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Abstract: Increasing concerns over atmospheric pollution forces the power-producing utilities to retain their generations

within maximum allowable emission levels. Therefore, in present-day power system operations, the minimization of

emission pollutants along with the total fuel cost has become an important aspect in short-term generation scheduling

of hydrothermal power systems. This paper presents an improved hybrid approach based on the application of chaos

theory in a differential evolution (DE) algorithm for the solution of this biobjective constrained optimization problem.

In this proposed methodology, self-adjusted parameter setting in DE is obtained by using chaotic sequences. Secondly, a

chaotic hybridized local search mechanism is embedded in DE to avoid it from trapping at local optima and to enhance

its search space exploring ability. Furthermore, new heuristic strategies are developed to effectively handle the complex

hydraulic and thermal constraints. The feasibility and usefulness of the developed approach are demonstrated by its

application on a standard hydrothermal test system compromising four multicascaded hydel plants and three thermal

plants and the following three case studies are investigated: economic power scheduling, economic emission scheduling,

and economic emission power scheduling. The simulation results illustrate the superiority of the proposed approach as

compared to other recently established techniques.

Key words: Biobjective, price penalty factor, economic emission power scheduling, differential evolution, chaotic

sequences, constraint handling

1. Introduction

Short-term hydrothermal generation scheduling (STHGS) plays a vital role in the economical operational

planning of power systems. This problem refers to determining optimal water release quantity for hydel plants

and output generation for thermal plants over a scheduled time period so that the total generation cost is

minimized subjected to satisfaction of several equality and inequality constraints. As the source for hydel

electric generation is generally natural water, in interconnected power system operation the operating cost

of hydel plants is not significant as compared to thermal plants. Therefore, this problem aims to utilize the

hydel resources as much as possible and minimize the generation cost of thermal plants. However, fossil fuel-

based thermal plants emit several harmful contaminants such as oxides of nitrogen, sulfur, and carbon. Due to

society’s demand for a pollution-free environment, the minimization of these polluting contaminants becomes

a necessary issue these days. New clean air acts and regulations forced the power-producing utilities to retain

their generation allocations within the maximum allowable emission levels. Now the obvious approach is to find

out the optimal generation schedules for thermal plants by simultaneously minimizing both objectives: fuel cost
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and emission pollutants. However, these objectives are of conflicting nature and minimizing one may lead to

maximizing the other. Therefore, a price penalty approach has been adapted to find a trade-off relation between

these competing objectives. The practical constraints that need to be satisfied in this problem include active

power balance, hydraulic continuity equation, reservoir end conditions, and the capacity constraint of hydel and

thermal plants.

The authors in [1] proposed and discussed several methods to reduce the emission levels of thermal

plants. In some of these techniques emission is taken as an objective function in the economic dispatch problem

and in some methods it is treated as an additional constraint in scheduling problems. Besides them, various

other techniques such as improved backpropagation neural network [2], fuzzy satisfaction decision approach

[3], maximizing decision recursive technique [4], improved genetic algorithm [5,6], evolutionary algorithm-based

multiobjective approach [7], and particle swarm optimization-based algorithms [8] have already been successfully

evaluated to minimize the emissions.

Due to the huge importance of the STHGS problem, it has been already addressed by several mathematical

techniques that include linear programming (LP) [9,10] , network flow programming (NFP) [11], decomposition

approach [12], Langrage relaxation (LR) [13], mixed-integer linear programming (MILP) [14], dynamic program-

ming (DP) [15,16], extended DP [17], and progressive optimality algorithm (POA) [18]. Certain drawbacks such

as nonconvexity in cost curves, nondifferentiability of objective function, curse of dimensionality, and trapping

at local optima makes these methods infeasible for STHGS problems.

Besides the above traditional approaches, several metaheuristic techniques such as evolutionary program-

ming (EP) [19,20], cultural algorithm (CA) [21,22], simulated annealing (SA) [23,24], genetic algorithm (GA)

[25,26], differential evolution [27,28], particle swarm optimization (PSO) [29,30], and clonal section algorithm

(CSA) [31] have also been investigated to solve the STHGS problem. These approaches proved to be more

efficient and received more interest due not having a restriction on the characteristics of the problem and their

capability to provide a reasonable solution. However, these methods have a drawback of premature convergence

and some of these techniques also require a massive computational effort, especially for large-scale STHGS

problems.

Although the STHGS problem has been extensively investigated, it still attracts researchers’ attention

because of stronger needs for economical operating schedules. Thus, people are continuously trying to improve

present optimization methods and also evolving new techniques to solve the STHGS problem effectively. Re-

cently a new population-based stochastic optimization technique developed by Price and Storn [32], differential

evolution (DE), has become more preferred due to its simplicity and robustness. As it does not need any

derivative information, it is very proficient in solving nonconvex, nonlinear, and multidimensional optimization

problems. It has been successfully evaluated on several power system optimization problems, e.g., economic

scheduling and dispatch problems and reactive power management in distribution systems. However, DE still

suffers from two main problems. One is that DE control parameters remain constant throughout the entire

search mechanism and proper setting of these parameters is a difficult task that requires a lot of time. Secondly,

the canonical version of DE suffers from premature convergence in large-scale and complicated optimization

problems, which degrades its performance and global exploring ability. Moreover, no constraint handling mech-

anism is present in conventional DE.

Therefore, in this paper, an improved chaotic hybrid differential evolution (ICHDE) algorithm is devel-

oped to find an optimal solution for biobjective STHGS problems. The developed technique particularly pays

attention to self-adjusted parameter setting in DE and enhancement of its performance by avoiding premature
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convergence and handling complicated constraints heuristically. The chaotic operator based on a logistic map

is deployed to self-adjust the crossover parameter in DE. Secondly, a chaotic hybridized local search (CHLS)

mechanism is embedded in DE to perform a local search of obtained promising space to prevent it from trapping

at local optima. Moreover, in this paper, the traditional acceptance operator of DE for the selection of the

population for the next generation is also replaced by an elite-preserving mechanism. Finally, heuristic rules

without adapting any penalty factor are developed for ICHDE to handle the complicated constraints of the

STHGS problem, especially power demand balance and water dynamic balance constraint. The feasibility and

superiority of the developed ICHDE model are demonstrated by its application to a standard hydrothermal

test system. The results show that the proposed ICHDE method can produce an encouraging solution in less

computational time as compared to other recent techniques found in the literature.

2. Mathematical formulation of the STHGS problem

Economic emission power scheduling of hydrothermal systems seeks the solution of highly complex optimization

problems having a nonlinear objective function associated with complex hydraulic and thermal constraints.

Mathematically this problem is formulated in the following way.

2.1. Economic power scheduling

For a given hydrothermal power system, the economic power scheduling (EPS) problem aims to minimize the

generation cost of thermal plants only. Mathematically it is represented as:

Nh∑
j=1

Phjt +

Ns∑
i=1

Psit =PDt + PLt (1)

where Ns represents the total number of thermal plants, T is the total scheduled time intervals, Psit is the

generated power by ith thermal plant at time t , fi(Psit) is the fuel cost for Psit , and F is the total fuel cost.

The fuel cost function of thermal plants with multiple input valves can be represented as:

fi (Psi,t) = ai + biPsit + ciP
2
sit + |ei sin fi (Psimin − Psit)|, (2)

where ai, bi , and ci are the quadratic cost curve coefficients of ith thermal plant; ei and fi represent the

valve-point coefficients; and Pmin
si is the minimum generating capacity of the ith thermal plant.

2.2. Economic emission scheduling

The economic emission scheduling (EES) problem aims to minimize the amount of contaminated emissions

from thermal plants due to the burning of fossil fuels used for generation of electricity. The emission pollutants

released by a thermal plant is mathematically formulated as the summation of a quadratic and an exponential

function [7].

minimizeE =

T∑
t=1

Ns∑
i=1

eit(Psit) (3)

Here, eit(Psit) is the total amount of harmful gases released by the ith thermal plant at time t and it is defined
as:

eit (Psit) = αsi + βsiPsit + γsiP
2
sit + ηsiexp?(δsiPsit), (4)

where αsi, βsiγsiηsiδsi are the coefficients of emission curve for the ith thermal plant.
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2.3. Economic emission power scheduling

The simultaneous solution of both economic power and economic emission scheduling problems is known as

combined economic emission power scheduling that develops a trade-off relation between the generation cost

and emission of thermal plants. Mathematically this problem is formulated by simply adding emission cost to

normal load dispatch cost. To convert this biobjective problem into a single one a price penalty approach is

adapted as given below [2]:

min TOC =
T∑

t=1

Ns∑
i=1

[fit (Psit) + PF t ∗ eit(Psit)] , (5)

where PF t is the price penalty factor for a certain load demand at time interval t and TOC is the total

operating cost of the thermal power system. Further, the trade-off relation between fuel cost and fuel emission

is developed as:

MinTOC =

T∑
t=1

Ns∑
i=1

[J1 ∗ f it (Psit) + J2 ∗ PF t ∗ eit(Psit)] , (6)

where J1 and J2 are weight factors. The procedure of finding the price penalty factors is given below [2]:

Step 1: Compute the average production cost of each generating plant at its maximum rated power.

Step 2: Compute the average fuel emission of each generating plant at its maximum rated power.

Step 3: Obtain the ratio hsi by dividing the computed average production cost with the average emission

according to following relation:

hsi(
$

lb
) =

F (Pmax
si )/Pmax

si

E(Pmax
si )/Pmax

si

. (7)

Step 4: Rearrange the computed values of hsi in an ascending sequence.

Step 6: Starting from the smallest hsi add the maximum generating capacity of thermal plants one by

one until
∑
Pmax
si ≥ PDt is achieved.

Step 7: When
∑
Pmax
si ≥ PDt is satisfied then hsi of the last generating plant in this procedure is the

price penalty factor PF t for a certain power demand at time t .

It is obvious from the above process that the price penalty factor Pf t value depends on the total load

demand and it changes as the demand varies.

2.4. Constraints

The above described objective functions need to be minimized subjected to various hydraulic and thermal

constraints described below.

2.4.1. Power demand balance

The total hydel and thermal generations at each time interval t should satisfy the forecasted load demand and

the transmission line losses.
Nh∑
j=1

Phjt +

Ns∑
i=1

Psit =PDt + PLt (8)

Here, Phjt is the generated power of the jth hydel unit and PDt and PLt are the load demand and transmission

line losses at time t , respectively. The hydel power generation is the function of reservoir volume and hydel
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discharge rate expressed as:

Phjt = C1jV
2
hjt + C2jQ

2
hjt + C3jVhjtQhjt + C4jVhjt + C5jQhjt + C6, (9)

where C1C2C3C4C5 , and C6 are generation coefficients of the jth hydel plant and Vhjt and Qhjt are the

reservoir volume and hydel discharge rate of that plant at time t .

2.4.2. Generation capacity constraints

The generation capacity constraints of hydel and thermal plants are expressed as follows.

Pmin
si < Psit < Pmax

si (10)

Pmin
hj < Phjt < Pmax

hj (11)

2.4.3. Discharge rates limit

Qmin
hj < Qhjt < Qmax

hj (12)

Here, Qmax
hj and Qmin

hj are the maximum and minimum discharge limits of the j th hydel plant, respec-

tively.

2.4.4. Reservoir volume storage constraints

V min
hj < Vhj < V max

hj (13)

Here, V max
hj and V min

hj are the maximum and minimum reservoir limits of the jth hydel plant, respectively.

2.4.5. Water dynamic balance constraint

Vhjt = Vhj,t−1 + Ihjt −Qhjt − Shjt +

Ruj∑
n=1

(Qhn,t−τnj + Shn,t−τnj ) (14)

Here, Shjt and Ihjt are the spillage discharge rate and the reservoir inflows of the jth hydel plant

respectively at time t , Ruj is the upstream hydel plants immediately above the j th reservoir, and τnj is the

time delay from reservoir n to reservoir j .

2.4.6. Reservoir end conditions

V 0
j = V Ini

j , V T
j = V End

j ; j = 1, 2, . . . . . . Nh (15)

Here, V Ini
j and V End

j are the initial and final reservoir volume storage restrictions for the j th plant,

respectively.
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3. Differential evolution algorithm

DE is a branch of evolutionary algorithms (EAs) that include conventional GA and evolution strategies. The key

thought behind DE is its mechanism for generating new offsprings (trial vectors). This scheme simply combines

arithmetic operators with conventional mutation and crossover operations to create new offsprings. If the

objective (fitness) value of generated trial vectors is improved more than the target vectors (initial population),

then it replaces the target vectors and becomes a population for the next generation.

The main attribute of DE is that it offers several variants to solve optimization problems. They are

classified according to the following representation as DE/ϕ/χ/ψ , where ϕ represents the scheme used for the

generated parent vector that makes the base for the mutant vector. The symbol ϕ can be “best” (best vector

found so far) or “rand” (randomly chosen vector). χ refers to the number of difference vectors used for mutation

operation and it is normally 1 or 2, and ψ represents the crossover scheme used to produce trial vectors [33].

For crossover operation an exponential or binomial type is generally used. The strategy used in this paper is

DE/best/2/bin , which is briefly explained as follows.

3.1. Initialization

At the first the DE algorithm is initialized by generating a population vector having size Np (user-defined)

consisting of individuals that evolve over G generations. Each member of the population vector contains

elements as much as the decision variable D . Thus:

PG =
[
XG

i , X
G
i+1, . . . . . . . . . X

G
Np

]
, (16)

XG
i =

[
XG

1,i, X
G
2,i, . . . . . . . . . X

G
D,i

]
i = 1, 2, . . . . . . . . . , Np. (17)

The population vector is generated randomly in a feasible range in order to wrap the whole search space

homogeneously. The expression for initial population generation in the feasible range is represented as:

X0
j,i = Xmin

j,i + δj ∗
(
Xmax

j,i −Xmin
j,i

)
, (18)

where i = 1, 2, . . . . . . . . . , Np and j = 1, 2, . . . . . . . . . , D . Here D represents the number of decision variables,

Xmax
j,i gives the upper and Xmin

j,i gives lower limits of the j th decision variable respectively, and δj is a randomly

initialized number in [0, 1] generated anew for each value of j

3.2. Mutation

In the literature different mutation strategies have been discussed [34]. In the selected mutation strategy mutant

vectors Vi are generated by perturbing a best vector Xbest with the summation of the difference of arbitrarily

chosen vectors (X
G
kX

G
l ) and (X

G
mX

G
n ) according to:

V G
i = XG

Best + Fm ∗
((
XG

k −XG
l

)
+
(
XG

m −XG
n

))
k ̸= l ̸= m ̸= n and i = 1, 2, . . . . . . NP , (19)

where Fm is the user-selected mutation factor that controls the perturbation rate and its value typically lies in

[0, 1]. XG
Best is the best vector found so far in the current generation G .
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3.3. Crossover

The crossover operation simply combines target vectors and mutant vectors to produce trial vectors (UG
i )

according to the following relation:

UG
j,i =


V G
j,i if (ρj < CR) or j = z

XG
j,i Otherwise

, (20)

where i = 1, 2, . . . . . . NP and j = 1, 2, . . . . . . D ; ρj is a randomly generated new number for each value

of decision variable j in the range of [0, 1], and CR is the user-defined crossover rate used to control the

population diversity.

3.4. Selection

Selection is the mechanism in which population vectors for the next generation are selected according to their

fitness values. A greedy selection strategy is generally adapted in the canonical version of DE. When selection

operation is employed using this strategy, a one-to-one comparison is performed between target vectors XG
i and

consequent trial vectors UG
i and the vectors with improved fitness value are considered for the next generation.

However, this acceptance operator has a drawback as observed by Datta, et al. in [35] that it may not select

all the best vectors for the next generation. Therefore, it is replaced in this algorithm by the elite-preserving

mechanism proposed by the authors in [36] for the selection of population vectors. The proposed selection

strategy works by first combining all target and trial vectors without making any decision and then elements

of this combined vector are rearranged according to their fitness values. At the end the first 50% of vectors of

best fitness values are extracted for the next generation.

This whole optimization process (mutation, crossover, and selection) is repetitive until the desired fitness

value is obtained or maximum generations are attained.

4. An improved chaotic hybrid DE algorithm for the short-term hydrothermal generation schedul-

ing problem

Here the developed ICHDE algorithm for the short-term hydrothermal generation scheduling problem is briefly

discussed. Like other evolutionary algorithms, the DE’s successful performance also depends on control pa-

rameter setting, the mechanism to avoid premature convergence, and the strategy to handle the constraints

effectively. In this paper all of these issues are addressed effectively.

4.1. Self-adjusted crossover parameter setting for DE

Due to much sensitivity to initial conditions, chaotic sequences exhibit unpredictable long-term behavior. This

attribute is useful to track the chaotic variable as it travels ergodically over the search space, so it can be

incorporated in DE. Recently applications of chaotic sequences in evolutionary algorithms have been reported

in the literature [37] and numerical results reveal that when chaotic sequences are applied, the algorithm’s

exploitation ability and its convergence characteristics are enhanced. The control variables, and especially

crossover rate (CR), are the key parameter that affect the DE’s performance and convergence characteristics.

Choosing a proper value of crossover rate is necessary for DE, which is generally a problem-dependent task.

A constant value of CR throughout the optimization process cannot ensure complete ergodicity in the search

space. Therefore, a dynamic value of crossover is necessary in the optimization process to cover all of the feasible
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search region and for the algorithm to not miss global optima for not exploring adequately in the promising

area [38].

Thus, this research adapts chaotic sequences to get self-adjusted crossover parameter setting during the

optimization process. A simplest vibrant system evidencing chaotic behavior, called logistic iterative map, is

adapted in DE to self-adjust the crossover parameter. The expression for the logistic map is described as:

y (t+ 1) = ζ ∗ y (t) ∗ (1− y (t)), (21)

where ζ is a control parameter and its value lies typically in [0, 4]. The above described equation generates

chaotic sequences in [0, 1] provided the initial assessment y (0) ∈ (0, 1). The parameter value of CR is modified

according to Eq. (17) through the following expression:

CRG+1 = 4 ∗ CR (G) ∗ (1− CR (G)), (22)

provided that CR0 ̸= [0, 0.25, 0.50, 0.75, 1] and G is the current generation.

4.2. Chaotic hybridized local search mechanism

In small-scale dimensional problems traditional DE performs well with fast convergence. However, in large-

scale and complicated optimization problems this rapid convergence may lead to high chances of attaining

local optima due to fast degradation of population diversity. To prevent the canonical version of DE from

premature convergence a chaotic hybridized local search mechanism is embedded in it. The CHLS mechanism is

capable of amplifying the algorithm’s exploitation capacity in the search space due to irregularity and ergodicity

properties of chaotic optimization schemes. This hybrid scheme utilizes DE to implement a global search and

then incorporates the CHLS mechanism to search in the surrounding area of the best solution found so far to

find the global optima.

For the STHGS problem the proposed CHLS mechanism is based on a tent map [39], which is more

sensitive to initial conditions and generates widely distributed chaotic sequences. The mathematical formulation

of the tent map is represented as:

CXK+1
i =


CXK

i
/
0.7 , if CX0

i < 0.7

CXK
i ∗(1−CXK

i )
0.3 , Otherwise

(23)

where K represents the iteration number, and CXK+1
i represents the ith chaotic parameter and its value

typically lies in [0, 1]. The initial value of CXi at iteration 0 is taken in the range of [0.1, 0.5].

The procedure for the proposed mechanism based on the chaotic tent map to solve the STHGS problem

is described as follows:

Step 1: Take the XG
best vector and the corresponding fitness value fGbest at current generation G .

Step 2: Set K = 0 and choose the preliminary chaotic vector value CX0
i equal to 0.4.

Step 3: Calculate the chaotic parameters for the next iterative procedure using the above mentioned tent

map relation in Eq. (23) and convert the generated chaotic variable CXK
i into a decision variable according to

the following relation:

XK
i = Xmin

i + CXK
i ∗

(
Xmax

i −Xmin
i

)
, i = 1, 2, 3, . . . , D, (24)
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where Xmin
i and Xmax

i are the lower and upper bounds on the ith decision variable.

Step 4: Now the chaotic local search point XK
c,i is generated by pertubuting the XG

best vector with the

obtained XK
i vector linearly as follows:

XK
c,i = ω ∗XG

best +XK
i ∗ (1− ω), (25)

where w is a parameter that is used to control the perturbation rate and its value lies in [0, 1]. If the generated

chaotic local search vector violates any constraint then the constraint handling approaches are used to satisfy

all the constraints and then its fitness value is calculated.

Step 5: If the calculated objective value of XK
c,i is better than fGbest then it taken as XG

best of the current

generation and the corresponding objective value is taken as fGbest .

Step 6: Check if the value of K has not reached Kmax , and then K = k + 1 and the whole procedure

is repeated from step 3. Otherwise, the CHLS operation is terminated.

4.3. Initialization of solution vector

The structure of the solution vector adapted by the proposed method is composed of two decision variables.

One is the set of water discharges for hydel plants and the second is the set of power generation for thermal

units. The K th array of decision variables for the solution of the STHGS problem is represented as follows:

X0
K =

[
Q0

h1, Q
0
h2, . . . . . . ., Q

0
hj , . . . , Q

0
hNh , P 0

s1, P
0
s2, . . . . . . .P

0
si, . . . ., P

0
sNs

]T
(26)

The element Psjt and Qhjt are the power generated by the ith thermal plant and discharge rate of the j th

hydel plant at time t . Initially each element in the array is randomly generated in a feasible range satisfying

the capacity constraint according to the following expressions.

Qhjt = Qmin
hj +Rnd (0, 1) ∗ (Qmax

hj −Qmin
hj ) (27)

Psit = Pmin
si +Rnd (0, 1) ∗ (Pmax

si − Pmin
si ) (28)

Here, Rnd (0, 1) is a random number generated in [0, 1].

4.4. Constraint handling

As described above, the STHGS problem is one of the most complicated optimization problems with a set of

equality and inequality system constraints. To balance them effectively with less computational burden is the

utmost priority in solving this problem. In this paper, heuristic rules are developed to balance these constraints,

which are described as follows.

4.4.1. Constraint handling mechanism for inequality constraints

After a chaotic hybridized local search mechanism or mutation operation, new generated solution vectors may

violate the capacity constraint of hydel and thermal plants. If any constituent of the newly created solution

vector violates these constraints then the following procedure will be adapted.

Psit =

 Pmin
si if Psit < Pmin

si

Pmax
si if Psit > Pmax

si

, Qhjt =


Qmin

hj if Qhjt < Qmin
hj

Qmax
hj if Qhjt > Qmax

hj

(29)
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4.4.2. Constraint handling mechanism for equality constraints

The active power balance constraint and water dynamic balance or reservoir end conditions constraint are needed

to be balanced when a population is randomly initialized or the mutation and chaotic local search mechanism is

implemented. Although there are methods based on the penalty factor approach to deal with these complicated

constraints, these strategies degrade the algorithm performance remarkably because multiple runs are required

to properly tune the penalty rates. The heuristic procedures adapted in this paper to balance these constraints

are described below.

4.4.2.1. Water dynamic balance constraint handling mechanism

To strictly meet the restrictions on the initial and terminal reservoir volume, the dependent discharge rate of the

jth hydel plant in the arbitrary selected interval d is computed using the following relation while considering

spillage losses equal to zero.

Qhjd = Vhj0 − VhjT −
T∑

t = 1
t ̸= d

Qhjt −
T∑

t=1

Ruj∑
m=1

(Qhm,t−τmj ) +
T∑

t=1

Ihjt (30)

The water release rate in the dependent interval must fulfill the constraint described in Eq. (13). If the

computed water release element violates the constraint, then it is adjusted according to the same procedure

as in Eq. (29) and then a new random interval is selected. This process repeats until the computed element

satisfies the constraint.

4.4.2.2. Active power balance constraint handling mechanism

After satisfying the hydraulic continuity equation, reservoir storage volume and corresponding hydel generations

are computed but the active power balance constraint remains unsatisfied. Heuristic rules are adapted in this

paper to satisfy this constraint by forming a priority list based on average cost at the maximum rated power of

thermal plants. The average production cost αit of thermal plant i at time interval t at its maximum rated

power is defined as:

αit = [J1 ∗ f it (P
max
si ) + J2 ∗ PF t ∗ eit(Pmax

si )]/Pmax
si . (31)

The procedure adapted to balance this constraint is described as follows:

Step 1: Compute the average production cost αit using Eq. (31) for all thermal plants.

Step 2: Rearrange the above calculated αit in an ascending order to acquire a priority list P list(t).

Step 3: Put t = 1.

Step 4: Put temp list(t) = P list(t).

Step 5: Compute the deviation of active power at time interval t by using this relation:

∆P t = PDt − (

Nh∑
j=1

Phjt +

Ns∑
i=1

Psit ). (32)

Step 6: If ∆P t = 0, go to step 15; if ∆P t > 0, go to step 7; if ∆P t < 0, go to step 11.

Step 7: Put n = 1.
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Step 8: Set output generation power of the ith thermal plant with lowest αit in temp list(t) to be

P t
i = Pmax

si and omit this unit from temp list(t).

Step 9: Recalculate the total generated power by all thermal machines P sum
t at time interval t . If

P sum
t > (PDt −

Nh∑
j=1

Phjt), then put P t
k = Pmax

sk − (
Nh∑
j=1

Phjt + P sum
t − PDt) and move to step 15; otherwise P t

k

will remain equal to Pmax
sk .

Step 10: n = n+ 1. If n < Ns then go to step 7, else go to step 15.

Step 11: Put m = 1.

Step 12: Set output generation power of the ith thermal plant with highest αit in temp list(t) to be

P t
i = Pmin

si and omit this unit from temp list(t).

Step 13: Now recalculate the total generated power of all thermal machines P sum
t at time interval t . If

P sum
t < (PDt −

Nh∑
j=1

Phjt), then put P t
k = Pmin

sk + (PDt −
Nh∑
j=1

Phjt − P sum
t ) and go to step 15; otherwise P t

k will

remain equal to Pmin
sk .

Step 14: m = m+ 1. If m < Ns , then go to step 11; else go to step 15.

Step 15: t = t+ 1. If t ≤ T , then go to step 4; otherwise stop the modification process.

4.5. Procedure of proposed ICHDE for STHGS problem

The implementation procedure of ICHDE for the STHGS problem is as follows:

Step 1: Randomly generate the initial population by using Eqs. (27) and (28) and set G = 1, and Gmax

is the defined maximum number of generations.

Step 2: The randomly generated initial population may not satisfy all the constraints; therefore, the

proposed constraint handling techniques are employed to satisfy them.

Step 3: The fitness function is evaluated for all individuals of the initial population and a solution vector

with best fitness value is selected as XG
Best .

Step 4: Then a chaotic local search mechanism is implemented on best solution vector XG
Best as described

in Section 4.2.

Step 5: Implement the mutation operation on all the individuals of the population according to Eq.

(19).

Step 6: Now CR of the proposed ICHDE method is calculated by using Eq. (22) and then crossover

operation is implemented as described.

Step 7: After the mutation and crossover operation, the generated new offsprings may not satisfy the all

the constraints of the STHGS problem. Therefore, constraint handling strategies are again employed to satisfy

all constraints.

Step 8: Execute the proposed selection mechanism as described in Section 3.4 to select the best NP

individuals to form the population vector for the next generation.

Step 9: G = G+1. If the value of G has not reached Gmax then move back to step 3, else XG
Best gives

the optimal solution for this problem and the optimization process is terminated.
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5. Simulation results

The framework of the proposed ICHDE algorithm for the STHGS problem is developed in the Microsoft Visual

C++ 6.0 environment on a Dual Core 2.0 GHz personal computer. The effectiveness of the proposed approach

is evaluated by its application on an illustrative hydrothermal test system comprising four multicascaded hydel

plants and three thermal plants with nonlinear cost curve characteristics. The scheduling horizon is taken

as 24 h with a 1-h time interval. The valve-point loading effect of thermal plants and time delay between

hydel reservoirs is also taken into consideration in this system. The hydel subsystem configuration, hydel unit

generating coefficients, water discharge limits, reservoir volume limits, reservoir inflows, hourly power demand,

generation limits, and thermal machine fuel cost and emission coefficients are taken from [40].

The control parameters selected for this proposed ICHDE algorithm are Np=80, Fm=0.25, CRI=0.5,

and Kmax=20 and maximum generation number was set to be 500. This system has been solved for the

following three cases: economic power scheduling, economic emission scheduling, and economic emission power

scheduling.

5.1. Economic power scheduling

Here the only fuel cost of the composite objective function presented in Eq. (8) is considered. Thus, the aim

of this study is to only minimize the generation cost of thermal plants. The value of weight factors for this

case will be J1 = 1, J2 = 0. For satisfaction of the active power balance constraint, the priority list of thermal

plants is the same over the whole scheduling horizon in this case. Optimal generation cost found for this case

is $40,861.54 while the amount of fuel emission is 11,740.79 kg and computational time taken for this case is

31.41 s. Figure 1 shows the proposed ICHDE algorithm convergence characteristics for EPS. The detailed hydel

discharges and optimal generation schedules are not presented here due to space constraints.

5.2. Economic emission scheduling

Here only fuel emission of thermal plants is taken as an objective. Therefore, in this case, the value of weight

factors will be J1 = 0, J2 = 1/Pf t . In this study the priority sequence of thermal plants is also same for

the whole scheduled period for the satisfaction of the active power balance constraint. Optimal fuel emission

obtained for this study is 7278.68 kg while the production cost is $47,077.37 and computational time taken for

this case is 29.76 s. Figure 2 shows the proposed ICHDE algorithm convergence characteristics for EES.

5.3. Economic emission power scheduling

To effectively solve the combined economic emission scheduling problem is a great challenge because of the

conflicting nature of these objectives. In this study the composite objective function is employed with an

attempt to minimizing the fuel cost and emission simultaneously. The value of weight factors for this case is

J1 = 1, J2 = 1. The optimal hydel discharges and optimal hourly dispatch schedules of hydel and thermal

plants for this case study are presented in Tables 1 and 2, respectively. The fuel cost and amount of fuel

emission obtained from the proposed algorithm for this study is $42,470.99 and 7434.69 kg, respectively, while

the computational time is found to be 37.35 s.

The obtained results for above three case studies are collectively summarized in Table 3. The conflicting

nature of these two competing objectives, fuel cost and fuel emission, can be clearly seen from the mentioned

results. In the EPS problem the objective was the minimization of generation cost of thermal plants and it

is achieved by getting an optimal value of fuel cost, but in this case the amount of emission pollutants has
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a much higher value as compared to EES and EEPS. Similarly, in EES, the amount of emission pollutants is

reduced but the generation cost is higher than in EPS and EEPS. However, a compromise has been made in

the combined economic power scheduling problem by using the price penalty factor approach and it yields a

reasonable solution with a significantly reduced fuel cost ($) and fuel emission (kg) simultaneously.
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Figure 1. EPS convergence characteristics. Figure 2. EES convergence characteristics.

Table 1. Optimal hydel discharges (× 104m3 ) for EEPS.

Hour Plant-1 Plant-2 Plant-3 Plant-4
1 5.4881 6.1855 29.2250 6.0945
2 9.6407 6.0428 29.6236 6.2112
3 7.2166 7.8006 29.9063 7.0524
4 5.5513 6.1135 29.5655 6.0509
5 10.1502 8.9212 29.9292 7.3606
6 7.4044 6.4938 29.5976 11.4772
7 8.1696 7.3634 29.8869 8.3197
8 8.2896 8.3656 15.7577 11.5971
9 11.6955 8.2415 28.4685 17.4346
10 9.3504 6.1397 11.0267 16.4344
11 8.0399 7.5928 11.9844 15.9789
12 10.0015 8.0939 12.2512 19.9012
13 9.1895 9.2308 10.9264 14.5536
14 7.9284 6.3998 10.2971 19.3240
15 6.1006 7.2593 11.3488 18.0898
16 8.2267 10.1202 10.5459 19.7542
17 11.1537 8.9114 10.3155 17.7255
18 7.5194 8.6889 10.2112 17.3149
19 8.7415 13.0228 11.3725 19.9739
20 7.2189 14.0380 10.0207 19.8521
21 6.7188 6.4683 11.2368 19.0049
22 7.6700 12.1316 10.5670 19.8998
23 8.0226 10.8243 11.0427 19.8673
24 5.5121 7.5502 10.1521 19.7878
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Table 2. Optimal power dispatch schedule for EEPS.

Hr
Hydel generations (MW) Thermal generations (MW)

Total gen. (MW)
Ph-1 Ph-2 Ph-3 Ph-4 Pt-1 Pt-2 Pt-3

1 57.623 51.369 0.000 130.208 175.000 211.361 124.439 750
2 85.582 51.474 0.000 128.262 174.987 289.694 50.000 780
3 71.138 63.780 0.000 133.859 175.000 206.012 50.211 700
4 58.450 54.204 0.000 115.089 175.000 197.257 50.000 650
5 87.377 71.385 0.000 152.660 101.794 125.521 131.263 670
6 71.657 56.658 0.000 217.300 102.801 211.642 139.943 800
7 76.586 61.686 0.000 196.638 175.000 300.000 140.090 950
8 77.530 66.976 13.415 249.670 175.000 295.966 131.442 1010
9 92.753 66.116 0.000 317.219 175.000 300.000 138.911 1090
10 83.513 54.112 17.618 317.491 175.000 300.000 132.266 1080
11 77.027 64.608 21.810 321.356 175.000 300.000 140.200 1100
12 88.017 67.625 25.299 353.232 175.000 300.000 140.827 1150
13 84.362 73.322 29.293 311.101 175.000 300.000 136.922 1110
14 77.615 57.358 33.567 352.430 175.000 221.830 112.200 1030
15 64.573 64.071 37.506 338.316 175.000 209.652 120.883 1010
16 80.769 79.070 40.488 346.537 174.907 288.230 50.000 1060
17 96.091 71.784 41.785 325.609 175.000 216.934 122.797 1050
18 75.629 68.995 44.093 317.040 175.000 299.833 139.411 1120
19 83.463 83.375 48.320 330.273 175.000 210.164 139.405 1070
20 72.995 81.497 49.130 321.193 174.829 214.410 135.945 1050
21 69.253 49.496 52.506 307.508 174.650 206.587 50.000 910
22 76.331 75.823 54.421 303.627 174.702 125.097 50.000 860
23 78.916 68.912 57.028 294.494 175.000 125.650 50.000 850
24 59.723 52.753 56.339 283.244 175.000 122.940 50.000 800
Total fuel cost $42,470.996
Total fuel emission 7434.69 kg
Hr-Hour, Ph-Hydel Plant, Pt-Thermal Plant, Gen-Generation.

Table 3. Proposed ICHDE results.

EPS EES EEPS
Fuel cost ($) 40,861.54 47,077.37 42,470.99
Fuel emission (kg) 11,741.18 7278.68 7434.69

The optimal results given by the proposed ICHDE algorithm are also compared with the results obtained

by multiobjective DE [41], self-organizing hierarchical particle swarm optimization with time varying coefficients

(SOHPSO-TVAC) [42], quadratic approximation-based differential evolution with valuable trade-off approach

(QADEVT) [43], particle swarm optimization (PSO) [44], and nondominated sorting gravitational search

algorithm (NSGSA-CM) [45] and these are presented in Table 4. The results clearly indicate that the proposed

approach produces much better results in all three cases with less computational effort as compared to other

recently established techniques.

6. Conclusions

Short-term economic emission power scheduling of hydrothermal systems is an important task in the operational

planning of present-day power systems. To find an effective solution of this biobjective constrained optimization,
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Table 4. Results comparison.

Methods
EPS EES EEPS
Fuel cost Emission Fuel cost Emission Fuel cos Emission
($) (kg) ($) (kg) ($) (kg)

Proposed ICHDE 40,861.54 11.740.79 47,077.37 7278.34 42,470.99 7434.38
NSGSA-CM [45] – – – – 43,207 7513.30
MODE [41] 41,872 8040.38 45,157 7366.80 43,277 7567.74
SOHPSO TVAC [42] 41,983 11,104.85 44,432 7621.71 43,045 7712.43
QADEVT [43] 42,587 13,964.30 46,100 7953.74 43,395 8270.80
PSO [44] 42,470 12,760.46 48,263 7392.65 43,280 8118.85

a new approach based on an improved chaotic hybrid differential algorithm is developed. The chaotic sequences

based on iterative logistic and tent operators are employed to obtain the self-adjusted CR parameter and

to implement a chaotic hybridized local search mechanism in DE, respectively. Moreover, in order to satisfy

the complex constraints of the STHGS problem, effective strategies based on heuristic rules are adapted. In

this proposed optimization model, not only are the nonconvex nonlinear relationships for power generation

characteristics dealt with conveniently, but also the complicated couplings among reservoirs and water reservoir

time delays in hydel systems are effectively modeled. To evaluate the effectiveness of the developed methodology,

it has been applied on a standard hydrothermal test system comprising of four multicascaded hydel plants and

three thermal plants with three different case studies. The obtained results reveal that the proposed approach

has a capability to yield quality solutions in terms of both reduced fuel cost and emission pollutants with

better convergence characteristics, higher precision, and less computational time. Future work is to study

the application of the proposed approach on biobjective problems with other practical constraints such as

transmission line losses and prohibited discharge zones.
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