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Abstract: This paper presents single and multiple precision sequential large multiplier designs for field-programmable

gate arrays. Both designs use the Karatsuba–Ofman method. They are pipelined and can generate a full size (double

operand size) or a single size product. The syntheses results show that the sequential large Karatsuba–Ofman multiplier

(SLKOM) implementations have up to 2.23 times less delay compared with the standard sequential large multipliers

implementations presented in previous research. The 2048-bit multiple precision sequential Karatsuba–Ofman large

multiplier (MPSLKOM) implementation can simultaneously execute eight 256-bit multiplications. The MPSLKOM

implementations use roughly 1% more registers and up to 3% more LUTs than the SLKOM implementations.
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1. Introduction

Large operands are widely used in scientific, cryptography, multimedia, and signal processing applications.

Multiplication is one of the most used arithmetic operations in these applications [1,2]. General purpose

processors do not contain large multipliers. To compensate for the lack of the hardware, special software

routines or multiple-precision arithmetic libraries can be used to perform the multiplication of large operands

(The GNU Multiple Precision Arithmetic Library). These routines decompose the large operands into standard

size suboperands and perform multiple suboperand multiplications; the products of these multiplications are

aligned and summed to generate the large product. There are algorithms faster than this simple method [3,4],

however, they are constrained to use the standard size multipliers too. Thus, the software only approach

becomes extremely time-consuming when a vast number of large multiplications are executed in applications.

Therefore, there is a genuine need for large multipliers that work fast and use as little logic as possible.

The recent work on the design of large multipliers focuses on field-programmable gate array (FPGA)

implementations due to their rapid design and flexibility advantages [5–12]. A brief discussion of the previous

work is provided.

In [5], hybrid sequential large multipliers are designed using Broadcast (decomposition method’s imple-

mentation) and Karatsuba–Ofman (KO) multiplier blocks. Various combinations of these multiplier blocks are

tried out to implement 256-bit multipliers. Among these implementations, the one that uses four hierarchical

stages of KO multipliers is the fastest, but uses the most logic resources; the implementation that uses two

hierarchical stages of two broadcast multipliers is the slowest.
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In [6], a combinational large multiplier and squarer designs that use the decomposition method are pre-

sented. Both designs use fast adder trees to sum the partial products generated by suboperand multiplications;

20-bit to 85-bit multiplier implementations are mapped on Spartan-3 FPGAs.

In [7], another combinational large multiplier design that uses the decomposition method is presented.

The design method exploits the structure of the arithmetic slices and the fast carry chains provided in Virtex

4 FPGAs; 16-bit to 221-bit implementations of the proposed design are mapped on the FPGAs.

In [8], a bit serial large multiplier design is presented. The design uses carry save adders to perform the

addition of partial product bits. The product bits are converted on the fly from borrow save format to two’s

complement format; 128-bit to 1024-bit implementations are mapped on Virtex 2 FPGAs.

In [9], truncated large multiplier designs for high-precision floating-point multiplication are presented.

The truncated multipliers can be used by applications that tolerate truncation error. The study modifies the

KO method and applies it to both multiplication and squaring operations; 23-bit, 52-bit, and 112-bit pipelined

implementations are synthesized and mapped on Virtex 4 FPGAs.

In [10], a large multiplier design that uses a modified KO method for high-precision floating-point

multiplication is presented. A 128-bit quadruple-precision mantissa multiplier has been constructed using one

66-bit and two 65-bit multipliers instead of four 64-bit multipliers.

In [11], two combinational signed-large multipliers designs for FPGAs are presented. The first design

uses symmetric multiplier blocks, while the second one uses asymmetric multiplier blocks; 51 by 68 to 51 by

190 multiplier implementations are mapped on Virtex 5 FPGAs.

In [12], three sequential large multiplier designs for FPGAs are presented. The paper uses the modified

decomposition method and presents the speed-area tradeoff among those designs; 256-bit to 2048-bit implemen-

tations are synthesized and mapped on Virtex 5 FPGAs.

The main aspects of the previous work are summarized in Table 1. The columns of the table show the

following: the reference of the work, the type of multiplication method, the target FPGA device, the size, delay,

and the resource usage of the largest implementation mapped on the target platform. The resource usage is

expressed in terms of the number of slices, LUTs, and utilized embedded multipliers.

Table 1. Previous work on large multipliers.

Publication Mult. method FPGA

Maximum implementation
Size Delay Hardware
(bits) (ns) (Slices, LUTs, Muls.)

Quan et al., 2005, [5] Hybrid Virtex 2 256 380 17564 slices, 144 mul.

Gao et al., 2007, [6] Decomposed Spartan 3 85 22 400 LUT, 15 mul.

Athow and Al-Khalili, 2008, [8] Decomposed Virtex 4 221 16 60000 slices, 169 mul.

Bessalah et al., 2008, [8] Serial Virtex 2 1024 12091 2688 (CLBs)

Banescu et al., 2011,[9] Truncated KO, Virtex 5 112 3 2497 LUT, 19 mul.

Jaiswal and Cheung, 2012, [10] KO, Div. Conq. Virtex 4 130 3 2685 slices, 3505 LUTs, 27 mul.

Gao et al., 2012, [11] Decomposed Virtex 5 192 14 1150 LUT, 24 mul.

Senturk and Gok, 2012, [12] Decomposed Virtex 5 2048 570 8245 LUT, 121 DSP

The delays for the designs are rounded to the nearest integer and given in nanoseconds. Quan et al. [5]

and Athow and Al-Khalili’s [7] designs use excessive amounts of hardware resources. The multiplier proposed by

Bessalah et al. [8] can support 1024-bit multiplication, but is extremely slow. The designs reported in Banescu

et al. [9] and in Jaiswal and Cheung [10] are the fastest, but they are designed for floating point multiplication
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and they cannot multiply operands larger than 130 bits. The design reported in Gao et al. [11] is approximately

five times slower than the fastest implementations and suffers from the same limited operand size shortcoming.

The previous large multiplier designs are mostly combinational and achieve high execution speeds by

liberally using FPGA resources. Currently, a 256-bit multiplier is the largest combinational implementation

that can be mapped on a Virtex 5 FPGA by using all arithmetic slices. However, in practice all the arithmetic

slices cannot be dedicated only to multiplier logic. Another issue is that the performances of the previous

designs usually depend on some key attributes of the platforms such as the existence of the fast carry chains

and the size of the built-in multipliers. Model-dependent optimization may not give the same results on all

platforms, since even the members of the same FPGA family can have structural differences. Especially when

the resources are very limited, the sequential designs are good alternatives to combinational designs. They

require relatively small amount of resources, they can be mapped on any FPGA model, and they can multiply

operands of any size as long as there exist enough resources for storage. Naturally, the sequential designs have

higher latency compared with the combinational designs. On the other hand, pipelining and using fast methods

such as the KO method can improve the performance of sequential designs. This paper presents single and

multiple precision sequential large multiplier designs that explore this niche. The proposed designs decompose

the large operands and use the KO algorithm to multiply the suboperands. The designs are pipelined to achieve

maximum clock frequency. Both of them can generate full size products and this function is not even mentioned

in most of the previous work; 256-bit, 512-bit, 1024-bit, and 2048-bit implementations of the proposed designs

are mapped on FPGAs. The synthesis results are compared against the synthesis results given in previous large

multiplier implementations. The rest of the paper is organized as follows: Section 2 presents the sequential large

multiplication method and its implementation, Section 3 presents the multiple precision large multiplication

method and its implementation, Section 4 gives delay and hardware usage results, and Section 5 presents the

conclusion.

2. The sequential large KO multiplication (SLKOM)

The SLKOM algorithm first performs suboperand multiplications and then adds their products. A brief

explanation for the decomposition method is given in the following: assume that w -bit large operands A and

B are decomposed into n -bit suboperands. A and B can be expressed as the summation of the suboperands
as:

A =

p−1∑
i=0

Ai · 2ni, B =

p−1∑
j=0

Bj · 2nj (1)

where Ai and Bj represent ith and jth suboperands of A and B , respectively, and p represents the number

of suboperands and is computed usingp =
⌈
w
n

⌉
. The multiplication of Ai and Bj generates a 2w -bit product,

M , which can be also expressed as the sum of the suboperand multiplications as:

M =

p−1∑
i=0

p−1∑
j=0

Ai ·Bj · 2n(i+j) (2)

The computation of M using (2) requires p2n-bit multiplications and (p2 − 1)2n-bit additions.

The decomposition method is modified for KO implementation as follows: let A2i+1A2i and B2j+1B2j

be 2n-bit suboperands obtained by concatenating n-bit sub-operands A2i , A2i+1 and B2j , B2j+1 , respectively.
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Eq. (1) is rewritten as:

A =

p/2−1∑
i=0

[A2i + 2nA2i+1] · 22niB =

p/2−1∑
j=0

[B2j + 2nB2j+1] · 22nj (3)

Three terms are defined using the suboperands as:

P (2i, 2j) = A2i ·B2j,P (2i+ 1, 2j + 1) = A2i+1 ·B2j+1

P (2i+ 1, 2j) + P (2i, 2j + 1) = [A2i+1 +A2i] · [B (2j + 1) +B 2j]− P (2i+ 1, 2j + 1)− P (2i, 2j)
(4)

Eq. (2) is rewritten using these terms as:

M =

p/2−1∑
i=0

p/2−1∑
j=0

[P (2i, 2j) + 2n+1((P (2i+ 1, 2j) + P (2i, 2j + 1)) + 22nP (2i+ 1, 2j + 1)] · 22n(i+j) (5)

The computation of M using Eq. (5) requires 0.5p2n-bit multiplications, 0.25p2n + 1-bit multiplications, and

1.5p2 additions.

Algorithm 1 shows the steps and the data flow in time and space for the SLKOM. In this algorithm, ‘&’

represents the concatenation operation, {0}n−3 ’ represents a string of n− 3 zeros, and the subscript notation

‘x : p ’ represents the string of bits from position x to p . For example, M2n−1:n represents the bits from

positions 2n− 1 to n . The algorithm consists of two parts. The first part generates w less significant product

bits. The second part generates w more significant product bits when needed. The inner loop in the first part

is not iterated in time; the iterations in these loops show the inputs and outputs of the multipliers and adders.

For example, the multiplication, A0 · B0 , is performed by Multiplier at iteration 0, and the multiplication,

A0 · Bp−1 , is performed by Multiplier p − 1 at iteration 0. In the first part, each iteration of the outer loop

generates 2n bits of the product. In the second part, the loop shows how the carry and sum values (C and S)

are aligned and combined into two vectors, CN and SN , respectively. These vectors are added to generate w

more significant product bits.

3. Implementation of a SLKOM

Figure 1 shows the block diagram for the SLKOM. The design has two main parts. The first part has five

pipeline stages and when the pipeline is filled this part computes the less significant w -bits of the product in

p/2 cycles. Moreover, an extra cycle is needed between large multiplications to reset the registers that hold

values left by the previous multiplication. The second part is called “Align and add stage” and it computes the

more significant w bits of the product. The units and their functions in all stages are explained as follows:

Stage 1: In this stage, two w -bit registers, R1 and R , are used to store operands A and B , respectively.

R1 is a right-shift register, which shifts 2n bits in each cycle. Moreover, in the first stage p/2 + 1n -bit adders

perform the additions(A2j +A2j+1), (B0 +B1), (B2 +B3) . . . (Bp−4 +Bp−3), (Bp−2 +Bp−1).

Stage 2: In the second stage, the even numbered n -bit multipliers multiply the suboperand A2j by

the suboperands B0B2, . . . Bp−4Bp−2 . The product generated by an even numbered n -bit multiplier j is

represented as PLj . The odd numbered n -bit multipliers multiply the suboperand A2j+1 by suboperands

B1B3, . . . , Bp−3Bp−1 . The product generated by an odd numbered n -bit multiplier j is represented as PHj .
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Algorithm 1. Sequential KO large multiplication.
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Figure 1. Block diagram for the sequential KaratsubaOfman large multiplier.
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ŞENTÜRK and GÖK/Turk J Elec Eng & Comp Sci

PLL0PHL0 PLH0PHH0

PMH0 PML0

PLL1PHL1 PLH1PHH1

PMH1 PML1

S 2(1)

C2(1)

S 3(1)S 4(1) S 1(1) S O(1)

C3(1) C1(1) CO(1)

PLL2PHL2 PLH2PHH2

PMH2 PML2

PLL3PHL3 PLH3PHH3

PMH3 PML3

S 2(1)

C2(1)

S 3(1)S 4(1)

C3(1) C1(1)

S 2(2)

C2(2)

S 3(2)S 4(2) S 1(2) S O(2)

C3(2) C1(2) CO(2)

MOA 0MOA 1MOA 2MOA 3MOA 4

1st

Iteration

2nd

Iteration

C4(1)

C4(1)

PHH1

C4(2)

S 1(1) S O(1)

CO(1)

Figure 2. An example of addition of partial products.

Furthermore, p/2(n + 1)-bit multipliers multiply the outputs of the adders generated in Stage 1. The output

of the first adder, R1S , is multiplied by the outputs of the adders, RSj s. The products generated by these

multiplications are represented as PTj s.

Stage 3: This stage consists of p/2 3-operand subtractors. Each subtractor j computesPMj =

PTj − PHj − PLj .

Stage 4: This stage consists of p multioperand adders (MOAs) that sum the products, PL , PM , and

PH , generated in the the previous stages and the outputs of MOAs generated in the previous cycle. The sum

and carry outputs of MOAj at cycle i are represented as Sj(i) and Cj(i). To align the inputs of the MOAs,

PL , PM , and PH values are further divided into low and high parts as PLL , PLH , PML , PMH , PHL ,

and PHH , respectively. MOA0 adds PLL0 , S2(i− 1), C1 (i− 1) and a carry bit, CT , which is generated by

the adder located in Stage 5. MOA1 adds PML0 , PLH0 , S3 (i− 1) and C2(i − 1). The rest of the MOAs

except MOAp have five inputs. The even numbered MOAs add PLLj/2 , PMHj/2−1 , PHLj/2−1 , Sj+2 (i− 1)

and Cj+1(i − 1); the odd numbered MOAs add PML(j−1)/2 , PLH(j−1)/2 , PHH(j−3)/2 , Sj+2(i − 1), and

Cj+1(i−1), where 2 ≤ j ≤ p−1. MOAp adds PHLp/2−1 and PMHp/2−1 . All MOAs generate 3-bit carries.

Example 1 Figure 2 shows an example for the alignment and addition of MOA inputs. It is assumed that there

are five MOAs and the partial products are generated by the multiplication of operands A = A(3)A(2)A(1)(A0)

and B = B(3)B(2)B(1)B(0) . The Sj(i) and Cj(i) values represent the sum and carry outputs of a MOA j at

the iteration i , respectively. S1(i), S0(i) , and C0(i) are added in the fifth stage. PHH3 and C4(2) are added

in the next iteration.

Stage 5: This stage consists of an n -bit adder and a w -bit right-shift register (R2). In every cycle,

2n bits of the product are generated by adding S1(i − 1) and C0(i − 1), and concatenating their sum with

S0(i − 1). The sum output of this adder is shifted into R2. The carry-out of the n-bit adder, CT , is added

by the MOA0 in Stage 4. After p/2 iterations, the w -bit right shift-register, R2 holds the less significant half
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of the product. Then, Si s and Ci s generated in this stage can be used to calculate the more significant half of

the product in the “Align and add stage”.

Align and add stage: This stage is independent from the pipelined structure. The align and add stage

can compute the w more significant bits of the product while the first part is multiplying another large operand.

The w -bit CPA located in this stage adds Sp+1:2 s and Cp:1 vectors with the carry bit CT . This addition can

also be carried sequentially as long as the delay for the computation is less than the delay for the first part. By

this way a smaller adder than the current one can be used in the implementation.

4. Implementation of a multiple-precision SLKOM (MPSLKOM)

The SLKOM design can also be used to perform low precision multiplications. For example, a 2048-bit SLKOM

can multiply operands smaller than 2048 bits by setting the unused inputs to zeroes and decreasing the number

of iterations. However, this method is not very efficient, since the hardware that processes the zero inputs

does not really contribute to the computation. This problem is solved by modifying the SLKOM design. The

modified design is called MPSLKOM.

Figure 3 shows the block diagram for the MPSLKOM design. Similar to the SKOLM implementation,

the design has five pipeline stages. Each stage consists of k blocks that can process (w/k)-bit operands. At

the lowest precision, each column functions as an independent (w/k)-bit multiplier and executes k parallel

multiplications. When the operand precision is doubled, columns are paired and each pair of columns functions

as a (2w/k)-bit multiplier. At the highest precision, all the columns are combined and function as a single

w -bit multiplier. In general, the MPSLKOM design can multiply (cw/k)-bit operands, where c is any power

of 2 that is less than or equal to k . The precision of the multiplier is set by using the control signal sp .

In general, the logic design of the MPSLKOM is almost identical to the logic design of the SLKOM. Thus,

only the details of the modified stages are shown in Figure 4. The logic designs of the blocks in Stages 2 and 3

are exactly the same as the logic design of the SKOLM’s Stages 2 and 3. In Figure 4 [t−1] and [t+1] represent

the previous and the next blocks, respectively. The details of the modifications are explained as follows:

Stage 4: As in the SLKOM implementation, an array of MOAs is used to perform the addition of

partial products and the outputs of MOAs generated in the previous cycle. In the MPSLKOM implementation,

the MOAs 0, 1, p− 2 and p− 1 are modified. They have extra inputs designated by dotted and dashed boxes.

The extra inputs are mutually exclusive. The dotted boxes show the extra inputs that exist only in block 0 or

block −1 ; the dashed boxes show the extra inputs that exist in the rest of the blocks. The multiplexers in the

boxes select one of the two input signals based on the precision of the operands. As explained above, the blocks

are combined when the precision is increased. The details of the modifications made in the MOAs are given in

the following:

• MOA0 : The first input of MOA0 is always CT in block 0. It can be either CT or 0 in the other blocks.

When the blocks are combined, the first input of the MOA0 is CT in the right most block of the group,

and it is 0 in the other blocks of the group. The second input exists in blocks 1 to k − 1. When the

blocks are combined, the second input of the MOA0 is 0 in the right-most block of the group, and it is

[t− 1](Cp&Sp) in the other blocks of the group.

• MOA1 : The first input of this adder exits in blocks 1 to k− 1. When the blocks are combined, the first

input of the MOA1 is [t− 1]Sp+1(i) in the right most block of the group, and it is 0 in the other blocks

of the group.
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• MOAp−2 : The second input of this adder in block k − 1 is Sp(i − 1). In blocks 0 to k − 2, when the

blocks are combined, the second input of the MOAp−2 is Sp(i − 1) in the left most block of the group,

and it is [t+ 1]S0(i− 1) in the other blocks of the group.

• MOAp−1 : The first input of this adder in block k − 1 is Cp(i − 1). It can be either Cp(i − 1) or

[t + 1]C0(i − 1) in the other blocks. When the blocks are combined in a group, the first input of the

(MOAp−1) is Cp(i− 1) in the left most block of the group, and it is [t+ 1]C0(i− 1) in the other blocks

of the group. The second input of the (MOAp−1) in block k − 1 is Sp+1(i − 1), and it can be either

Sp+1(i− 1) or [t+1]S1(i− 1) in the other blocks. When the blocks are combined, the second input of the

MOAp−1 is Sp+1(i− 1) in the left most block, and it is [t+ 1]S1(i− 1) in the other blocks of the group.

Stage 5: The block of this stage consists of an n-bit adder and a (w/k)-bit right shift register R2. In

each cycle, 2n bits of the product are generated by adding S1(i− 1) and C0(i− 1) and concatenating the sum

with S0(i− 1). This value is shifted into R2. The carry-out of the adder is added by the MOA0 . In blocks 0

to k− 2, when the blocks are combined, the stored value is changed to R20(i+1) in the left most block of the

group, and it is kept the same in the other blocks of the group.

Align and add stage: Similar to the SLKOM design, the blocks in this stage are independent from

the blocks in the pipelined part. The blocks contain (w/k)-bit adders that compute the more significant half

of the products. The inputs of the n -bit adder are modified as follows: the first input is CT in block 0. It can

be either CT or [t − 1]CO in the other blocks. When the blocks are combined, the first input is CT in the

right most block of the group, and it is [t− 1]CO in the other blocks of the group. In block k − 1, the second

input is Sp+1:2 . In blocks 0 to k− 2, when the blocks are combined, the second input is Sp+1:2 in the left most

block of the group, and it is [t+1]S1:0&S2p−1 in the other blocks of the group. The third input is the same in

all blocks. When the blocks are combined, the third input of the adder is aligned Cp:1 in the left most block of

the group and it is 0&Cp−1:1 .

5. Results

This section presents the syntheses results for the SLKOM and the MPSLKOM implementations and their

comparisons with previous large multiplier designs. VHDL models for the implementations of the proposed

designs are written. The functional verification of all models is tested by exhaustive simulation. The models are

synthesized using Xilinx ISE tool set and mapped on Virtex FPGAs. For all syntheses the models are optimized

for speed and the target FPGA speed grades are set to –2.

Table 2 presents the comparison between the standard sequential large multiplier (SSLM) implementa-

tions presented in [12] and the SLKOM and MPSLKOM implementations presented in the present study. VHDL

models of these implementations are mapped on Virtex 5 xc5vfx100t FPGAs. The columns in Table 2 show the

operand sizes, the multiplier types, the number of clock cycles, the delays in nanoseconds, and the number and

utilization percentages of registers, LUTs, and DSPs. In [12], the clock periods for all SSLM implementations

are given in the range of 4.143 to 4.157 ns. The clock periods for all SLKOM and MPSLKOM implementations

are equal to 4.159 ns. The total delay for each implementation is equal to (p/2 + 1) clock periods, where p

is the number of the suboperands. The delay for the “Align and add stage” is not taken into account for the

calculation of the total delay since this stage is independent from the other stages and it can run while the

other stages perform the next large multiplication. The SLKOM and MPSLKOM implementations use more
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hardware resources and require fewer cycles to generate the product than the SSLM implementations. The

synthesis results show that the SLKOM implementations are 2.11 to 2.23 times faster and use 55% to 59% more

DSP slices than the SSLM implementations. The MPSLKOM implementations have up to 3% more register

and LUT utilization compared to the SLKOM implementations, while both designs’ implementations use the

same number of DSP slices.

Table 2. Comparison of the SSLM, SLKOM, and MPSLKOM implementations (Virtex 5).

Size Type Cycles Delay (ns)
Register LUT DSP
Num. Ut.% Num. Ut.% Num. Ut.%

512

SSLM 38 157.434 2732 4% 2125 3% 31 12%
SLKOM 17 70.703 6248 10% 3913 6% 48 19%
MPSLKOM 14 70.703 6445 10% 4217 7% 48 19%

1024

SSLM 71 294.508 5342 8% 4165 7% 61 24%
SLKOM 33 137.247 12392 19% 7801 12% 96 38%
MPSLKOM 33 137.247 12931 20% 8603 13% 96 38%

2048

SSLM 137 569.509 10562 16% 8245 12% 121 47%
SLKOM 65 270.335 24680 39% 15609 24% 192 75%
MPSLKOM 65 270.335 25903 40% 17180 27% 192 75%

STAGE 1 STAGE 1 STAGE 1 STAGE 1

STAGE 3 STAGE 3 STAGE 3 STAGE 3

STAGE 4 STAGE 4 STAGE 4 STAGE 4

STAGE 5 STAGE 5 STAGE 5 STAGE 5

BLOCK k − 1
A. & A. STAGE

BLOCK k − 2
A. & A. STAGE

BLOCK 1
A. & A. STAGE

BLOCK 0
A. & A. STAGE

sp w/k bits

w bits

2w/k bits

w/k bitsw/k bits

2w/k bits

w/k bits

BLOCK k − 1 BLOCK k − 2 BLOCK 1 BLOCK 0

BLOCK k − 1 BLOCK k − 2 BLOCK 1 BLOCK 0

BLOCK k − 1 BLOCK k − 2 BLOCK 1 BLOCK 0

BLOCK k − 1 BLOCK k − 2 BLOCK 1 BLOCK 0

STAGE 2 STAGE 2 STAGE 2 STAGE 2
BLOCK k − 1 BLOCK k − 2 BLOCK 1 BLOCK 0

Figure 3. Block diagram for the multiple-precision sequential KaratsubaOfman large multiplier.
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Table 3 presents a comparison of the SLKOM implementations with the previous implementations. Since

the previous designs were mapped on different Virtex FPGAs, to make fair comparisons, 256-bit and 512-bit

SLKOM implementations were mapped on the same models of Virtex 2, Virtex 4, and Virtex 5 families. The

256-bit SLKOM implementation had better delay than the referenced previous implementations, except the

ones presented in [7] and [11]. Compared with the 256 by 256 SKOLM, the 221 by 221 design reported in

Athow and Al-Khalili [7] was 2.75 times faster and used 7 times more DSPs; the 51 by 192 design reported in

Gao et al. [11] was 2.64 times faster and used the same number of DSPs. On the other hand, at least six 51

by 192 multipliers are needed to multiply 256-bit operands. The register usage values for most of the previous

implementations have not been reported, and thus this parameter is not shown in the resource usage column.

However, the pipelined designs are expected to use much more registers than the combinational designs. The

register utilization percentages for 256-bit SLKOM implementations are roughly 5% for all Virtex 5 platforms.

Table 3. Comparison of SLKOM with previous implementations.

Presented in FPGA Size Hardware Delay
Quan et al., [5] Virtex2 256 × 256 17564 Slices 380
SLKOM Virtex2 256 × 256 2539 Slices, 24 18 × 18 Mults 67
Jaiswal and Cheung, [10] Virtex4 130 × 130 2685 Slices 24 DSPs 47
Athow and Al-Khalili, [7] Virtex4 221 × 221 60000 Slices 169 DSPs 16
SLKOM Virtex4 256 × 256 2541 Slices 24 DSPs 44
Gao et al., [11] Virtex5 51 × 192 1150 LUTs 24 DSPs 14
Senturk and Gok, [12] Virtex5 256 × 256 816 LUTs 16 DSPs 78
SLKOM Virtex5 256 × 256 2018 LUTs 24 DSPs 37

Table 4 presents the syntheses results for MPSLKOM 512-bit, 1024-bit, and 2048-bit implementations

on Virtex 5 xc5vfx100t FPGAs. The table presents the following values for each supported precision: the

total number of cycles per multiplication, the number of parallel multiplications, the total delay for a single

operation, and the delay per multiplication. For each implementation, the minimum operand precision is 256

bits, the delay/multiplication is calculated by dividing the delay for a single multiplication by the number

of parallel multiplications. The results show that the 2048-bit MPSLKOM’s delay/multiplication is less than

the delay/multiplication of the fastest 256-bit combinational multiplier’s delay/multiplication [10]. The 2048-

bit implementation can also perform 512-bit, 1024-bit multiplications 4 and 2 times faster than an SLKOM

implementation, respectively. In general, all the MPSLKOM implementations have higher throughput than the

SLKOM implementations in low precision operation modes. Since a small amount of extra hardware is enough

Table 4. Synthesis results for MPSLKOM implementations.

Max Size Size Cycles # Muls. Delay (ns) Delay/Mult

512
256 9 2 37.431 18.716
512 17 1 70.703 70.703

1024

256 9 4 37.431 9.358
512 17 2 70.703 35.352
1024 33 1 137.247 137.247

2048

256 9 8 37.431 4.679
512 17 4 70.703 17.676
1024 33 2 137.247 68.624
2048 65 1 270.335 270.335
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Figure 4. Details of the blocks in the MPSLKOM.

to convert an SLKOM to a MPSLKOM, they are expected to be preferred more than the SLKOMs. Note that

instead of a MPLSKOM, multiple low precision SLKOMs can be mapped on an FPGA by using approximately
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the same amount of hardware, but those low precision SLKOMs cannot be used to multiply higher precision

operands.

6. Conclusion

This paper presented single and multiple precision sequential large multiplier designs for FPGAs (SLKOM and

MPSLKOM). Both designs offer significant hardware savings compared with combinational designs, and thus,

much larger sequential implementations than the combinational ones can be mapped on FPGAs. For example,

2048-bit SLKOM and MPSLKOM implementations use 75% DSP slices of a Virtex 5 FPGA. We modeled and

synthesized 256-bit to 2048-bit implementations of SLKOM and MPSLKOM designs. The syntheses results show

that the speed disadvantage of the sequential implementations can be solved by increasing the throughput. This

can be observed from the results of MPSKOLM implementations. For example, the delay per multiplication for

a 2048-bit MPSLKOM implementation was 4.679 ns at 256-bit multiplication mode, which was less than the

delay for the fastest combinational implementation. The 2048-bit MPSLKOM implementation can also perform

two 1024-bit multiplications and four 512-bit multiplications in parallel.
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