent feature descriptors using only one code word, a feature

descriptor is represented using a few more atomic events in bag-of-atomic-events (BoAE) modeling. Consequently, the

approximation error is reduced by using the obtained BoAE representation. In the context of abnormal event detection,

BoAE representation is more suitable to describe abnormal events than BoW representation, because the abnormal event

may not correspond to any code word in BoW modeling. Fast latent Dirichlet allocation is adopted to learn a model of

normal events, as well as classify the testing event with low likelihood under the learned model. Our proposed framework is

robust, computationally efficient, and highly accurate. We validate these advantages by conducting extensive experiments

on several challenging datasets. Qualitative and quantitative results show the promising performance compared with

other state-of-the-art methods.
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1. Introduction

Abnormal event detection in crowded scenes is a challenging problem in computer vision, which has attracted

a large amount of research interest [1–26]. In daily life, crowded scenes can be found in many places, such

as subway stations, amusement parks, shopping malls, and so on. There are numerous pedestrians or moving

objects with various dynamics in crowded scenes. If an abnormal event happens suddenly in such scenes, such

as people running or scattering, it might lead to stampedes as happened at the Loveparade 2010 in Duisburg,

Germany [1]. Therefore, finding an abnormal event in time may help to avoid tragedy.

Most existing abnormal event detection methods fall into two categories. The first category is tracking-

based methods, such as in [2–6]. In these methods, pedestrians or moving objects are first detected and tracked

by tracking algorithm, and then the system learns a normalcy model using the obtained trajectories. The

trajectories that are not represented by the learnt model are detected as abnormal events. However, tracking

algorithms tend to fail in crowded scenes due to large numbers of individuals and frequent occlusions. The

second category is motion feature-based methods, such as in [11–16, 21, 23–26]. These methods adopt motion

features, such as social force, dynamic texture, and so on, to describe events. For example, in [11], crowd

behavior was characterized by a social force model, which reflects the interaction force within a crowd; in [12],
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local optical flow patterns were modeled by a mixture of probabilistic principal component analyzers models to

obtain the prototype of crowd events; in [13], appearance and dynamics of crowded scenes were jointly modeled

using mixtures of dynamic textures (MDT); in [15, 16], the statistics of spatiotemporal interest points were

exploited to characterize crowd behaviors. However, these methods are either computationally expensive or not

robust in crowded scenes.

The problem of abnormal event detection refers to finding patterns in video that do not conform to

expected patterns [27]. The major difficulties of abnormal event detection in crowded scenes are as follows:

• How to choose an appropriate feature descriptor significantly affects the performance of the detection

system [17].

• It is impossible to capture either normal or abnormal events by a single distribution, because both

normality and anomaly are diverse.

• It is difficult to collect enough abnormal samples for training, since abnormal events are rare and occur

infrequently in the real world.

• Video data are typically high-dimensional and redundant, which requires an efficient modeling tool and a

compact representation while yielding a stable and highly accurate classification rate [28].

• The computational cost and memory requirements of the detection system should be low because of the

need for real-time detection in surveillance situations.

LDA is a generative probabilistic model introduced in [29], which is an excellent tool for finding underlying

structures and capturing statistical properties from a collection of conditionally independent and identically

distributed random variables [30]. LDA was initially applied in text modeling, where the number of documents is

sometimes huge. Fortunately, LDA has discriminative power that can deal with large-scale databases. However,

LDA only supports discrete input, i.e. no type of data is processed by LDA except for discrete data. Hence,

most continuous feature descriptors are modeled as BoW representations. BoW-based topic models have been

applied in video analysis and description for face recognition [30], action recognition [31], and so on. In BoW

modeling, a code word is created from the feature set by clustering like K-means or vector quantization, and the

feature descriptor is assigned to one and only one code word (using, e.g., the nearest neighbor in Rd). This leads

to considerable amount of approximation error, and the number of code words has to be increased as the data

exhibit more and more variations. In the context of abnormal event detection, crowd event is more appropriate

to be represented by more code words than a single code word, because the feature descriptor corresponding to

an abnormal event unseen in the past may not correspond well to any code word in the codebook.

Dictionary learning is an effective tool for modeling high-dimensional signals, such as audio, images,

and videos [32]. Given a learned overcomplete dictionary, high-dimensional data can efficiently and accurately

approximate by linear combination of dictionary atoms and corresponding sparse representations. Unlikely

traditional models like GMM where fitting such data requires a large number of training samples, a dictionary

can be efficiently learned from a limited number of training samples. Dictionary learning can be regarded as a

generalization of the clustering or vector-quantization-based codebook learning process in BoW modeling [33],

where dictionary atoms can be considered as code words. Sparse representation can reconstruct data with low

approximation error, since it allow more atoms to participate. In contrast, BoW representation only uses one

code word, so it will lead to a considerable amount of approximation error.
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In this paper, we propose a BoAE-based topic model framework for abnormal event detection in crowded

scenes. Inspired by the efficiency of sparse representation, we represent events using a “collection of atomic

events” by novel BoAE modeling. We consider the dictionary atoms as the atomic events that are the basic

components of an event. In BoAE modeling, events are well approximated by the linear combination of atomic

events and their corresponding BoAE representations. Even if the event is unseen in the training set, it can be

accurately represented by BoAE representation. In BoAE representation, each element indicates the frequency

of the corresponding atomic event in the event. Given a sequence, we first extract feature descriptors, and

then we obtain their corresponding BoAE representations by BoAE modeling. Figure 1 illustrates the process

of BoAE modeling. The underlying structure in BoAE representations is found by FLDA [34]. Thus, a video

sequence is modeled as a distribution over events, and each event is modeled as a distribution over atomic events.

Finally, the testing BoAE representation with low likelihood under the trained LDA is labeled as abnormal.
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Figure 1. Illustration of the process of BoAE modeling.

The major contributions of this paper are summarized as follows:

• We propose novel BoAE modeling to represent the high-dimensional feature descriptor as BoAE represen-

tation. Compared with previous clustering or vector-quantization-based BoW modeling, the BoAE model

can produce more accuracy and compact representation.

• Dictionary learning is adopted for BoAE modeling, which is an effective tool to model high-dimensional

feature descriptors with low approximation error.

• We introduce a spatiotemporal gradient-based local motion pattern (STG-LMP) descriptor, which is

distinctive, is fast to compute, and can account for both motion and texture.

• FLDA is introduced to discover the underlying structure in the BoAE representations, which has low

computational complexity and memory requirements.

The rest of this paper is organized as follows: Section 2 describes the proposed framework in detail and

the experimental results are compared and analyzed in Section 3. The conclusion is draw and the future work

is sketched in Section 4.
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2. The details of the proposed framework

Our framework consists of two phases: a training phase and a testing phase. A schematic representation of the

framework is illustrated in Figure 2.

Feature Extraction

Dimensional Reduction

Dictionary Learning

BoAE representations computation

 Fast LDA

Training Phase Testing Phase

Log-likelihood Computation

Testing Video

Y

Training  Video

BoAE
Modeling

NormalAbnormal

Update

Figure 2. System overview of abnormal event detection framework.

2.1. Feature descriptor computation

Choosing an appropriate feature descriptor significantly influences the performance of abnormal detection

systems, since in an appropriate feature space, an abnormal event is more salient than a normal one. A

local motion pattern (LMP) descriptor was developed in [33], which is used for describing human action. Based

on the LMP, we propose a STG-LMP descriptor for describing the crowd motion in the scene, which is computed

for the spatiotemporal gradient magnitude of each pixel. This modification makes our descriptor able to account

for both motion and texture in the scene. Consider a training sequence V (x, y, t) with size of H × W × L ,

we first perform Gaussian smoothing of each frame to reduce the influence of noise. Then we compute the

spatiotemporal gradient magnitude for each pixel as

VG =
√
G2

x +G2
t +G2

t , (1)

where
Gx = V (x+ 1, y, t)− V (x− 1, y, t) , (2)

Gy = V (x, y + 1, t)− V (x, y − 1, t) , (3)

Gt = V (x, y, t+ 1)− V (x, y, t− 1) . (4)

Considering a spatiotemporal gradient magnitude sequence VG (x, y, t), we divide it into a set of clips VG =

[V1,V2, . . . ,VC ] by sliding a window along the temporal axis, where each clip Vc is the size of H ×W × l .
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The window moves forward ι (ι ≤ l) frames at each time step, so every two adjacent clips have l − ι frames

overlapping. We further divide Vc into small cubes v with size of ρ×ρ× l . We compute three central moments

for each pixel along the temporal direction within cube v . The three center moments are the 2nd, 3rd, and 4th

center moments denoted as M2 , M3 , and M4 , respectively. They reflect three important statistical properties,

i.e. variance, skewness, and kurtosis, of the temporal change of the pixel gradient magnitude, respectively. We

define the average moment value M̄r for each cube as

M̄r =
1

ρ2

ρ∑
i=1

ρ∑
j=1

mij , r = {2, 3, 4} , (5)

where

mij =
1

l

l∑
t=1

(vijt)
r
, 1 ≤ i ≤ ρ, 1 ≤ j ≤ ρ, (6)

where vijt is the spatiotemporal gradient magnitude of the pixel at location {i, j} of the tth frame. The three

average moments are formed into vector M̄ =
[
M̄2, M̄3, M̄4

]
. The original feature descriptor of clip Vc is

obtained by concatenating on the vector of all cubes in clip Vc as

u =
[
M̄hw

]T
, h = 1, . . . ,

⌊
H/ρ

⌋
, w = 1, . . . ,

⌊
W/ρ

⌋
, (7)

where ⌊·⌋ is a rounded down function. The vector u is the proposed STG-LMP. STG-LMP has two advantages:

first, it is distinctive. Figure 3 shows the 3D surface of the STG-LMP descriptors extracted from UMN1 scene

1. We can see from it that the abnormal events are more salient than the normal events in this feature domain.
Second, the computational cost of STG-LMP extraction is very low. Table 1 lists the computation time of

the proposed STG-LMP, multiscale histogram of optical flow (MHOF) [21], and MDT [13], respectively. From

Table 1, we can observe that the proposed STG-LMP is much faster than MHOF and MDT.
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Figure 3. The surface of STG-LMP descriptors extracted from UMN scene 1.

1 Unusual crowd activity dataset of the University of Minnesota. Available from http://mha.cs.umn.edu/movies/crowdactivity-
all.avi.
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Table 1. Quantitative comparisons between MHOF, MDT, and our proposed feature representation.

Descriptor Frame size Run time
MHOF [21] 0.957 0.57079 s
MDT [13] 0.970 24s
STG-LMP 0.993 0.14701 s

The STG-LMP descriptor is high-dimensional and contains a large amount of redundant information. In

order to reduce the dimension and capture the most salient information, we use RP [35] to reduce the high

dimensionality. RP can preserve the distances between vectors quite reliably by projecting high-dimensional

data onto a random lower-dimensional subspace. It is simple, fast, and data-independent and it can avoid

the limitations of traditional methods like PCA. Considering a matrixU = [u1, u2, . . . , uC ] ∈ Rd×C , where

each column is a high-dimensional STG-LMP, we project the matrix U onto a low-dimensional random

subspaceR ∈ Rq×d (q ≪ d), given by

Y = RU. (8)

The obtained low-dimensional matrix Y = [y1, y2, . . . , yC ] ∈ Rq×C contains projections of U on some random

q dimensional subspace. The random matrix R can be any zero-mean unit variance and normally distributed

matrix. Figure 4 illustrates the process of extracting the spatial temporal features from video clips as well as

the following dimensionality reduction.

 

Figure 4. Illustration of the process of STG-LMP extraction and dimensionality reduction.

2.2. BoAE modeling

In this subsection, we model the STG-LMP descriptors as BoAE representations by BoAE modeling. First,

we briefly describe the core of BoAE modeling: dictionary learning. Considering a set of feature descriptors

in matrix Y ∈ Rq×C , the goal of dictionary learning is to learn a dictionary D ∈ Rq×b that represents

the input Y approximately asY = DS + eusing dictionary D and the corresponding sparse representations

S = [s1, s2, . . . , sC ] ∈ Rb×C , where e is an additive component with bounded energy (∥e∥22) modeling both the

noise and deviation from the model. The dictionary can be overcomplete (b > q), and can thus capture a large

number of high-level patterns in the input dataset. The optimization problem is formally written as

argmin
D,S

1

2
∥DS−Y∥2F + λ ∥S∥1 , (9)
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where ∥·∥F is the Frobenius norm and ∥·∥1 is the ℓ1 -norm. In this paper, we solve the optimization problem

using K-SVD [36], which solves Eq. (9) by performing sparse coding and dictionary updates at every iteration.

We keep a fixed D and compute S in the sparse coding step as

argmin
S

1

2
∥DS−Y∥2F + λ ∥S∥1 . (10)

We then update the dictionary D in the dictionary update step as

D(τ+1) = D(τ) + ηES(τ)T , (11)

where

Ei = Y − D̃iS̃i, (12)

where D̃i refers to D , which is the ith column is removed, and S̃i refers to S , which is the ith row is removed.

For more details about K-SVD, please refer to [36].

After dictionary learning, we obtain the dictionary D and the sparse representations of matrix S

corresponding to Y by solving Eq. (10). Each row Si ∈ Rb of S contains k (k ≪ b) nonzero coefficients. The

coefficients indicate the contribution of each dictionary atom in the data reconstruction. The positive value of

the element indicates that the corresponding dictionary atom is additive in data reconstruction, and the negative

value indicates that the corresponding dictionary atom is subtractive. In order to account for both additive

and subtractive dictionary atoms, we define an atomic event dictionary that consists of positive and negative

atomic events. The positive atomic event corresponds to an additive dictionary atom, and the negative atomic

event corresponds to a subtractive dictionary atom. Consequently, the atomic event dictionary has 2b atomic

events. On the other hand, LDA only supports discrete input. Given a feature descriptor, its corresponding

BoAE representation w is computed as follows:

wb×|sgn(Si−|Si|)|+i =
⌊
|Si|
⌋
, 1 ≤ i ≤ b, (13)

where sgn (·) is the signum function. wi corresponds to the frequency of the ith atomic event in the atomic

event dictionary, and Si is the ith element in the feature descriptor corresponding to sparse representation.

Through the BoAE modeling, the feature descriptor is represented as a BoAE representation, and we treat the

BoAE representation as a document in which each word corresponds to one type of atomic event.

2.3. FLDA training

Given a corpus W = {w1,w2, . . . ,wC} , each document wc is modeled as a mixture of K assumed known

topics, and each topic is modeled as a multinomial distribution over a vocabulary by LDA. In our framework,

documents, topics, and words correspond to feature descriptors corresponding to BoAE representations, events,

and atomic events, respectively. The generative process of LDA for each document w in the collection W is as

follows (Figure 5) [29]:
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Figure 5. Graphic models for LDA.

1) Chooseθ ∼ Dir (α).

2) For each of the N words wn :

a) Choose a topiczn ∼ Mult (θ);

b) Choose a wordwn fromwn ∼ p (wn |zn, β ).

In a particular document, the mixing proportion of different topics is indicated by parameter θ . The

parameter α is a K -dimensional Dirichlet prior shared by all documents. The parameter β is a K×V matrix,

where each row is a V -dimensional distribution of words within a particular topic zn , where V is the size of

vocabulary. The probability of a document w = {w1, w2, . . . , wN} is given by

p (w |α, β ) =
∫

p (θ |α )

(
N∏

n=1

∑
zn

p (zn |θ ) p (wn |zn, β )

)
dθ. (14)

The optimal parameters α∗ and β∗ can be estimated by maximizing the log-likelihood of the corpus:

(α∗, β∗) = argmax
α,β

C∑
c=1

logP (wc |α, β ) . (15)

Traditional solutions of this problem are variational approximation and Gibbs sampling. However, these

algorithms are too computationally expensive to be applied to large-scale datasets. In order to speed up the

computation, we adopt FLDA [34] into our framework. FLDA uses a substantially smaller number of variational

parameters, with no dependency on the dimensionality of the training set. This leads to the result that the

FLDA is orders of magnitudes faster than the original LDA.

The variational distribution in FLDA introduces one Dirichlet distribution parameterized by θ and one

Discrete distribution parameterized by ϕ for each document w . The variational distribution is given by:

q2 (θ, z |ϕ, γ ) = q2 (θ |γ )
N∏

n=1

q2 (zn |ϕ ). (16)

Compared to the original variational distribution,

q1 (θ, z |ϕ, γ ) = q1 (θ |γ )
N∏

n=1

q1 (zn |ϕn ), (17)
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it only uses one discrete distribution parameter ϕ for each document. The complexity is reduced to O (N)

from O
(
N2
)
, so FLDA is much faster than LDA. Meanwhile, the number of ϕs is reduced to 1 from N for

each document, so the memory requirement is accordingly saved. For more details about FLDA training, please

refer to [34].

2.4. Abnormal event detection and update

After the training phase, we will classify the testing sample as normal or abnormal in the testing phase. Given

a testing sequence, it is first subjected to feature extraction, dimensionality reduction, and BoAE modeling.

The log-likelihood of each BoAE representation w is calculated under the trained FLDA as

ℓ (w |α, β ) = log p (w |α, β ) . (18)

To further reduce the influence of noise, we smooth the log-likelihood distribution with a Gaussian smoothing

filter. Figures 6a and 6b show the normalized log-likelihood distributions of two sequences from the UMN and

PETS 20092 dataset, respectively. The distribution curves demonstrate that our proposed framework is not

only robust to noise but also responds to abnormal events rapidly. Finally, we label testing samples as normal

or abnormal based on the empirical threshold δ .

Label =

{
Normal , ℓ (w |α, β ) > δ
Abnormal, ℓ (w |α, β ) ≤ δ

. (19)

In order to adapt the environment gradually to change, such as illumination change, it is necessary to incre-

mentally update the dictionary and LDA parameter. Given an identified normal testing feature descriptor, we

use it to update the dictionary atom by an online dictionary update algorithm [22], and then use its BoAE

representation to update the parameters in FLDA by the online-LDA algorithm [37].

3. Experiments

In this section, we conduct experiments on different datasets for evaluating the performance of our proposed

framework. All experiments are conducted on a PC with Intel Core i3 CPU at 2.13 GHZ and 2G RAM. The

UMN, PETS 2009, UCSD3, and real highway traffic video are used as the experimental dataset. These datasets

exhibit various events in different scenes, such as indoor and outdoor scenes, and both global and local abnormal

events are included.

3.1. UMN dataset

The UMN dataset is captured from 3 different scenes, including indoor and outdoor scenes, and its resolution

is 320× 240. The abnormal event in the dataset is a crowd running suddenly. We portion each scene into two

parts; the first part has 400 frames only containing normal events, and we use it as the training set, and the rest

is used as a testing set, which contains both normal and abnormal events. In the training stage, video sequences

are portioned into clips with size of 320× 240× 5 by a sliding window. For each clip, we further divide it into

cubes with size of20 × 20 × 10. The STG-LMP descriptor is computed for each cube and then concatenated

into a high-dimensional feature descriptor. We reduce its dimension from 576 to 70 by RP. The overcomplete

2 Pets 2009 dataset. http://ftp.cs.rdg.ac.uk/PETS2009/.
3 UCSD Ped1 dataset. http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm.
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Figure 6. The log-likelihood distributions of two sequences from UMN and PETS 2009 datasets, respectively: a) UMN

dataset, b) PETS 2009 dataset.
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dictionary D is learned by a K-SVD algorithm with 10 iterations. The number of dictionary atoms is 120, and

the number of latent topics of LDA is 10. Figure 7 shows some detection results of abnormal event detection

from the UMN dataset. We compare our method with the K-means-based BoW method and other state-of-the-

art methods [11, 15, 21, 23, 33]. Figure 8 plots the ROC curves of different methods. Table 2 provides their

AUC values for comparison. We can see from Table 2 that our method outperforms the K-means-based BoW

method and is comparable to other state-of-the art methods.

 

(a)              (b)                                                      (c) 

 

(d)         (e)                                                      (f) 

Normal Normal Normal

Abnormal Abnormal Abnormal

Figure 7. The detection results of our proposed method for three scenes for UMN dataset.
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Figure 8. Comparison of abnormal event detection results for UMN dataset.

3.2. PETS 2009 dataset

In this subsection, we conduct experiments on View001 and View002 sequences in the PETS 2009 dataset. Each

sequence has 378 frames and the abnormal event begins from frame 336. The normal event is people merging

with normal speed, and the abnormal one is people dispersing suddenly. The first 250 frames of each sequence

are used as training samples and the rest as testing samples. The frame size is resized to 320 × 240, and the
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other parameters are the same as in the experiment on the UMN dataset. Figure 9 shows some detection results

of our method. Figure 10 plots the ROC curves of our method and the other state-of-the art methods [23, 24].

Table 3 provides the AUC values for comparison. It is obvious that the performance of our proposed framework

outperforms the other state-of-the-art methods.

Table 2. Summary of quantitative system performance and the comparison with the state-of-the-art methods for UMN

dataset according to AUC value.

Representation AUC
Chaotic [21] 0.99
Social force [11] 0.96
Optical flow 0.84
MHOF [21] 0.978
PSO-social force[23] 0.996
Interaction potential [15] 0.992
BoW 0.957
LMP [33] 0.970
BoAE 0.993
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Figure 9. The detection results of our proposed method

for PETS 2009 dataset.

Figure 10. Comparison of abnormal event detection re-

sults for PETS 2009 dataset.

Table 3. Summary of quantitative system performance and the comparison with the state-of-the-art methods for PETS

2009 dataset according to AUC value.

Representation AUC (View001) AUC (View002)
DBM [24] 0.9939 0.8784
PSO-SFM 0.9414 0.9914
Optical flow 0.9801 0.8834
BoAE 0.9945 0.9979
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3.3. UCSD Ped1 dataset

In this subsection, we validate the efficiency of our method on the UCSD Ped1 dataset. The normal event in

this dataset is a crowd moving with normal speed, and abnormal events include skaters, cars speeding, and

people cycling on the walkway. We resize its resolution from 158× 238 to 160× 240. The training set contains

34 clips of normal events, and the testing set contains 36 testing clip. Each frame is split into 16 × 16 local

regions with 8 pixels overlapping. For each local region, we extract STG-LMP descriptors from the cuboids

with size of 16 × 16 × 10. The dimension of the original feature descriptor is reduced to 40. The number of

dictionary atoms is 70 and the topic number is 10. A spatiotemporal smoothing is adopted to further eliminate

the influence of noise, which can be seen as a simple version of a spatiotemporal Markov model. Figure 11

shows different types of detected abnormal events. Figure 12 plots the ROC curves of our method and other

state-of-the-art methods [11–13, 25, 26]. The performances of different methods are evaluated by equal error

rate (EER) values, where the lower the EER is the better the performance is. We can see from Table 4 that

the performance of our method is better than other state-of-the-art methods.

 

(a)                                             (b)                    (c) 

 

(d)                                             (e)                    (f) 

Figure 11. The detection results of our proposed method for UCSD Ped1 dataset. The abnormal events, such as

bicyclers, skaters, and cars, are detected by red masks.

Table 4. Summary of quantitative system performance and the comparison with the state-of-the-art methods for UCSD

Ped1 dataset according to EER value.

Representation EER
MPPCA [12] 40%
Adam et al. [25] 38%
Bertini et al. [26] 31%
SFM 31%
MDT 25%
BoAE 23%

3.4. Highway traffic dataset

Beyond crowd abnormal event detection, our proposed framework can also be applied in traffic surveillance in

daily life. The traffic video sequences were captured by a highway surveillance camera in the real world. The
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abnormal event is a traffic accident that occurred suddenly. Figure 13 shows the detection results of abnormal

events, such as illegal parking and traffic accidents. The AUC value of our method is 0.9892.
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Figure 12. Comparison of abnormal event detection

results for UCSD Ped1 dataset.

Figure 13. The detection results of abnormal event de-

tection for highway traffic video.

4. Conclusion and future work

In this paper, we address the problem of abnormal event detection in crowded scenes by developing a novel

BoAE modeling. In BoAE modeling, a high-dimensional feature descriptor is modeled as a collection of atomic

events. Compared with clustering or vector quantization-based BoW modeling, which represent descriptors by

only one code word, BoAE representation has lower approximation error and is more suitable to represent the

abnormal event. The BoAE reorientations are used to train FLDA, and then the testing BoAE representation

with low likelihood under the trained FLDA is classified as abnormal. By taking advantage of LMP descriptors,

RP, BoAE representations, and FLDA, we show that the proposed framework is robust and efficient and it

works well in crowded scenes. The experimental results analysis and comparisons confirm our claims. In the

future, we will investigate the possibilities of incorporating multifeature and multiscale methods for abnormal

event detection.
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