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Abstract: Steam valve control is usually discarded in power system stability due to belief in its slow response. The

present manuscript makes use of it as a backup control in the case of failure of the main fast excitation control. The

model describing system dynamics as a function of the two controllers, with wide range loading conditions, is derived

in a norm-bounded format. Linear matrix inequalities are derived as a sufficient condition to obtain reliable controllers

that provide good oscillation damping when both controllers are sound or even in the case of failure of either one. The

design scheme is robust in the sense that it keeps reliable stability against wide load changes as well. A single machine

infinite bus system is presented to illustrate the proposed design procedure and exhibit its performance. Results of

excitation and governor controller testing show that the desired performance could be fulfilled from light load to heavy

load conditions. System performance shows a remarkable improvement of dynamic stability by obtaining a well-damped

oscillation time response even in the case of failure of either controller. Extension of the proposed controller to multiarea

load-frequency control with time delay is also presented.

Key words: Power system stability, excitation control, steam valve control, linear matrix inequalities, robust control,

reliable control, time-delay systems, load-frequency control

1. Introduction

Enhancing power system stability is of great importance, since loss of stability, power separation, and collapse

may cause serious damage to national economy and personal comfort. Generators are usually equipped with a

thyristor-controlled static exciter due to its rapidity and high reliability. The terminal voltage deviation from

a reference value is used to regulate the terminal voltage of generators using proportional (P) or proportional

integral derivative (PID) controllers to obtain a control-automatic voltage regulator AVR. However, the AVR

may have an adverse effect on system stability for large closed-loop gains of the excitation channel. This problem

is solved by injecting an additional stabilizing signal generated by power system stabilizers (PSSs), whose input

is usually the speed deviation of the generator.

Many PSS designs exist in the following studies and references therein. A single or double lead stage

control using frequency response and root locus methods was presented in [1,2], while [3] provided coordinated

design of the AVR-PSS. Linear optimal control is found in [4]. Robust control to consider the uncertainty due to

load variations is presented in [5–8]. In [9], resilient control was given to cope with uncertainties due to both load

variations and controller parameters errors. Note that in [9], nonlinear system dynamics are represented by a
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linearized model with uncertainty approximated by a norm-bounded form. Without such approximation, many

works exist for nonlinear excitation control as follows: fuzzy-logic control was used in [10], adaptive control

was presented in [11], adaptive fuzzy PSS was given in [12] while [13] deals with feedback linearization, an

energy-shaping technique was proposed in [14] while [15,16] presented back-stepping and sliding mode methods,

and application of wavelet networks to power system stabilizer design was presented in [17].

It is worth mentioning that the above excitation controllers suffer from a severe shortcoming, the failure

of that controller. The idea of controlling a system by two controllers is better than using only one and

results in what is termed reliable or fault-tolerant control, as currently used for different systems as switching

systems [18,19]. The main objective of this technique is that, in the case of failure of either controller, or no

failure, stability of the system is kept. Further stability enhancement is achieved by making use of flexible AC

transmission systems (FACTS). In this context, [20] presents reliable stabilization to consider the case of failure

of either excitation-PSS or FACTS controllers.

As an alternative to FACTS, governor control should not be ruled out as a backup controller for excitation

control. Valve control for hydraulic turbines is not so effective in stability improvement due to the water hammer

while steam valve control can be. Modern electrical-hydraulic governors have replaced the old slow mechanical-

hydraulic ones. The dead band of modern steam valves is only 0.1 to 0.2 s [21]. Steam governor control with its

inherent time delay was used in [22] as a back up to the excitation control without considering load variation.

Fast valving and braking resistors for enhancing power system transient stability are applied as presented in

[23,24].

In this paper, robust reliable stabilization using excitation and governor controllers is designed in the

presence of state delay. The proposed controller is designed in the state feedback form. It is proved that

the controller guarantees robust stability against load variations and controller failure. The advantage of the

controller is that it maintains the desired swiftness of the response even if failure occurs for either the excitation

or governor channel. Extension to time-delay multiarea load-frequency control is also presented.

The manuscript is organized as follows. The power system dynamic model and problem formulation are

given is Section 2. Section 3 presents a robust reliable control for uncertain linear systems with time delay in

the states. Testing of the proposed controller on the case study of a single-machine infinite-bus (SMIB) and

time-delay two-area load-frequency control (LFC) system is given in Section 4. Concluding remarks are given

in Section 5.

Notations: We use I, W’, and W−1 to denote respectively the identity matrix, transpose, and inverse

of a square matrix W. W >0 (W <0) means positive- (negative-)definite matrix W. The symbols ∥(.)∥ and

• denote respectively the norm of (.) and an ellipsis for terms in matrix expressions that are induced by

symmetry, i.e.: [
L+W +M +W ′ +M ′ N

• R

]
=

[
L+ (W +M + •) N

N ′ R

]

Fact 1: For any real matrices W1 , W2 and ∆(t)with appropriate dimensions and ∆∆′ < I , it follows that

[25]:

W1∆(t)W2 + • < εW1W
′

1 + ε−1W
′

2W2, ε > 0 (1)

where ∆(t) represents system uncertainties with bounded norm, i.e.∥∆(t)∥ < 1.
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2. Power system model and problem formulation

In this section, we derive the linear dynamic model of a single machine connected to an infinite bus through a

transmission line [1]. The block diagram of such a system is shown in Figure 1.

                                                            ωref 

Vref 

                  -Pe                                            - ω                    xe                   inf. bus 

  

u2

u1

            Governor Turbine                                                                                                                      V,P,Q 

Failure2                     states 

                    Exciter + AVR                                –Vt 

 

 

 

Failure 1 

PSS 1  

Generator 

 

 

PSS 2 

–1/R 

Pm 

1

T
g
s + 1

1

T
t
s + 1

Figure 1. Single machine infinite bus system (SMIB) with possible failure of u1 or u2 .

It should be emphasized that the infinite bus could be representing the Thévenin equivalent circuit of a

large interconnected power system. The machine is equipped with a static (thyristor) exciter and is assumed

to be of the nonreheat type. It is assumed that the machine is also equipped with excitation and steam valve

control. The nonlinear dynamic model of the SMIB is given by five first-order differential equations where the

fourth equation represents the AVR and exciter, while the fifth equation describes the governor dynamics [1]:

δ̇ = ωo(ω − ωo) = ωo∆ω

∆ω̇ = 1
2H [Pm − Pe]

Ė
′

qo = 1
T

′
do

[Ef − {E′

q + (xd − x
′

d)Id}]

Ėf = 1
Te
[−Ef +Ke(Vref − Vt + u1)]

Ṗm = 1
Tgt

[−Pm − 1
R∆ω(t− τ) + u2]

(2)

where u1 , and u2 represent respectively the excitation and governor control. Note that

Pe = VdId + VqIq (3)

with Vq and Vdgiven by:

Vq = Eq − (xd + xe)Id

Vd = (xq + xe)Iq
(4)

Now using Eq. (4) in Eq. (3) obtains the following:

Pe = [Eq + (xq − xd)Id]Iq
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The output power Pe can also be written in terms of the direct-axis transient reactance as

Pe = [E
′

q + (xq − x
′

d)Id]Iq (5)

Id ,Iq , and Vd are given by:

Id = (E′
q − V cos δ)/(x′

d + xe)

Iq = V sin δ/(xq + xe)

Vt =
√
(Iqxq)2 + (E′

q − Idx′
d)

2

The definitions of symbols are given in the Appendix [1,2].

Substituting Eq. (5) in Eq. (2) and then linearizing around an operating point (δo , ωo ,E
′

qo, Efd , Pmo)

(letting ∆δ = δ − δo ,. . . .etc.), the following linearized model is obtained:

ẋ(t) = (A+∆A)x(t) +Adx(t− τ) +Bu (6)

where x = [∆δ,∆ω,∆E
′

q,∆Efd,∆Pm] with initial conditions x(t) = xo, t ∈ [−τ, 0],

A =



0 ωo 0 0 0

− k1

2H 0 − k2

2H 0 1
2H

− k4

T
′
do

0 − 1
T

1
T

′
do

0

−k5ke

Te
0 −k6ke

Te
− 1

Te
0

0 0 0 0 − 1
Tgt


, Ad =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −1
TgtR

0 0 0


, B =



0 0

0 0

0 0

ke

Te
0

0 1
Tgt


and the matrix ∆A represents system uncertainty due to load variations, which can be represented in a norm-

bounded format as ∆A = Mx∆N . The uncertainty matrices M and N can be easily calculated using the

singular value decomposition. The parameters k1 to k6 are expressed in terms of the machine load (P ,Q) and

can be found in [5].

The control objective can be stated as follows: design robust reliable stabilization controllers for the

system given in Eq. (6) for different load conditions. The reliability in this context means that one control

signal, either u1 or u2 , should be able to robustly stabilize the system. Therefore, the following cases are

considered:

1- Only controller u1 is active (u2 fails).

2- Only controller u2 is active (u1 fails).

3- Both controllers are active (no failure).

The case of simultaneous failure of both controllers is excluded since it is very unlikely in practice.

The above cases are respectively represented by the following input matrices:

B1 =



0 0

0 0

0 0

ke

Te
0

0 0


, B2 =



0 0

0 0

0 0

0 0

0 1
Tgt


, B3 =



0 0

0 0

0 0

ke

Te
0

0 1
Tgt
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In addition to the required reliable stabilization for the above three cases, the oscillations have to be damped

out within 10 to 15 s over different load conditions as required by power engineers [26]. In other words, the

uncertain state-delay system of Eq. (6) is said to be robustly stabilized with degree of stability α >0 if there

exists a state-feedback control u(t) = Fx(t), where F is a feedback gain matrix to be determined later, such

that the closed-loop system response satisfies the following:

∥x(t)∥ < ∥x(0)∥ e−α.t, t > 0 (7)

3. Design of robust reliable control

This section presents a method for designing a robust and reliable controller to ensure asymptotic stability

of the closed-loop system with degree α for all admissible uncertainties as well as actuator faults. The main

contribution of this paper is stated in the following theorem.

Theorem The state-time delay system given in Eq. (6) is robustly stable with degree α for different controller

failures by a state feedback control u = Fx if there exists a feasible solution to the following LMIs:

Y = Y ′ > 0, S = S′ > 0, Z = Z ′ > 0, ε > 0
{(A+ αI)Y +BiL+ •}+ Z + εMxM

′
x Ade

ατ Y N ′

• −S 0

• • −εI

 < 0, i = 1, 2, 3


(8)

where Y = P−1 ,L = FY ,Z = Y SY . The controller gain matrix is then calculated as F =LY −1 .

Proof The closed-loop system takes the following form:

ẋ = (A+∆A+BiF )x+Adx(t− τ), i= 1, 2, 3 (9)

Using the transformation x = e−αtz, t > 0 [27] yields the following equivalent representation of Eq. (9):

ż = (A+∆A+BiF + αI) z + eατAdz(t− τ) (10)

The uniform asymptotic stability of Eq. (10) guarantees the α uniform asymptotic stability of the closed-loop

system of Eq. (9).

Now consider the following Lyapunov–Krasovskii function:

V (t) = z′(t)Pz(t) +

t∫
t−τ

z′(θ)Sz(θ)dθ (11)

where P = P ′>0, S = S′>0.

The time derivative of Eq. (11) is obtained as:

V̇ (t) = ż′Pz + zP ż + z′Sz − z′(t− τ)Sz(t− τ) (12)
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To ensure stability of the system of Eq. (10), the derivative of V (t) must be negative definite, i.e. V̇ (t)

<0. Along the trajectory of Eq. (10), this condition can be written as:

[
z

z(t− τ)

]′ [ {P (A+∆A+BiF + αI) + •}+ S PAde
ατ

• −S

][
z

z(t− τ)

]
< 0 (13)

Pre- and postmultiplying Eq. (13) by diag. [P−1 ,I ], letting P−1 = Y ,FP−1 = L , and using Eq. (1), the LMI

of Eq. (8) is obtained. This completes the proof.

4. Simulation results

The validity of the proposed robust reliable stabilization control is examined via two simulation examples,

namely reliable robust excitation/governor control and reliable robust LFC of a two-area time-delay system.

4.1. Reliable robust excitation/governor control

In this example, robust reliable stabilization for a state-delayed SMIB is designed using excitation and governor

controllers. The numerical parameters of the system are given in Table 1. and the loading conditions of interest

are shown in Table 2.

Table 1. Numerical parameters of SMIB power system.

Synchronous machine
xd = 1.6, x

′

d = 0.32, xq = 1.55, ωo = 2π × 50rad/s,

T
′

do = 6s, 2H = 10s, V = 1
Exciter-amplifier Ke = 50, Te = 0.05 s,
Governor-turbine Tgt = 1 s, R =0.05
Transmission line xe = 0.4
Governor time delay τ = 1 s

Table 2. Loading conditions of SMIB power system.

Loading P (p.u.) Q (p.u.)
Heavy 1 0.5
Nominal 0.7 0.3
Light 0.4 0.1

At nominal load, the system matrix A is determined as:

A =



0 314 0 0 0

−0.1186 0 −0.0906 0 0.1

−0.1933 0 −0.4633 0.1667 0

−11.864 0 −511.6 −20 0

0 0 0 0 −1


Using singular value decomposition [25], the uncertainty matrices M and N are calculated as Mx = [0, 0, 0,

6.63, 0]’, N = [6.63, 0, –2.1, 0, 0]. Therefore, the LMI of Eq. (8) is solved using the LMI control toolbox. It
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has a feasible solution and the robust reliable state feedback matrix F is found to be:

F =

[ −1.0521 35.126 −2.222 −0.057131 1.1765

405.19 −13580 866.54 22.497 −452.01

]

The proposed controller is tested at extreme loads when a 0.5 rad change in the torque angle due a cleared fault

at the machine terminal is considered. The following numerical experiments are carried out using Simulink.

When heavy load is applied, simulation results for open-loop, for excitation control (u1) only, for steam valving

control (u2) only, and for both controllers are shown in Figure 2. Similarly, for light load, the responses are

shown in Figure 3. As seen from Figures 2 and 3, the system is poorly damped or even unstable for extreme loads.

A remarkable stability improvement is achieved using the proposed controllers, achieving damped oscillations

within the desired settling time. Consequently, the proposed controller achieves robust stabilization against

load variations and reliability against failure of either excitation or steam valving control channels.

 
(a) No control  (b) Only u1  is on ( u2  fails)  

 
(c) Only u 2  is on ( u 1  fails)  (d) Both u 1  and u2 are on (no failure)
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Figure 2. ∆δ (p.u.) - time (s) (heavy load).
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(a) No control  (b) Only u 1 is on (u 2  fails)  

 
(c) Only u2 is on (u1  fails)  (d) Both u1 and u2 are on (no failure)  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

d
el

ta
–

d
ev

,p
.u

.

time,sec
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d
el

ta
–

d
ev

,p
.u

.

time,sec

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

d
el

ta
–

d
ev

,p
.u

.

time,sec
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

d
el

ta
–

d
ev

,p
.u

.

time,sec

Figure 3. ∆δ (p.u.) - time (s) (light load).

4.2. Two-area time-delay load-frequency control: reliability and robustness

The operation objectives of LFC, also called automatic generation control (AGC), are to maintain system

frequency and the tie-line power as close as possible to the scheduled values [28]. Traditionally, communication

delays of control signals in LFC are neglected. This becomes unacceptable due to deregulation in power systems

[29,30]. The communication delays can be classified into two types: random and constant. The random

delays, from the sensors to the control center, range from 0.1 to 0.7 s depending on the communication route,

protocol, malicious attacks, etc. The constant delays from the control center to the generators represent a

heavily congested communication network with packets dropped; in USA the control signal is sent to generators

every 4 s. In this example, the LFC of a two-area power system is considered and extension to multiarea is

straightforward. The proposed robust reliable control is applied to each area. The mathematical model of a

two-area LFC considering the time delay can be written as:

ẋ = Ax+Adx(t− τ) +Bu+ Γ∆Pd (14)
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where x = [∆ω1,∆Pm1,∆E1,∆ω2,∆Pm2,∆E2,∆P12]
′ is the state vector, u is the control vector, and ∆Pd is

the load demand.

A =



−D1

M1

1
M1

0 0 0 0 − 1
M1

− 1
Tgt1R1

− 1
Tgt1

0 0 0 0 0

−k1B1 0 0 0 0 0 −k1

0 0 0 −D2

M2

1
M2

0 1
M2

0 0 0 − 1
Tgt2R2

− 1
Tgt2

0 0

0 0 0 −k2B2 0 0 k2

Ps 0 0 −Ps 0 0 0


and B =



0 0
1

Tgt1
0

0 0

0 0

0 1
Tgt2

0 0

0 0



Ad =



0 0 0 0 0 0 0

0 0 1
Tgt1

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1
Tgt2

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,Γ =



−1
M1

0

0 0

0 0

0 −1
M2

0 0

0 0

0 0


The definitions of symbols and parameter values are given in [28] and listed in Table 3. The tie-line synchronizing

power is Ps = 2.

Table 3. Data of 2-area LFC.

Area 1 2
Speed regulation, R 0.05 0.0625
Frequency sensitivity load coefficient, D 0.6 0.9
Inertia constant, M ; 10 8
Base power, MVA 1000 1000
Governor-turbine time constant, Tgt 0.7 0.9
Constant of integral control, k 0.3 0.3

The block diagram of the system given in Eq. (14) is shown in Figure 4. It is worth mentioning that the

governor and turbine are approximated as a single time constant and the delay is lumped as a single delay τ =

4 s [29,30]. With desired α = 0.2, assuming M = N = 0 (since no uncertainty is considered in the LFC) and

solving Eq. (8), the state feedback gain matrix for the reliable controller is given by:

F =

[ −25.1131 −2.1363 4.6467 10.7586 0.7249 −2.4279 4.1920

21.2299 1.3209 −3.4511 −23.0798 −2.4592 5.7108 −5.3015

]

A load disturbance of 0.5 p.u. is assumed to take place in area 1. Simulation results with activation of integral

control only are shown in Figure 5. When the proposed controller is applied to both areas, the results are as

shown in Figure 6. When one of the proposed controller experiences a failure, the results are as shown in Figure

7 (controller of area 1 is active) and Figure 8 (controller of area 2 is active). As seen, the proposed control has

tight control grip when only u1 is active or when both u1 and u2 are on. However, when only u2 is active, it

has less control effect since the load disturbance occurs in area 1.
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Figure 4. Multiarea load-frequency control system.
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the integral control is active.

Figure 6. Frequency deviation of the two areas when the

proposed controller in both areas is on.

0 5 10 15 20 25 30
–0.03

–0.025

–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

time (sec)

fr
eq

u
en

cy
 d

ev
ia

ti
o

n
 (

p
u

)

delta–f1

delta–f2

0 10 20 30 40 50 60 70 80
–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

time (sec)

fr
eq

u
en

cy
 d

ev
ia

ti
o

n
 (

p
u

)

 

delta–f1

delta–f2

Figure 7. Frequency deviation of the two areas when the

proposed controller of area 1 is on.

Figure 8. Frequency deviation of the two areas when the

proposed controller of area 2 is on.
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5. Conclusion

The main contribution of this paper is presenting a simple design procedure of robust reliable control for time-

delay power systems. Two cases of actuator faults (excitation and governor) are considered. The resulting state

feedback controllers guarantee robust reliable stability with desired settling time for different loads and failure

of either controller channel. The proposed controller is also tested to design reliable load-frequency control

channels for a two-area power system. Simulation results prove the superiority of the designed controller in

achieving desired dynamic performance while securing the operation against controller failure.
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Appendix List of symbols

All data are per unit (p.u.) unless otherwise stated.

Pm Mechanical power.

x
′

d Generator direct-axis transient reactance.

xd ,xq Direct and quadrature-axis synchronous reactance, respectively.

xe Transmission line reactance.

T
′

do d-axis open circuit field time constant (s).

H Inertia constant (s).

δ Torque angle between machine internal voltage and infinite bus voltage (rad).

ω Angular velocity.

Efd Field voltage.

E
′

q q-axis voltage behind transient reactance.

u1 Excitation control signal (PSS output), or control input of area 1.

Ke ,Te Exciter-amplifier gain and time constant.

u2 Steam valving control signal, or control input of area 2.

R Speed droop.

Tgt Governor-turbine time constant (s).

τ Time delay.

V Infinite bus voltage.

P ,Q Machine load.
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