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Abstract: Probabilistic databases and database outsourcing are two recent and important applications of database

systems. In this paper, we introduce authenticated query processing in outsourced probabilistic databases. We have

proposed a novel authenticated data structure (ADS) called PH-tree, which is a combination of PDR-tree and MH-tree.

We have also implemented k-means clustering as a preprocessor. We have compared our algorithm with an existing ADS

called MR-tree and showed that PH-trees outperform MR-trees significantly.
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1. Introduction

The need for uncertain data management and probabilistic queries is rising in many areas of computer applica-

tions. The most common examples are sensor networks, moving objects’ tracking, data cleaning, and marketing

applications [1–3]. In order to manage uncertain data, several methods have been proposed for query processing

and efficient indexing [4–7].

Outsourcing databases (proposed by Hacıgümüş et al. [8]) and cloud computing are becoming popular.

In this paper, we focus on outsourcing uncertain data. Authenticated query processing is central to database

outsourcing. The database service provider (DSP) is responsible for the functionality of the data management

as a third party and the data owner (DO) provides the data for this service. The queries are delivered from

the DO side to the DSP and the DSP responds with the result of this query. While processing the query, the

DSP should also deliver a verification object (VO) to the client. The client authenticates the result set with

the given public key and the incoming VO. In order to achieve this functionality, the DSP stores the data in

a special structure called an authenticated data structure (ADS). Figure 1 illustrates this model. The client

checks for soundness and completeness with the given VO and public key. Soundness means the result set is

correct and not modified. Completeness means that all the valid results are included within the result set.

These two criteria are explained with the following example.

Consider that we have the sample data given in Table 1. An example of a simple query is “The tuples

with over 65K income”. The sound and complete result set, RS, is RS = {(d 1 , Jim, Tech-Support), (d 2 ,

Brian, Exec-Managerial), (d 3 , Nancy, Sales)}. The result set RS = {(d 1 , Jim, Tech Support), (d 6 , Brian,

Exec-Managerial), (d 3 , Sally, Sales)} would not be sound because it contains altered data. The result set RS

= {(d 1 , Jim, Tech Support), (d 2 , Brian, Exec-Managerial)} is not complete because it has missing data.
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Figure 1. Authentication model in outsourced databases.

Table 1. Authenticated querying example.

Id Name Occupation Income
d1 Jim Tech-support 75K
d2 Brian Exec-managerial 90K
d3 Nancy Sales 70K
d4 Carl Agricultural 40K
d5 Chris Armed forces 60K

Soundness and completeness are the basic criteria that should be provided by the DSP, but there are also

some other important criteria that should be considered. These are VO size, query processing time in the DSP,

and the verification time at the client side. The objective of the database outsourcing is to deliver the service to

a third party, and so minimizing VO size and verification time is much more important than minimizing query

processing time [9]. VO size and verification time increase the overhead at the client side.

In this paper, we propose an authentication method for probabilistic database outsourcing. For the

authentication, we propose a novel authenticated data structure called a probabilistic hash-tree (PH-tree). A

PH-tree is a combination of the probabilistic distribution R-tree (PDR tree) [10], designed for probabilistic

databases, and the Merkle-hash tree [11]. PH-trees also benefit from a machine learning technique, clustering.

K-means clustering is implemented as a preprocessor and the results are stored in the root node of the PH-tree.

The K-means algorithm suits our methodology very well and greatly reduces the overhead at the client side,

which is the main objective of authenticated query processing algorithms, as mentioned earlier.

The following sections are organized as follows. Section 2 gives information about the related algorithms

and some preliminary work. The PH-tree is explained in detail with the pseudo codes and figures in Section 3.

Section 4 contains the experiments and their corresponding results. Finally, we have the conclusions.

2. Preliminary fundamentals

2.1. Uncertain data model

There have been quite a few papers on probabilistic databases in the literature [4,12,13]. In probabilistic

databases, possible worlds are generated with the given imprecise data considering the set of all outcomes. In

these possible worlds, we have uncertain attributes that have probability values. The sum of all probability

values of a component of a tuple associated with an attribute should be one. Table 2 presents a relational

table whose occupation attribute is uncertain and consequently the occupation components of the tuples have

probabilistic values.

In a probabilistic data model, a relation can have attributes that are allowed to take probabilistic values.

These attributes are called uncertain attributes [10]. In Table 2, a sample table with an uncertain attribute

in a manner similar to Adult dataset is illustrated [14]. Tuples (represented by rows of the table) have certain
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information associated with name, income, age, and sex attributes and uncertain information associated with

uncertain attribute occupation. The values of occupation are estimated by prior data. A sample query is “Get

the persons who highly likely work on Sales”.

Table 2. Uncertain data model.

Id Name Income Age Sex Occupation
d1 Jim 75K 37 male {(Tech-Support, 0.7), (Sales, 0.3)}
d2 Brian 90K 48 male {(Managerial, 0.6), (Sales, 0.4)}
d3 Nancy 70K 32 female {(Sales, 1.0)}
d4 Carl 40K 41 male {(Transport-Moving, 0.3), (Agricultural, 0.7)}
d5 Chris 60K 29 male {(Armed-Forces, 0.8), (Tech-Support, 0.2)}

An uncertain attribute u can be defined as a probability distribution related to A , which is a discrete

categorical domain representing the current values associated with the attribute u . A = {a1 , a2 , a3 , ...,

aM }, where M is the number of certain attributes in a relation scheme. The probability vector associated with

attribute u is P = <p1 , p2 , p3 , ..., pN >and can be defined as u.pi for a tuple in the relation, where i is the

index of probability values and N represents the total number of values that u can take. Data item di refers

to a tuple of the relation instance in this model.

Uncertainty comes from the lack of knowledge of the exact values. However, we describe the component

of an uncertain attribute with exact probability values, so that the operators can be used as if they are dealing

with certain attributes.

In query processing for uncertain data, we need to utilize distance functions. These functions will

especially be useful when we are dealing with distributional similarities.

Manhattan distance, M , (city-block distance) between two distributions u and v with N instances can

be calculated as

M(u, v) =
N∑
i=1

|u.pi − v.pi|, (2.1)

where u.pi and v.pi are the probability values of the ith instance of u and v , respectively.

Euclidian distance, E , is given as follows:

E(u, v) =

√√√√(

N∑
i=1

(u.pi −−v.pi)2) (2.2)

Kullback–Leibler distance [15], KL, can also be used as

KL(u, v) =
N∑
i=1

u.pilog(u.pi/v.pi) (2.3)

These three distance functions are the ones that are used in probabilistic distribution R-trees, which are described

in Section 2.2 in detail.

KL distance is based on cross-entropy measure in information theory and is useful in cluster implemen-

tation, which is described in Pereira et al.’s work [16]. We make use of KL distance in our paper. Clustering is

summarized in Section 2.4.

2912
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Top-k queries are the most common type of queries in probabilistic databases. Research on the imple-

mentation of top-k query processing over uncertain data includes [7,17–19]. Note that these implementations

are not identical to those of deterministic top-k query processing.

In this paper, we will be focusing on distributional similarity threshold queries (DSTQ).

Definition 1 Distributional Similarity Threshold Query q can be defined via relation R over attribute u such

that the result set of the query q returns all tuples from R that satisfies F(q, u) ≤ T, where F is a distance

function and T is the given threshold value.

In distributional similarity threshold queries, if the distributional distance between the tuple and the

query is smaller than the given threshold T , then the tuple qualifies for the result of the given query. For

calculating the distributional divergence, we can use any distance function that is described in this section.

2.2. PDR tree

In the literature, various indexing methods exist in the field of uncertainty. Kanagal et al. [6] proposed a

structure for correlated probabilistic data based on junction trees, aka clique trees [20]. This subject has been

extended to general metric spaces and multidimensions by Fabrizio et al. [21] and Zhang et al. [22]. Cheng et

al. [5] and Singh et al. [10] developed other indexing methods based on traditional R-trees [23]. These trees

are also called probabilistic distribution R-trees (PDR-trees) and they have query processing mechanisms that

differ from those of top-k query processing. Our proposed authenticated data structure (PH-tree) is based on

PDR-trees.

In a PDR-tree for an attribute, each node is stored in a memory page with closest values of the uncertain

attribute in terms of distributional distance and organized as an R-tree. Additionally, new definitions and

methods for minimum bounding range (MBR), the area of an MBR, and insertion criteria are defined. The

method of distributional grouping is central to PDR-tree indexing. Similar to the R-tree approach, each page

contains more than one uncertain attribute and items.

Figure 2 illustrates a sample PDR-tree. The symbol di represents the tuple ids that are contained in the

leaf pages only. MBRs are formed by the probability vectors. These vectors are represented using numerical

values in the figure. MBR describe the nodes of the PDR tree. For nonleaf nodes, these boundaries are

determined by the vector v =<v 1, v2, v3, ..., vN >, where vi is the maximum probability of the items di in the

nodes indexed in the children of the current page. For example, the leftmost internal node has MBR represented

by the vector <0.7, 0.3, 0.3 >, which is the maximum of the probabilities associated with the children nodes

d1 and d2 (whose probability vectors are d1.v = <0.4, 0.3, 0.3 >, d2.v = <0.7, 0.1, 0.2 >, respectively).

Uncertain attributes of the rest of the tree can be calculated in a similar bottom-up manner, starting from the

leaf nodes going up to the root node. If the MBR does not satisfy a query for any of the internal nodes, then we

can be sure that none of its children does. The area of an MBR can be calculated by using any of the distance

functions described in Section 2.1.

A distributional similarity threshold query is processed, in PDR-trees, in a straightforward manner. A

depth-first search is carried out via pruning the MBR boundaries. If the query is satisfied by the MBR of a

node, then the subtrees of the node are also included in the search. Otherwise, the node is pruned out. When

the search reaches the leaf level, the nodes that satisfy the query are included in the result.
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(0.4, 0.3, 0.3) (0.7, 0.1, 0.2)

d1 d2

MBR: (0.1, 0.8, 0.1) (0.1, 0.0, 0.9)

d3 d4

MBR:

(0.7, 0.3, 0.3) (0.1, 0.8, 0.9)MBR:

Pointers:

(0.5, 0.3, 0.2) (0.2, 0.2, 0.6)

d5 d6

MBR: (0.0, 1.0, 0.0) (0.7, 0.3, 0.0)

d7 d8

MBR:

(0.5, 0.3, 0.6) (0.7, 1.0, 0.0)MBR:

Pointers:

(0.7, 0.8, 0.9) (0.7, 1.0, 0.6)MBR:

Pointers:

Figure 2. Sample probabilistic distribution R-tree.

2.3. Authenticated query processing

Authentication has been studied by Merkle [11] and he proposed a novel method called the Merkle-hash tree

(MH-tree). The mentioned paper is considered by Yang et al. [9] as the fundamental work for a wide range

of authentication methods and structures. The Merkle B-tree has been proposed by Li et al. [24]; it is a

combination of MH-tree and B+tree. Authentication has been extended to the spatial data domain recently

[25–27]. These papers enable the implementation of range query processing in a multiattribute environment.

Hash functions are essential to authenticated query processing. A hash function H should be easy to

compute but difficult to invert. Assuming H(x) = y , it should be easy to compute y with the given H and x ,

but very difficult to compute x with given y and H [28,29]. Moreover, H should be able to compress a large

input into a small and fixed output size. A hash function H should satisfy the following properties [11]:

- H(x) function should be applied to any size of x.

- H function should always produce a fixed size output in order to achieve concreteness.

- Given x , it should be easy to compute H(x).

- It should be computationally infeasible to find y ̸= x such that H(x) = H(y).

- Given H and y , it should be computationally infeasible to find x for H(x) = y .

In order to execute authentication, hash functions are vital. It is possible to authenticate x by computing

H(x) = y , considering the properties of hash functions described and even a large value of x should produce a

small fixed output of y . This is crucial for the authentication of large amounts of data. For this reason, we make

use of Tiger hashing [30]. The Tiger hash function is a strong and fast hash function that produces 192-bit fixed

output regardless of the input. The design of the Tiger hash function is based on parallel lookup operations,

which improve the efficiency of hardware implementation. A preimage attack has been found on Tiger hashing

recently by Mendel [31], but no second preimage attacks have been discovered to date. This statement implies

that the Tiger hash function is a collision-resistant hashing method [32,33].

Figure 3 illustrates a sample MH-tree. In this tree, hash values, hi , are computed as H(di) (i.e.

hi = H(di). Internal node hash values are computed by concatenating the children nodes’ hash values.

The concatenation operation is denoted as “ |”. For the given example h(1−2) = H(h1|h2) = H(H(d1)|H(d2))

and h(3−4) = H(h3|h4) = H(H(d3)|H(d4)). Finally the root node is constructed as h(1−4) = H(h(1−2)|h(3−4))

= H((H(h1|h2))|(H(h3|h4))). While constructing MH-trees, recursive functions become very beneficial.
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h(1-4)

h(1-2) h(3-4)
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d1 d2 d3 d4d2d

Result Set

Figure 3. Merkle-hash tree.

While executing queries, the tree is pruned starting from the root. If a query is satisfied by a node, then

the processing goes down one level to the children of that node. Otherwise, the hash value of the excluded

node is included in the verification object. The traversing order is important in order to achieve a successful

authentication, because of the concatenation used during the tree construction. The verification object should

provide the hash values exactly in the same order as they are created during the tree construction. Only in

this manner can we provide the same input into the hash functions, which is used in the authentication of the

verification object. Consequently, the tree is traversed in a depth-first manner to satisfy the preordering.

For a given query, assume that the result set only includes d2 in Figure 3. Arrows are included to show

the path of the query from the root to the leaf. The algorithm starts from the root node and the left child node

containing the hash value h(1−2) satisfies the query. Next, the depth-first search encounters h1 and includes

it in the VO, because the result set does not contain d1 . The node d2 is included in the VO later, and the

algorithm finishes by adding h(3−4) into the VO. The final state of the VO is [[h1, [d2]], h(3−4)] . At the client

side, authentication will be done by the following computation:

H(V O) = H(H(h1— H(d2))— h(3−4)) (2.4)

H(V O) = H(H(h1— h2)— h(3−4)) (2.5)

H(V O) = H(h(1−2)— h(3−4)) (2.6)

H(V O) = h(1−4) (2.7)

Note that h(1−4) is equal to the hash value of the root, which means that the authentication is done successfully

at the client side.

2.4. k-Means clustering

K-means clustering [34] is an essential part of our algorithm. Basically, clustering methods are unsupervised

machine learning techniques and they can be used for different types of applications [35–40]. The most common
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types of clustering methods are k-means clustering and expectation–maximization algorithms [41]. For the sake

of simplicity, we will be concentrating on k-means clustering.

Intuitively, the k-means clustering algorithm is trained to find out the k points that represent the data

the most. These points are mean values of the clusters of the underlying data. In order to get these mean

values, an iterative approach is carried out to minimize the error. Reconstruction error, E , can be calculated

as follows:

E =
∑
i

∑
N

bin||di −mn||2, (2.8)

where

if ||di −mn|| = min||di −ml||, b
i
n = 1

otherwise bin = 0
(2.9)

xi are the data points, bin are the cluster labels, and ml , mn are the mean values in the dataset. First, mn

values are randomly picked up from the initial dataset, and then at each iteration, the labels bin are estimated.

Once the labels are set, total reconstruction error is minimized taking its derivative with respect to mn .

mn =
∑
i

bindi/
∑
i

bin (2.10)

When we calculate mn values, we recompute bin values according to the new mean values, which is the start of

the second iteration. These two steps are repeated until mn values converge.

3. Authentication of uncertain data

In this section, we explain our methodology for the authentication of uncertain data. Section 3.1 explains the

PH-tree structure, Section 3.2 shows how the query processing is done in PH-trees, and finally Section 3.3

describes the authentication at the client side.

3.1. PH-tree structure

For our proposed model, we present a novel structure called the probabilistic hash-tree. Basically the PH-tree is

a combination of the MH-tree and PDR-tree with a preprocessing mechanism using clustering. The clustering

algorithm plays an important role in tree creation. The mean values gathered from clustering are stored in the

root node of the PH-tree. Figure 4 shows a sample PH-tree and its internal node structure.

In Figure 4, the clouds represent the clusters and their corresponding sub-PH-trees. These clusters are

represented by C1 , C2 , C3 , and C4 . Only C1 and C4 are shown in detail in Figure 4. Each cluster is created

as a sub-PH-tree. Note that the roots of these subtrees are not the same as the root of the whole tree. The
mean value of each cluster Ci is notated as miand stored in the root node. The mean values are the output of

the k-means clustering algorithm. After all the clusters are formed as a sub-PH-tree and the mean values are

included in the root, all the subtrees (clusters) are connected to the root node.

In the PH-tree, only leaf nodes hold the data, just like in the PDR-tree and MH-tree. Data values, di ,

and hash values, hi , are stored inside the leaves. These probability vectors, pi,j , determine the MBR of the

node.
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C4C1

Root Node

m1 m2 m4m3

p8,1 p8,2

h(1-5)
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h(4-5)
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d1 h1

p2,1 p2,2

d2 h2

p4,1 p4,2

d4 h4

p5,1 p5,2

d5 h5

p3,1 p3,2

d3 h3

C2. C3

Figure 4. Probabilistic hash tree.

Internal nodes only contain MBRs, hash values, and pointers. In order to evaluate the probability values

of an internal node, we look at the maximum values of the child nodes. For the given example in Figure 4, we

look for the children pi,1 values, where i = 1, 3. We retrieve the maximum of them and store it as p6,1 . All the

probabilities up to the root are evaluated in this manner. This ensures that if a node’s MBR does not satisfy a

query, then the MBRs of the node’s children will not either [10].

Hash values of the internal nodes are computed in the same way as in MH-tree computation. All

the binary hash strings in the child nodes are concatenated in a breadth-first manner and rehashed (e.g.,

h(1− 3) = H(h1|h2|h3), h(4− 5) = H(h4|h5) and h(1− 5) = H(h(1− 3)|h(4− 5))).

The differences between PH-trees, MH-trees, and PDR-trees in terms of node structure and tree structure

are shown briefly in Tables 3 and 4.

Table 3. Comparison in terms of node structure.

Node structure
MH-tree • Root node and internal nodes are structurally similar.

• Does not contain MBR.
• Does not contain probability vectors.
• Nodes contain corresponding hash values.

PDR-tree • Root node and internal nodes are structurally similar.
• Nodes contain MBR.
• Nodes have probability vectors.
• Does not hold hash values.

PH-tree • Root node contains cluster mean values.
• Nodes contain MBR.
• Nodes have probability vectors.
• Nodes contain corresponding hash values.
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Table 4. Comparison in terms of tree construction.

Tree construction
MH-tree • Does not implement preprocessing.

• Binary tree.
PDR-tree • Does not implement preprocessing.

• Multiway tree.
PH-tree • K-means clustering implemented as preprocessing.

• Multiway tree.

3.2. Query processing

The query processing algorithm is implemented according to the tree structure based on clustering.

3.2.1. Query processing at root level

The RangeQueryRoot Algorithm processes the incoming query q by calculating the Euclidian distance with the

mean values. The subtree with the smallest distance is the nearest cluster to q . Then we call the recursive

RangeQuery function to go deeper into the tree and extract the result set inside this cluster. Other subtrees’

hash values are included in the VO since we know that they do not hold any data item inside the result set.

This is the key part of our method. Obsolete entries in the verification object are eliminated at the beginning.

We do not allow the RangeQuery algorithm to go into any unnecessary subtrees at the root level. There are two

distinct advantages of this method: (i) decreasing the VO size significantly and (ii) improving the verification

time at the client side. The results of the experiments also validate these arguments.

The details of the RangeQueryRoot function are given in Algorithm 1. In this algorithm, “d” denotes

the temporary distance variable, and “Ni ” denotes the child node of the root node, where “i” is the index

value. “mi” corresponds to the mean value and “hi” corresponds to the hash value stored within node “Ni”.

“Euclidian” is the function that is used to calculate the Euclidian distance between two vectors.

Algorithm 1 

RangeQueryRoot(Query q) 

1. for each child Ni of root 

2.  d = Euclidian(q, mi)  // calculates the euclidian distance between q and mi 

3. SmallestDistance = 9999999  // initialize SmallestDistance to a large value 

4.  if ( d < SmallestDistance)  // check if d is the smallest distance 

5.   SmallestDistance = d 

6.   ClosestNode = Ni  // assign the ClosestNode to Ni 

7.   ClosestNodeIndex = i 

8.  end-if 

9. end-for // at this point, the cluster which holds the result set is found (ClosestNode). 

10. i = 0 

11. while ( i < ClosestNodeIndex) // until we reach the ClosestNode 

12.  Ni = ith child of root   
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ÜNVER and GÜNDEM/Turk J Elec Eng & Comp Sci

13.  Append hi to VO   // all the subtrees’ hash values are included inside VO 

14. i++  

15. end-while 

16. Append "(" to VO  // "(" is appended to indicate that algorithm goes one level down  

17. RangeQuery(q, ClosestNode) // query processing inside the cluster 

18. Append ")" to VO  // ")" is appended to indicate that algorithm goes one level up 

19. i = ClosestNodeIndex 

20. while ( i < SizeOfRoot)  // until we reach the last child of root node 

21.  Ni = ith child of root 

22.  Append hi to VO  // all the subtrees’ hash values are included inside VO 

23. i++ 

24. end-while 

The characters “(”and“)” are also appended to the VO. These markers tell the client that the query goes

one level down or up respectively. This is very useful for authentication because the client is informed when the

hash function must be called.

The order of the concatenated hash bytes is important. In the following, we explain it with an example.

Suppose that we have four different clusters C1 , C2 , C3 , C4 consecutively and C3 (also N3) contains the

result set. First, we must include the hash values of N1 , N2 into the VO then we call the RangeQuery(N3 ,

VO). After VO is updated inside the RangeQuery procedure, we should include the final hash value of N4 into

the VO.

Figure 5 shows a sample PH-tree with the probability vectors that are included in the internal nodes.

In this example, clusters C1 and C4 are formed according to the probability values of their subtrees. Assume

that a query q , which has probability values of <0.17, 0.83>, is being processed for this sample PH-tree. Since

q is closer to cluster C1 than other clusters in terms of distance, C2 , C3 , C4 have been pruned out and the

traversal of the tree has been minimized.

Figure 6 illustrates an implementation similar to that of this example with the exception that C1 also

contains the result set.

3.2.2. Query processing inside the cluster

The RangeQuery algorithm is called when the right cluster is found for the query q . If the MBR boundary

qualifies for q , either it goes one level down or includes the result set item in the VO. Otherwise the hash value

is included in the VO.

Algorithm 2 gives the pseudo code for the RangeQuery procedure. In this pseudo code, “Ci ” denotes

a child node of “N ”, where “N ” is an internal node. “Ci .p” denotes the probability vector of Ci , “Ci .d”

denotes the data item of Ci , and “Ci .h” denotes the hash value stored within the Ci . “KL” denotes the

Kullback–Leibler distance function and “T ” denotes the threshold value.

Threshold T also plays an essential role here. It determines the objects in the result set. If we increase

T too much, then we have the risk of having too many items in the result set. More than one cluster should

be pruned in such a situation. If T is over-decreased, then we can end up having few or no items in the result

set. The T value should be fine tuned with experiments to get optimum results.
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Figure 5. Probabilistic hash tree.
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Result Set
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The incoming query q checks the mean values in the

root node and finds the closest cluster.

C2, C3, C4 is directly added to VO. All the

subtrees are pruned out at the initial

stage.

Added to VO

Figure 6. Probabilistic hash tree.

3.3. Authentication in PH-trees

Authentication on the client side is handled by the RootAuthentication procedure. This procedure fetches all

the entries inside the VO and processes them according to their data type. The final hash value computed with

the VO should match the given hr .
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Algorithm 2 

RangeQuery(Query q, Node N) 

1. if N is leaf node 

2.  for each cluster Ci of N 

3.   if  KL(Ci.p, q) < T   // if query q qualifies for Ci.p  

4.    Append Ci.d to the VO  // Ci.d is a result set item 

5.   else     // if query q does not qualify 

6.    Append Ci.h to the VO  // hash value is appended to VO 

7.   end-if 

8.  end-for 

9. else       // N is an internal node 

10.  for each cluster Ci of N 

11.   if KL(Ci.p, q) <  T    // if query q qualifies for Ci.p 

12.    Append "(" to VO 

13.    RangeQuery(q, Ci)  // we go one level down with a recursion 

14.    Append ")" to VO 

15.   else     // if the query q does not qualify 

16.    Append Ci.h to the VO // hash value is appended to VO 

17.   end-if 

18.  end-for 

19. end-if 

Algorithm 3 illustrates RootAuthentication function in detail. “—” denotes the concatenation operator

in the algorithm, ei denotes the entry item, hc denotes the concatenated hash string, and H(x) denotes the

hashing function.

Algorithm 3 

RangeQuery(Query q, Node N) 

1. if N is leaf node 

2.  for each cluster Ci of N 

3.   if  KL(Ci.p, q) < T   // if query q qualifies for Ci.p  

4.    Append Ci.d to the VO  // Ci.d is a result set item 

5.   else     // if query q does not qualify 

6.    Append Ci.h to the VO  // hash value is appended to VO 

7.   end-if 

8.  end-for 

9. else       // N is an internal node 
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10.  for each cluster Ci of N 

11.   if KL(Ci.p, q) <  T    // if query q qualifies for Ci.p 

12.    Append "(" to VO 

13.    RangeQuery(q, Ci)  // we go one level down with a recursion 

14.    Append ")" to VO 

15.   else     // if the query q does not qualify 

16.    Append Ci.h to the VO // hash value is appended to VO 

17.   end-if 

18.  end-for 

19. end-if 

Basically, the hashing function is called after the “)” symbol appears in the VO. Otherwise it is concate-

nated to the hash string. An entry can be either a data item in the result set or a hash value. If it is a data

item it is hashed before concatenation; otherwise it is directly appended to hc . If the entry is a “(” character,

then the RootAuthentication is called again to enable recursion inside the VO.

The differences between PH-trees, PDR-trees, and MH-trees in terms of query processing and authenti-

cation are shown briefly in Table 5.

Table 5. Comparison in terms of query processing.

Query processing
MH-tree • Implements authenticated processing.

• Does not handle uncertainty.
• Does not implement range querying.
• Does not include distance functions.
• Constructs verification object during processing.

PDR-tree • Does not implement authentication methods.
• Handles uncertainty.
• Range queries are used for query processing.
• Includes distance functions.
• Does not contain verification object.

PH-tree • Implements authenticated processing.
• Handles uncertainty.
• Range queries are used for query processing.
• Includes distance functions.
• Constructs verification object during processing.

4. Experiments and results

We have tested our algorithms using both synthetic and real data. The programming language used in the

implementation is Java 1.6 and experiments are performed on a 2.1 GHZ dual processor machine with a 2 GB

physical memory. Page size is fixed to 8 KB in all of the experiments. Additionally, we used GNU Crypto,

which is a cryptography library written in Java. It enabled us to implement Tiger hashing [30] in range query

and authentication algorithms.

Synthetic data contain probability values generated from a uniform distribution using the random number

generator of Java Platform Standard Edition 6. This built-in class of Java returns the pseudorandom numbers
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each time, which are uniformly distributed between the values 0 and 1. There are only two uncertain attributes

associated with the tuples in this dataset. Data fields are also randomly generated as 100 byte strings created

by generating long values and converting them into strings. The cardinalities (sizes) of this dataset are 10,000,

20,000, 30,000, 40,000, and 50,000.

Adult is a real dataset that is obtained from the UCI Machine Learning Repository [14]. This dataset is

for classification purposes and is cited in various papers in the literature [42–44]. The attributes of Adult are 14

different social attributes including age, work class, race, sex, native country etc. and the associated task is to

predict whether the income of a person exceeds $50K income per year based on census data. Since the income

itself is an uncertain attribute, we have chosen ADTree [45] to estimate the probabilities values for this dataset.

ADTree is very useful and efficient when the data contains both continuous and discrete attributes. Weka Data

Mining Software [46] is used during the implementation of ADTree. The cardinalities of the adult dataset in

the experiments are defined as 5000, 10,000, 15,000, 20,000, and 25,000.

Another important notion here is the optimization of k in clustering. Since it is a hyperparameter,

repeating the experiments for each value of k from 1 to 50 is the best way to find the optimum value. Each

dataset may have different underlying distributions so it has been optimized for both of the datasets. The

optimum value of k is 12 and 30 for Adult and our synthetic dataset, respectively. Because of the uniform

distribution of our synthetic data, it is not surprising to see a big value of k .

We compare our method with MR-trees, which is another multiattribute R-tree variant authentication

technique. The results are analyzed according to VO size, verification time, query processing time, and tree

construction time.

4.1. Verification object size

Figure 7 shows the results of our experiments in terms of VO size. It can be easily seen that the PH-tree

outperforms the MR-tree. Because of the clustering mechanism used in PH-trees, we are able to pre-eliminate

the obsolete entries in the VO. Another important detail in Figure 7 is that the slope (tangent) of the PH-tree

line is smaller than that of the MR-tree line. From Figure 7, we can deduce that if we increase the dataset size,

then the difference between the PH-tree and MR-tree in terms of VO size will increase.

4.2. Verification time

Here we compare the results of the MR-tree and PH-tree in terms of verification time (nanoseconds) at the client

side. We were expecting the results to be analogous to those in Section 4.1. The results displayed in Figure 8

verify our expectation. The advantage of smaller VO size makes it easier to authenticate the data for the client.

The only difference between the PH-tree and MR-tree in this comparison is the VO size. Consequently, Figure

7 is very similar to Figure 8. The PH-tree again outperforms the MR-tree. This becomes much more evident

when the dataset cardinality increases for both synthetic and real data. Please recall that the most important

criteria for the authentication methods are VO size and verification time, because they are related to the client

side efficiency.

4.3. Query processing time

Figure 9 illustrates the query processing time (nanoseconds) using the MR-tree and PH-tree. Actually query

tests highly depend on the given dataset and so we repeated the queries with different values and took the

average. PH-trees require less time in processing queries than MR-trees do. This is important for the database
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Figure 7. VO size.

service provider. The growth of the query processing cost does not change with the dataset cardinality for either

of the algorithms.

4.4. Tree construction time

Finally, Figure 10 illustrates the construction time of the trees in terms of milliseconds. Time includes both

the time to create the initial tree, k-means clustering implementation for the PH-tree, and the time to compute

the hash values of the nodes. We see that total construction time is exponential in the dataset cardinality.
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Figure 8. Verification time.
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While building the initial PH-tree, we divided the whole dataset into k clusters. In this way, we constructed

smaller sub-PH-trees instead of one big PH-tree, which reduces the total cost significantly. For smaller data

cardinalities, both algorithms have similar requirements. When we increase the data cardinality, there is a huge

increase in the cost of the MR-tree. PH-trees also grow exponentially but not as much as MR-trees, because

PH-trees never start constructing the whole dataset.
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Figure 9. Query cost.
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Figure 10. Tree construction time.

5. Conclusion and future work

In this paper, we propose a novel ADS called the PH-tree. The PH-tree is a hybrid model of the PDR-tree and

MR-tree with a preprocessing mechanism based on k-means clustering. The main contribution of the PH-tree
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is its applicability on uncertain data and probabilistic databases. Existing methods in the literature such as

MR-trees do not work well on uncertain data in terms of query processing cost, verification object size, and

verification time. Our experiments show that PH-trees outperform MR-trees in these three criteria. PH-trees

also improve the performance of tree construction, which is an important benefit for database service providers.

PH-trees assume that the underlying uncertain data are independent. As future research, this work can be

extended to correlated data and to include authentication of junction trees.
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