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Abstract: In communication systems, the channel noise is usually assumed to be white and Gaussian distributed.

Therefore, an optimum receiver structure designed for the additive white Gaussian noise (AWGN) channel is employed

in applications. However, in wireless communication systems, noise is often caused by strong interferences. Moreover,

there are other effects such as phase offset that degrade the performance of the receiver. Designing the optimum

receiver for different channel models is difficult and not reasonable because channel model and channel statistics are
not known at the receiver. In this paper, we propose a neural network-based approach to demodulate the transmitted

signal over unknown channels. Naturally, the collection of the training data, design and training of the neural network,

and finally reconfiguration of the system according to the designed neural network are implemented on software-defined

digital signal processing facilities. In particular, we show that the proposed receiver is capable of jointly canceling

the strong interferences and phase offset. Simulation results in various signal environments are presented to illustrate

the performance of the proposed system. It is shown that the proposed approach has the same performance as the

correlation demodulator structure for AWGN channels, while it has a clear advantage for unknown channel models.

Moreover, it is shown that the neural network-based receiver may be used for channel estimation and equalization over

Rayleigh channels. Numerical results indicate that the performance of the proposed receiver is very close to the Rayleigh

theoretical bound.

Key words: Neural network demodulator, software-defined radio, phase offset, interference, demodulation, Rayleigh

fading channels

1. Introduction

Software-defined radio (SDR) is a very popular approach for improving the performance of conventional radio

systems without requiring costly and time-consuming changes to physical hardware [1]. SDR is an adaptive

solution for making communication systems flexible. The ideal SDR leads to a revolution in the design of the

receiver with respect to the conventional receiver. In other words, SDR is a radio fully programmable in the

baseband stage and entirely implemented digitally, so that it can be completely reconfigurable via software by

employing digital signal processors (DSPs) [2]. The design of SDR-based receivers brings out exciting design

challenges, particularly in energy-efficient communication systems [3]. SDR systems consist of analog-to-digital

converter (ADC) and digital-to-analog converter (DAC) components. They transform baseband signals into

passband signals at the transmitter. At the receiver, SDR generates samples of the baseband discrete time

signal. Therefore, different intelligent computation techniques such as neural networks could be employed

within these structures to improve the performance of the receivers. As in [4], one possible solution to apply a
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neural network-based demodulator is using a USRP (Universal Software Radio Peripheral) that is a flexible and

affordable transceiver where the frequency range is 50 MHz to 2.2 GHz with frequency accuracy of 2.5 ppm.

It has maximum instantaneous real-time bandwidth 16-bit sample width for 20 MHz while the maximum I/Q

sampling rate is 16-bit sample width for 25 MS/s.

An information processing paradigm inspired by biological nervous systems is called the artificial neural

network (ANN). It is applied to solve specific problems by using interconnected processing elements (neurons)

working in unison [5]. Neural networks can be used to solve different types of problems with their remarkable

ability to derive meaning from complicated or imprecise data [6,7]. Neural networks (NNs) play important roles

in many engineering areas such as control, biomedical, electronics engineering, and recently communication engi-

neering areas [8]. They are generally used to approximate unknown nonlinear functions by using their universal

approximation, learning, and adaptation abilities. Active research has been done in NNs for communication

systems [9,10] and several NN approaches have been proposed to design receivers [11–15]. In [11], despite using

a large number of hidden neurons, the proposed NND (neural network demodulator) is shown to be suboptimal.

Two other similar studies [12,13] and some more recent studies [14,15] considered the demodulation of digital

modulated signals, such as amplitude shift keying (ASK) and quadrature amplitude modulation (QAM), and

the performance of the system was only demonstrated by means of the learning curve of the NN. In [14,15]

the authors utilized more complicated structures such as an Elman artificial NN and time-delay NN, and they

stated that relatively large numbers of hidden layer neurons are required. In the above studies, the demodu-

lation performance of the proposed NN-based systems was not investigated in terms of bit error rate (BER)

as compared to theoretical BER curve of the respective modulation type. In addition, the parameters of the

communication systems such as the effect of the noise level at the received signal, the number of pilot tones,

and the effect of fading channel were not considered in these previous studies.

In our proposed NND system, the most simple and basic NN structure is used with only one hidden layer

neuron. The performance of the proposed system is evaluated on both additive white Gaussian noise (AWGN)

and Rayleigh channel conditions. Interfering signals are considered while evaluating the BER performance of

the NN-based demodulator. We show that our proposed system approaches the optimal solutions obtained by

the correlation receiver for AWGN channels. Our results for different channel imperfections are compared to

theoretical BER limits of the BPSK modulation for AWGN and Rayleigh channels.

It is well known that reliable coherent data detection is not possible unless an accurate channel state

information is available at the receiver [16]. In general the AWGN channel is considered to model the noise

effects in wireless communication systems. However, in wireless communication systems, a strong interferer,

which is colored in nature, dominates the noise model. For example, using various communication systems

simultaneously occupying the current frequency spectrum leads to problems of interference between systems.

Therefore, if interference is unavoidable, it causes high performance degradation at the receiver [17] and it has

to be estimated and compensated [18].

Another undesired effect at the receiver is the phase offset that has to be recovered to improve the system

performance. Therefore, it is necessary to obtain an estimate of the phase offset of the channel and then to

rotate the symbols by this phase offset [19]. In the literature, corrupting effects such as interference and phase

offset are investigated separately, and each problem introduces additional complexity at the receiver. It is clear

that, in practice, all undesired effects have to be jointly considered and compensated at the receiver, hence

increasing the computational burden.

In order to deal with the demodulation problem of transmitted signals over unknown channels where
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there are different types of undesired effects, we propose a NN-based SDR receiver that uses existing pilot tones

for the training procedure.

Our goal is to develop a NN-based receiver that will account for the unknown random effect due to the

presence of unknown interference and enable statistically efficient demodulation using a small number of pilot

tones.

The rest of the paper is organized as follows. Section 2 introduces a conventional optimum receiver for

the AWGN channel and then formulates the theoretical lower bound for BPSK modulations. Section 3 describes
the proposed NN demodulator and our main assumptions concerning data transmission and channel model. We

propose an improved receiver in the case of unknown channels. Section 4 illustrates the performance of the

proposed receiver over different channel environments by means of computer simulations. Finally, Section 5

concludes the paper.

2. Conventional optimum receiver for AWGN channels

We assume that the transmitter sends digital information by using BPSK signal waveforms {s1 (t) s2 (t). Each
waveform is transmitted within the symbol interval of duration T , 0 ≤ t ≤ T and the channel is assumed to

corrupt the signal by introducing the AWGN.

r (t) = sm (t) + η (t) 0 ≤ t ≤ T,m = 1, 2 (1)

Here, r (t) is the received signal, sm (t) is the transmitted signal, and η(t) denotes a sample function of AWGN

process with power spectral density Sn (f) = N0/2 where N0 is the noise spectral density. The sm (t) signals

and corresponding basis function could be written as:

s1 (t) =

√
2Es

T
sin(2πfct) =

√
Esϕ(t), (2)

s2 (t) = −
√

2Es

T
sin(2πfct) = −

√
Esϕ(t), (3)

ϕ (t) =

√
2

T
sin(2πfct), (4)

where Es is the symbol energy and is assumed as Es = 1.

The main goal is to design a receiver that is optimum in the sense that it minimizes the probability of

making an error for the conventional receiver. Therefore, the optimum receiver could be easily derived by using

the maximum a posteriori probability (MAP) decision rule. In Figure 1, the optimum receiver is given. In

this case, the theoretical bound for BPSK signaling could be written as follows [16] by using the constellation

diagram given in Figure 2 while assuming that prior probabilities of transmitted symbols are equal.

Pb = Q

(√
2Eb

N0

)
(5)

Here, Eb is the bit energy and equals the symbol energy Es , and standard error function Q(.) is given as:

Q(x) =
1√
2π

∫ ∞
lim
x

e−
t2

2 dt. (6)
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The optimum receiver designed for AWGN will be called a correlation receiver for the rest of the paper because

it is not optimum for unknown channels.
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Figure 1. Correlation receiver for AWGN channel. Figure 2. Constellation diagram of BPSK signals.

3. Proposed receiver

The proposed NND takes samples of the received signal in one symbol duration. A feedforward ANN is trained

for all possible inputs of MPSK modulation symbols and the noise scenarios of the channel [20]. Then, by using

this ANN, the transmitted data are detected by finding the maxima of the ANN outputs.

3.1. Input training data set generation

The input training data set is generated by considering the transmitted sequences between 0 and M – 1

periodically. Sequential and periodical transmission is preferred to guarantee and control presentation of each

symbol equally in the input training data set. As sr [n] represents the received signal, sm [n] represents the

information signal in one symbol period, η [n] represents the channel noise, and sinusoidal formed MPSK signals

are represented as follows for a fixed signal-to-noise power ratio (SNR):

sr [n] = sm [n] +η [n] r = 0, 1, . . .M − 1. (7)

The received symbols are represented as:

sr =


sr(0)
sr (1)

...
sr(Nf − 2)
sr(Nf − 1)


Nf×1

r = 0, 1, . . .M − 1. (8)

Nf is the number of samples in one symbol period. Unity input training data matrix Su is generated by

combining these M column vectors for M’ary modulation level:

Su =
[
s0 s1 · · · sM−2 sM−1

]
Nf×M
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=


s0(0)
s0(1)
· · ·

s0(Nf − 2)
s0(Nf − 1)

s1(0)
s1(1)
· · ·

s1(Nf − 2)
s1(Nf − 1)

· · ·
· · ·
· · ·
· · ·
· · ·

sM−2(0)
sM−2 (1)

· · ·
sM−2(Nf − 2)
sM−2(Nf − 1)

sM−1(0)
sM−2(1)

· · ·
sM−1(Nf − 2)
sM−1(Nf − 1)


Nf×M

. (9)

By repeating this unity set K times for each level of the random channel noise ηl [n] , l = 1, 2, . . . , L , we aim to

get enough necessary data diversity for successful NN training where L is the total number of levels. After this

process, the input training data set is expressed as follows:.

Su,l =
[
S1
u,l S2

u,l · · · SK−1
u,l SK

u,l

]
Nf×[M×K]

l = 1, 2, . . . , L, (10)

where l represents the noise level.

Finally, the complete input training data set St is obtained as:

St =
[
Su,1 Su,2 · · · Su,L−1 Su,L

]
Nf×[M×K×L]

. (11)

3.2. Target data set generation

To generate target training data sets, 1 is used to represent expected output values and –1 for others. These

numbers represent numerically the answer of the question: “Are the transmitted data detected?” The answer

YES is represented by 1 where the answer NO is represented by –1. The target training data sets of a single NN

having M output are given. Each column vector detects a single symbol reception relatively from 0 to M − 1.

t0 =



1
−1
−1
...

−1
−1


M×1

t1 =



−1
1

−1
...

−1
−1


M×1

. . . t(M−1) =



−1
−1
−1
...

−1
1


M×1

(12)

“Unity” target training data set Tu is generated by collecting/combining these M column vectors for M’ary

modulation level.

Tu =
[
t0 t1 · · · tM−2 tM−1

]
M×M

=


1

−1
−1
· · ·
−1
−1

−1
1
−1
· · ·
−1
−1

· · ·
· · ·
· · ·
· · ·
· · ·

−1
−1
−1
· · ·
1
−1

−1
−1
−1
· · ·
−1
1


M×M

(13)

By repeating this unity set K times for each level of the random channel noise ηl [n] , l = 1, 2, . . . , L , we aim

to get enough necessary data diversity for successful NN training. Similarly, the unity target training data set

repeats itself K times:

Tl =
[
T 1
l T 2

l · · · TK−1
l TK

l

]
M×[M×K]

l = 1, 2, . . . , L. (14)
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Finally, target training data set T is obtained as follows:

T =
[
T1 T2 · · · TL−1 TL

]
M×[M×K×L]

. (15)

3.3. Neural network demodulator design

Feedforward multilayer NNs are used to design the proposed NND. The total number of samples in one symbol

period is selected as Nf = 16. This means that the designed NND has 16 inputs. A single hidden layer neuron

is used for comparison, and two output layer neurons are used for symbol detection in BPSK. Two hidden layer

neurons are used for comparison, and M output layer neurons are used for symbol decision for higher PSK levels.

NND hidden layer neurons are selected by considering the I-Q (in-phase and quadrature-phase) demodulator’s

correlation processing complexity. A single correlation process is sufficient for BPSK. However, two correlation

processes are necessary to obtain in-phase and quadrature-phase components for higher levels of MPSK. These

two correlation processes’ complexities are equal to the multiplication of NN inputs by weights of two neurons.

The remaining part of the NND demodulator needs 2 times (weights of each output neuron) M multiplication,

but the I-Q demodulator needs higher complexity to filter higher harmonics of sinusoidal multiplication of

correlation processes. By assuming the equality of the constellation diagram mapping complexities of each case,

it may be concluded that the NND has lower complexity than the I-Q demodulator.

There are many possible activation functions in NNs. In our extensive experimental studies, we observed

that the tangent sigmoid transfer function gives the best results for both layers (Figure 3). We also observed

that Levenberg–Marquardt optimization yields the best results to train the designed network. Therefore, in

the proposed structure, tangent sigmoid transfer functions are used for both layers and Levenberg–Marquardt

optimization is employed to train the designed network.

∑ tansig ()

∑ tansig()

∑ tansig()

bias

. . .

Input 1

Input 2

Input 3

Input 15

Input 16

Output 1

Output 2

Hidden Layer Output Layer

bias

bias

Figure 3. Proposed neural network structure for BPSK.

4. Simulation results

This section presents the results of computer simulations of the proposed methods for different channel envi-

ronments. One of the most important things is the number of pilot symbols. The other is the selection of the

SNR level to generate the training data set. These are detailed in Section 4.3. According to the examined
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results, the number of pilot tones is selected as 2048 and training data set generation SNR levels are 0 dB in

Sections 4.1, 4.2, and 4.4. The proposed operational data frame structure is given in Figure 4 and imagination

of the possible implementation strategies and some calculations are left to the reader and future works. The

practical issues such as hardware specifications and necessities for the training sequence collection and training

environment are also left for future studies in the field. The main objective of this study is to justify the use of

NNs as demodulators and their performance results over some known and unknown channels.

Pilot 

Symbols
Data Symbols

Pilot 

Symbols
Data Symbols

Training duration

for NN

Trained NN is employed

for the signal detection

NN is updated 

by new traning sequence

Figure 4. Frame structure for NN receiver.

Symbol period is chosen as T = 0.01s and the carrier frequency is chosen as fc = 100Hz . Sampling

time is chosen as Ts = 1/1600 s to generate Nf = 16 samples for each symbol.

4.1. AWGN channel case

First we investigate the performance of the proposed scheme by employing BPSK modulation over the AWGN

channel. Figure 5 shows the BER performance of the proposed receiver. As such, we also included the

performance of the optimum receiver and the theoretical bound of BPSK demodulation for the AWGN channel.

It is shown in the figure that the proposed NN receiver achieves the same performance as the optimum receiver

for the AWGN channel.
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Figure 5. BER comparison of proposed receiver and correlation receiver for AWGN channel.

4.2. Multiinterference Case

To test the performance of our receiver over other channel environments, interfering signals are added to the

transmitted signal and error performance is evaluated. The signal model is revised as:

r (t) = sm (t) + η(t) + i1(t) + i1(t), (16)
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while i1(t) = α1cos(2πfct+ ϕ1) and i2(t) = α2cos(2πfct+ ϕ2). The frequencies of the interferences are chosen

to be the same as the carrier frequency to make them difficult to be eliminated by conventional filtering methods.

The amplitudes and the delays of the interferences are selected arbitrarily as demonstrated in Figure 6. It is

again observed that the proposed SDR receiver based on a NN has a compatible performance with the theoretical

bound of the AWGN channel. It is shown in Figure 7 that the proposed NN-based SDR receiver outperforms

the existing correlation receiver that does not account for the interference. It exhibits a gain of about 2 dB over

the correlation receiver. It is also shown that the performance difference between the proposed and correlation

receivers increases for higher SNR values.
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Figure 6. Multiple interference addition. Figure 7. BER comparison of proposed receiver and

correlation receiver for multiple interferers.

4.3. Multiinterference and phase offset case

It is not practically possible to make the receiver phase offset exactly match the transmitter. A difference in

the phase of the local oscillators in the transmitter and receiver causes the uncertainty at the receiver. Since

the phase offset result in a time-varying rotation of the data symbols, it causes a large performance decrement

in terms of BER. In the presence of phase offset, additive noise, and multiple interferences, the received signal

at the receiver is:

r (t) = sm (t) ej(θ0) + η [t] + i1(t) + i2(t), (17)

where θ0 is the phase offset and is selected as θ0 = π/8. At the receiver, phase offset of the channel should be

estimated and compensated while canceling the interference simultaneously.

It is again observed that the proposed SDR receiver can reach a compatible performance with the AWGN

theoretical bound. The performance of the NND is affected by two issues: the training data set SNR level and

the number of pilot tones. The SNR level of the training sequence should be carefully selected to optimize

the number of required pilot symbols. When the training SNR is closer to zero, better performances are

achieved with fewer pilot tones. On the other hand, when the training SNR set is chosen with a small noise
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level (SNR> 5dB), the performance degrades for the same number of pilot tones because NN learning ability

is directly related to data diversity. Figures 8–10 show the proposed receiver’s performances for 256, 1024,

and 2048 pilot tones at 10 dB measurement level. On the other hand, the training SNR effect will diminish

when the total number of pilots is increased, as shown in Figure 10. Consequently, two conditions have to

be simultaneously satisfied to achieve a desired performance: in the training phase, the SNR level has to be

lower than 5 dB and preferably close to zero; and the necessary number of pilot tones has to be collected.

Between 0 and 5 dB, 2048 pilot tones are sufficient to reach the theoretical error bound. If we use 1024 pilot

tones, the differences between the theoretical bound and the NND performance are less than 1 dB for the same

interval. Even by using only 256 pilot tones, the NND performs about 2 dB better than the correlation receiver.

According to these results, it can be concluded that the NND may be used in practical SDR applications.
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Figure 8. Effect of the training data collection from

different SNR levels: it is obtained for 256 pilot symbols

and measured at 10 dB.

Figure 9. Effect of the training data collection from

different SNR levels: it is obtained for 1024 pilot symbols

and measured at 10 dB.

4.4. Rayleigh channel case

In a multipath environment, Rayleigh fading is a specific type of signal fading when there are many objects

in the environment that scatter the radio signal before it arrives at the receiver and there is no dominant

propagation along a line of sight between the transmitter and receiver. A Rayleigh fading channel can be

modeled by generating the real and imaginary parts of a complex number according to independent normal

Gaussian variables.

The Rayleigh fading effect caused by multipath reception has to be estimated and equalized at the

receiver. Therefore, channel estimation is a crucial part of the receiver structure and it is generally focused on

using pilot symbols. In practical systems, channel estimation is done for the pilot duration and the estimated

channel is employed to equalize the received signal for data duration. In [21], a channel estimation technique

based on multilayer perceptron NNs was proposed for a space-time coded MIMO-OFDM system. The simulation

results showed that the performance of the NN was better than that of least square and least mean square error

algorithms. In this section, pilot symbols are employed to train the NN-based receiver. Therefore, the NN

is trained for joint channel estimation and equalization processes. In other words, the NN receiver directly

calculates the necessary coefficients to equalize the received signals.
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The signal model is given as follows:

r (t) = h (t) .sm (t) + η(t), (18)

where the channel response h (t) has a Rayleigh distribution. In our simulations, a quasistatic Rayleigh channel

is considered where the channel remains constant for a block of transmission, and this constant within blocks

varies independently. A new NND is designed for each channel condition and its performance is calculated by

changing the AWGN noise level between 0 and 45 dB by 5 dB increments. The performances of all receivers are

tested for 2000 different channels and are displayed in Figures 11–13 for BPSK, QPSK, and 8PSK modulation

schemes, respectively. The NN structure used for QPSK and 8PSK is given in Figure 14. For each symbol,

128 pilot tones are sufficient for 4–8PSK levels at 0 dB training SNR level. Numerical results indicate that the

performance of the proposed receiver is very close to the Rayleigh theoretical bit error lower bound, which is

given by:
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Figure 10. Effect of the training data collection from

different SNR levels: it is obtained for 2048 pilot symbols

and measured at 10 dB.

Figure 11. Rayleigh channel performance results of NND

for BPSK.
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Figure 12. Rayleigh Channel performance results of NND

for QPSK.

Figure 13. Rayleigh channel performance results of NND

for 8PSK.
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Pb =
1

2

(
1−

√
(Eb/N0)

(Eb/N0) + 1

)
. (19)

∑ purelin() ∑ tansig()

∑ tansig ()

bias

. . .

In 1

In 2

In15

In 16

Out 1

Out M

Hidden Layer Output Layer

biasbias

Input Layer

purelin()∑

bias

input layer
weights

output layer
weights

. . .

Figure 14. The NN structure used for QPSK and 8PSK.

5. Conclusions

In this paper, we investigated the problem of signal demodulation in a practical wireless communication system

where the receiver has only access to a noisy estimate of the channel provided by training symbols. We

proposed a NN-based SDR receiver that takes into account the unknown channel model by training sequence.

Our numerical results indicated that the proposed receiver has the same performance as the correlation receiver

for the AWGN channel while it has a clear advantage for interference and phase offset channels. It was shown

that the proposed receiver could estimate and jointly cancel these undesired effects. Moreover, it was also

shown that the proposed receiver could be used for fading channels. This performance improvement is obtained

at the expense of additional complexity caused by the NN structure in the receiver. However, it is clear that

additional complexity is reasonable for practical systems while cancelation of these effects by many methods in

the literature requires more complexity, yet they are not capable of canceling these effects simultaneously. It is

also shown that there is a tradeoff between the total number of training symbols and the system performance.
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ÖNDER et al./Turk J Elec Eng & Comp Sci

[3] Amini M, Balarastaghi E. Universal neural network demodulator for software defined radio. International Journal

of Machine Learning and Computing 2011; 1: 305-310.

[4] Zhang W, Yao D, Yang M. Implementation of LTE-R transceiver and the performance with WINNER D2a channel

model. In: IEEE 5th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for

Wireless Communications; 29–31 October 2013; Chengdu, China. New York, NY, USA: IEEE. pp. 704-708.

[5] Patnaik AA, Dimitrios E, Mishra RK, Lyke JC. Applications of neural networks in wireless communications. IEEE

Antenn Propag M 2004; 46: 130-137.
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