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Abstract: This study determined the features of line, curve, and ridge structures in images using complex ripplet-I

and enabled extraction of blood vessel networks from retinal images through a complex valued artificial neural network

using those features. Forty color fundus images in the DRIVE database and 20 color fundus images in the STARE

database were used to test the success of the proposed system. In this study, a complex version of ripplet-I transform

was used for the first time. By presenting the directed image for the determination of the unique geometrical properties

of the vessel regions, complex ripplet-I transforms showing better performance than other types of multiresolution

analysis were combined with a complex valued ANN. The results in the study were reobtained using leave-one-out cross-

validation method with bagging technique in order to ensure the stability and correctness of the performance. In the

DRIVE database, the highest average accuracy of the system was found to be 98.44% for complex ripplet-I transform

and complex valued ANN. For the STARE database (labeled by Adam Hoover), highest average accuracy rates were

obtained as 99.25% for complex ripplet-I transforms and complex valued ANN. Similarly, for the other labeled data (by

Valentina Kouznetsova), highest average accuracy rates were obtained as 98.03% for complex ripplet-I transforms and

complex valued ANN.

Key words: Complex ripplet-I transform, complex valued artificial neural network, blood vessel extraction, DRIVE

database, STARE database

1. Introduction

The eye is one of the most important organs in the human body and provides vision and perception. Various

negative environmental or genetic factors might cause dysfunction or visual impairment in this organ. A great

majority of visual impairments stem from dysfunctions in structures and vessels in the retinal layer of the eye

over time. Therefore, to make the right diagnosis it is first necessary to obtain and analyze retinal images of

the patients. Identification of vessel distribution on retinal images, particularly through early diagnosis, has

primary importance in terms of preventing visual loss due to diabetic retinopathy disease. Blood vessels in

the eye should be identified for faster and more effective clinical studies. This has increased the importance of

designing systems that automatically extract blood vessel structures from retinal images.

In a study carried out by Akita and Kuga [1] in 1982, the researchers tried to identify vessel distributions

using connected pixels and geometric cycles. In 1996, the STARE (STructured Analysis of the REtina) database

was created by Goldbaum et al. [2] in order to form a basis for further studies of some of the data. Chutatape
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et al. [3] suggested a method based on Gaussian and Kalman filters in order to extract vessel structures from

retina images. Sinthanayothin et al. [4] achieved 83.3% sensitivity and 91.0% specificity in the identification of

blood vessels. In 2000, Hoover et al. [5] obtained 65.0% sensitivity and 81.0% specificity only by using 5 RGB

images. In 2004, Staal et al. [6] formed the DRIVE (Digital Retinal Images for Vessel Extraction) and STARE

database and a study of these images gave 94.41% for the DRIVE database and 95.16% for the STARE database

in terms of accuracy by defining a ridge-based segmentation procedure. Soraes et al. [7] used wavelet transform

on the DRIVE and STARE databases in the same year. The study gave an average accuracy of 94.66% for the

DRIVE database and 94.80% for the STARE database. Similarly, in 2006, Mendonça and Campilho [8] carried

out a study on the extraction of blood vessels from retinal images. They obtained averaged accuracy rates of

94.52%–94.63% and 94.21%–94.79% for the DRIVE and STARE databases, respectively.

In 2007, Ricci and Perfetti [9] obtained 95.95% accuracy for the DRIVE database using line operators

and support vector classification, while Martinez-Perez et al. [10] obtained 93.44% accuracy for the DRIVE

database using a multiscale feature extraction method. In 2007, Feng et al. [11] determined that contourlet

analysis was more successful in the representation of retina images than methods like wavelet analysis histogram

equalization, local normalization, and linear unsharp masking. In the same year, Zhang et al. [12] suggested

a method based on nonlinear orthogonal projection in order to extract vessel structures from retina images.

The study tested on the DRIVE and STARE databases obtained an average 90.87% accuracy for the STARE

database and 96.40% accuracy for the DRIVE database.

In 2008, Lam and Yan [13] developed a system respectively using the Laplacian operator and a gradient

vector field. The study tested on the STARE database obtained an average 94.74% accuracy. In 2008, Kande

et al. [14] conducted a study aiming to obtain vessel structures using weighted fuzzy C-means through the

organization of retina images with red and green channels. That study tested on the STARE database obtained

an average 93.85% accuracy.

In 2009, Akram et al. [15] conducted a study that used 2-D Gabor wavelet and sharpening filter and was

tested on the STARE database and obtained 94.39% accuracy. After 2009 multiresolution analyses in blood

vessel extraction from retinal images became widely used.

In 2010 Xu and Luo [16] used wavelet and curvelet transforms to extract features using the DRIVE

database. They first filtered the images and then did the classification using a SVM (support vector machine).

The study gave 93.2% accuracy. In the same year, Peng et al. [17] conducted a vessel segmentation study from

retina images using radial projection and aggregate gradient. The study conducted on the STARE database

obtained 94.22% accuracy. Moghimirad et al. [18] conducted a segmentation study based on 2D medialess

function on the DRIVE and STARE databases and obtained an average 97.56% accuracy for the STARE

database and 96.59% accuracy for the DRIVE database. Another segmentation study using radial projection

and supervised classification was conducted by Peng et al. [19] and tested on the STARE database. The study

obtained an average 94.92% accuracy. Another study by Akram and Khanum [20] that was based on wavelet

transform and that used threshold probing and adaptive thresholding methods was conducted on the DRIVE

and STARE databases. The study acquired an average 94.69% accuracy for the DRIVE database and 95.02%

accuracy for the STARE database.

In 2011 Marin et al. [21] used gray-level and moment-invariant feature extraction methods and obtained

an average accuracy of 94.52% for the DRIVE database and 95.26% accuracy for the STARE database. In the

same year Miri and Mahloojifar [22] obtained 94.58% accuracy for the DRIVE database using curvelet transform.
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In the same year, Fraz et al. [23] made segmentation using line strength and multiscale Gabor and morphological

features. The study was tested on the DRIVE and STARE databases and obtained an average 94.76% accuracy

for the DRIVE database and 95.79% accuracy for the STARE database. Another study conducted by Onkaew

et al. [24] through gradient orientation analysis method obtained an average 93.58% accuracy for the DRIVE

database and 94.23% for the STARE database. Fraz et al. [25] conducted a segmentation study based on

morphological curvature and adapted hysteresis thresholding. The study was tested on the DRIVE and STARE

databases and obtained an average 94.19% accuracy for the DRIVE database and 94.34% accuracy for the

STARE database. The study conducted by Xiang et al. [26] was tested on the DRIVE and STARE databases

and used combining radial symmetry transform and iterated graph cuts methods, and it obtained an average

94.45% accuracy for the DRIVE database and 95.03% accuracy for the STARE database.

In 2012, Kharghanian and Ahmadyfard [27] applied Gabor wavelet transform and line operator procedures

on DRIVE database images. As a result, depending on the feature vectors, the average accuracy ranged from

94.28% to 94.94%. Devi et al. [28] and Kalaivani et al. [29] used curvelet transform to identify blood vessels from

retinal images in the same year. Shahbeig [30] also used curvelet transform and obtained an average accuracy

of 96.15%. In another study carried out by Shajahan and Roy [31], curvelet transform and a segmentation

algorithm were used and 97.44% accuracy was obtained. Yin et al. [32] tried to obtain the vessel structure

from retina images through an intensity profile with the Bayesian method. The study was tested on the STARE

database and acquired an average 92.90% accuracy. In the same year, in their segmentation study, Oliveira et

al. [33] primarily conducted preprocessing with combined matched filter, Frangi filter, and Gabor wavelet filter.

They obtained results in two ways using oriented and region-scalable fitting energy (ORSF) and fuzzy C-means

(FCM). The study was tested on the DRIVE and STARE databases and obtained an average 95.66% for the

DRIVE database and 95.92% accuracy for the STARE database in the ORSF method and 95.80% accuracy

for the DRIVE database and 95.82% accuracy for the STARE database in the FCM method. Again, another

study conducted by Oliveira et al. [34] in the same year used the average of synthetic exact filters and Hessian

matrix method and obtained an average 96.07% accuracy for the DRIVE database and 96.13% accuracy for

the STARE database. Johnson et al. [35] conducted a study using curvelet and contourlet analysis on the

DRIVE database in 2012 and obtained 98.4% accuracy for the curvelet-based model and 98.31% accuracy for

the contourlet-based model. Silvia and Poovizhi [36] realized a segmentation application using ripplet-I and

morphological gradient methods for the DRIVE database. In this study, they did not give any numerical results

such as accuracy, sensitivity, or specificity values.

In 2013, Shanmugam and Banu [37] conducted segmentation based on the extreme learning machine

method and tested it on the DRIVE and STARE databases. They obtained results using ten images for each

database and acquired an average 97.25% accuracy for the DRIVE database and 98.62% accuracy for the

STARE database. In the same year, Fraz et al. [38] conducted a segmentation study using linear discriminant

classifier and tested their study on the DRIVE, STARE, and MESSIDOR databases. They obtained an average

94.52% accuracy for the DRIVE database, 95.01% accuracy for the STARE database, and 96.21% accuracy for

the MESSIDOR database. Ocbagabir et al. [39] developed an automatic segmentation algorithm using the star

networked pixel tracking method and 95.83% accuracy for the DRIVE database was obtained. Asad et al. [40]

used ant colony optimization algorithm for 20 images on the STARE database. Accuracy rate was calculated

as 91.39% according to results of their study. Another study about the DRIVE database was done by Sheet

et al. [41]. They used transfer learning of tissue-specific photon interaction statistical physics and obtained an
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average accuracy of 97.66%. Ceylan and Yaşar [42] proposed complex wavelet transform and a complex valued

artificial neural network for retinal image segmentation. To test the methods, the DRIVE database was used

and the accuracy value was calculated as 98.56%.

In the present study, we used complex ripplet-I transform and complex valued artificial neural networks

for the extraction of blood vessels from retinal images. The study used no size reducing or morphological image

processing technique except for complex ripplet-I analysis. A total of 60 colored fundus images (40 images from

the DRIVE database and 20 images from STARE) were used in order to test the performance of the proposed

system. Complex ripplet-I transforms were applied on these images and feature matrices were obtained. Using

complex valued artificial neural networks, the images were recreated from feature matrices and a thresholding

procedure was applied. Error between the obtained images and target images was calculated. For the network

generalization, the leave-one-out cross-validation method was used. Thus, all images were used to evaluate the

proposed method.

2. Methods

Curvelet analysis was introduced by Candes and Donoho [43] in 1999. In the following years, Donoho et al. [44]

developed digital transform versions. Curvelet transform has created a very prevalent effect. On the other hand,

the first proposed version included too much unused data. This increased the processing load and decreased

the speed. In order to remove this negative situation studies related to second-generation curvelet transform

definition were performed by Candes et al. [45,46]. In 2007 fast discrete curvelet transform, which depended on

these studies, was proposed again by Candes et al. [47]. Together with this study, complex curvelet coefficients

were also produced and this led to the definition of the complex version of the transform. In the study performed

by Neelaman et al. in 2008, [48] the complex version of the transform was used. In 2010, He et al. [49] used

the complex version of the transform again and performed image restoration.

In 2010, Xu et al. [50] described the ripplet-I transform, which is a higher dimensional generalization

of the curvelet transform (by adding support (c) and degree (d) parameters), designed to represent images

or two-dimensional signals at different scales and different directions. Together with this study, the complex

version of ripplet-I transform, the real version of which had started to be used earlier, was used for the first

time.

2.1. Complex ripplet-I transform

Ripplet-I transform generalizes curvelet transform by adding two parameters, support (c) and degree (d). These

new parameters, c and d , provide ripplet-I with anisotropic capability of representing 2D singularities along

arbitrarily shaped curves [50]. The ripplet function can be generated following the same strategy in Eq. (1).

ρ
a
−→
b θ

(−→x ) =ρ
a
−→
0 0

(
Rθ

(−→x −
−→
b
))

(1)

Here, ρ
a
−→
0 0

(−→x ) is the ripplet element function and Rθ (Eq. (2)) is the rotation matrix.

Rθ =

(
Cosθ Sinθ
−Sinθ Cosθ

)
(2)
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The element ripplet function ρ
a
−→
0 0

with scale parameter a is defined in the frequency domain in polar coordi-

nates [50]. Eq. (3) expresses curvelet transform for values c = 1, d = 2.

ρ̂θ (r, ω) =
1√
c
a

1+d
2d W (a.r)V

(
a

1
d

c.a
.ω

)
(3)

The discrete transform takes as input data defined on a Cartesian grid and outputs a collection of coefficients.

For the scale parameter a , we sample at dyadic intervals. The position parameter b and rotation parameter

θ are sampled at equal-spaced intervals. a , b⃗ , and θ are substituted with discrete parameters aj , b⃗k , and θl ,

which satisfy that aj = 2−j , b⃗k =
[
c.2−j .k1, 2

−j/d.k2
]T

, and θl =
2π
c .2−|j(1−1/d)|.l , where k⃗ = [k1, k2]

T
, (.)T

denotes the transpose of a vector and j ,k1 ,k2 , l ∈ Z. The frequency response of ripplet function is given as

(d = n / m and n , m ̸=0 ∈ Z) [50].

ρ̂j (r, ω) =
1√
c
a

m+n
2n W

(
2−j .r

)
V

(
2−j|m−n

n |

c
.ω − l

)
(4)

Here, W and V satisfy the following conditions:

∞∑
j=0

∣∣W (2−j .r)
∣∣2 = 1 and

+∞∑
l=−∞

∣∣∣∣V (
2−j|1−1/d|

c
.ω − l)

∣∣∣∣2 = 1 (5)

The goal here is to find a digital implementation of the discrete ripplet-I transform, whose coefficients are now

given by

rj,k,l :=
⟨
f.ρD

j,k,l

⟩
=

∫
R2

f̂(v)ρ̃Dj (S−1
θj

v)e
iS−T

θj
m.v

dv (6)

where Sθ is the shear matrix (Eq. (7)) and m ≈
[
c.2−j .k1, 2

−j/d.k2
]
.

Sθ :=

(
1 0
−Tanθ 1

)
(7)

The operations after this stage are conducted as defined earlier by fast discrete curvelet transform [47].

Ũj,l[n1, n2] reindexing the samples array by wrapping around a ≈ c.2j×2j/d (width ≈ c × (length)d) rectangle

centered at the origin. The ripplet-I via wrapping is described below with the basic steps.

Step 1: Compute 2D FFT coefficients to obtain Fourier samples f̂ [n1, n2] .

Step 2: Interpolation for each scale and angle pair (j, l), Ũj,l[n1, n2]f̂ [n1, n2] .

Step 3: Wrap result of Step 2 around the origin and obtain f̃ [n1, n2] = W (Ũj,lf̃)[n1, n2] where the

rangesn1 and n2 are 0 ≤ n1 ≤ L1,j and 0 ≤ n2 ≤ L2,j , respectively.

Step 4: Implement the inverse 2D FFT for each f̃j,l to obtain the discrete coefficients.

The discrete ripplet-I transform coefficients are complex valued, but a real valued discrete ripplet-

I transform with the same redundancy factor can be easily obtained by properly combining coefficients at

orientations θl and θl +π . Coefficients of ripplet-I can be expressed as follows. RP − IR and RP − II are real

and imaginary coefficients, respectively.

RP − I = RP − IR + j.RP − II (8)
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In this study, the MATLAB codes located in curvelab [51] were used by adapting to ripplet-I transform for

values c = 1, d = 3.

2.2. Complex valued artificial neural networks

Artificial neural networks (ANNs) can be described as a computer science interested in adaptive information

processing developed for the events whose programming is difficult or impossible. Although there are different

types of ANNs, the most widely used type is backpropagation ANN. Backpropagation ANN is an artificial

intelligence algorithm consisting of an input layer, hidden layer, and output layer. The input layer contains data

that are presented to the ANN (one- or two-dimensional). The input layer and hidden layer, and the hidden layer

and output layer, are associated with process elements called weight. In parallel with the counseling learning

principle, the ANN is given both inputs and targets. Weighted sums of each layer are passed through a nonlinear

function (called an activation function or transfer function). Although various activation functions (step, linear,

logarithmic sigmoid, tangent sigmoid, etc.) of each layer can be considered, the logarithmic sigmoid activation

function was used in this study. The ANN produces outputs compatible with the given inputs and calculates

an error value based on the difference between the target and produced output. When the error value is outside

the tolerance margin, the weight coefficients are recalculated in a backward direction. The procedure called

training is ended when the ANN, which produces new outputs in line with the new weight coefficients, reaches

the desired error value. Using the obtained weight coefficients from this iterative training process, the ANN

test procedure is performed through the data that have not been introduced to the network [52].

In a complex backpropagation model all inputs, weights, threshold, and output patterns are complex

numbers [52]. Figure 1 shows a complex valued ANN model. The instance that is complex in nature presented

to the network is the activation level of the input. The output Ak of neuron k is defined as:

Ak = F (
∑

Wk,i.xi + θk) (9)

Wk,i = Re [Wk,i] + iIm [Wk,i] (10)

Wk,i (Eq. (10)) is the complex weight from an input. xi is the unit and θk is the complex valued threshold.

Although various output functions of each neuron can be considered, the output function used in this study is

defined by the following equation:

FC(z) = FR(x) + i.FR(y) (11)

where FR(a) =
1

1+e−a and is called the sigmoid function.

Figure 1. A model of the complex valued ANN.
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In this study, feature matrices obtained by complex ripplet-I transform contain complex valued compo-

nents in addition to real valued components. At this stage, real components of feature matrices can be evaluated

with a conventional ANN. When using the existing method for real features, we must apply the method indi-

vidually to their real and imaginary parts. On the other hand, the complex valued ANN allows us to directly

process features. Moreover, complex valued components will not be obtained when the inverse of the transform

is applied. To achieve better accuracy, the complex valued ANN is used.

2.3. Used data

This study used 40 colorful fundus images (and segmented targets) from the DRIVE database and 20 colorful

fundus images from the STARE database [5,6]. Target images in the present study were used in order to

compare the DRIVE database with the literature. These images are in 584 × 565 size and JPEG format.

DRIVE database images are arranged in 512 × 512 size. A target image labeled by two different experts was

used in order to determine the labeling mistakes and test the reliability of results for the STARE database.

The images in the STARE database were in PPM format and 605 × 700 in size. STARE database images are

arranged in 576 × 576 size.

3. Experiments and results

3.1. Experiments

In this study, blood vessels in retinal images were extracted using complex ripplet-I and a complex valued ANN.

A total of 60 images from the DRIVE and STARE databases and 60 target images formed by the extraction

of blood vessels in these images were used to evaluate the proposed method. To determine the features of line,

curve, and ridge structures in images, complex ripplet-I transforms with three scales were used. All coefficients

in the subbands are presented to the ANN because small coefficient values and big coefficient values indicate

different structures in the retinal images such as noise, background, and vessels, respectively.

Complex ripplet-I transform was applied to retina images in the first part of the study. In the DRIVE

database, 21 × 21 sized feature (coefficient) matrices were used for scale = 6, 43 × 43 sized feature (coefficient)

matrices were used for scale = 5, and 85 × 85 sized matrices were used for scale = 4. In the STARE database, 25

× 25 sized feature (coefficient) matrices were used for scale = 6, 49 × 49 sized feature (coefficient) matrices were

used for scale = 5, and 97 × 97 sized matrices were used for scale = 4. The difference between the sizes of feature

matrices results from the difference between the sizes of images used in both databases and therefore causes

the filters in the transformation structure to produce coefficients of different lengths. Coefficients contained by

these matrices represent the lines, transit points, peak points, etc. formed by blood vessels in the retinal image.

These obtained feature matrices were entered into the complex valued ANN as input. Similarly, the transforms

were applied to the target images and the coefficients given to the complex valued ANN as input were desired to

be accurately estimated in the output. The coefficients obtained from the output of the complex valued ANN

were resized by taking inverse transforms. After that, binary thresholding (binary morphological operation)

was applied and the difference between the target image and output (error) was calculated. At this stage, the

real dimension reobtained by complex ripplet-I transform and complex valued ANN was used in the operation.

A block diagram of the proposed structure is presented in Figure 2.

3.2. Evaluation of results

The proportion of the number of correct classified pixels (CCP) to total pixels (ToP) in the image was calculated

in the evaluation of the study results (Eq. (12)).

3218
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Figure 2. Proposed method for blood vessel extraction.

Accuracy (%) = (CCP/ToP )× 100 (12)

In order to determine the success of the separation of the background from the vessel regions of the proposed

system, statistical measures such as sensitivity and specificity are used.

1) True positive (TP): The ANN identifies an input as a vessel labeled by the expert clinicians.

2) True negative (TN): The ANN identifies an input as a background that was labeled as background by

the expert clinicians.

3) False positive (FP): The detection of a vessel that was labeled as background by the expert.

4) False negative (FN): The detection of a background that was labeled as a vessel patient by the expert.

The performance of the classifier is also assessed in terms of sensitivity as follows:

SEN = TP/(TP + FN) (13)

3.3. Results

A backpropagation ANN with one hidden layer, which uses the Levenberg–Marquardt learning algorithm, was

preferred in this study. A logarithmic sigmoid function defined in the [0,1] range is used as the activation

function in the ANN structure. The weights used are renewed by calculating the difference (error) between the

value obtained from the ANN output and target. The appropriate iteration number for the ANN model used

in this study is determined as 1000. The number of neurons in the hidden layer is found to be eight and in the

learning rate is found to be 0.05, empirically. It is known that the number of hidden nodes greatly affects the

performance of an ANN. Hence, tests were conducted with between 0 and 200 hidden nodes to determine the

optimum number of hidden nodes. It was observed that a node number of eight requires the least training and

yielded the smallest errors after the learning rate was increased in increments from 0.001 to 5.0, provided that

the optimum hidden node was pegged. It was also observed that the iteration number at which the moment

constant becomes 0.2 was 1000.

At the end of the training and test procedures, in the DRIVE database, the average accuracy of the

system was found to be 97.85% (scale = 4), 98.43% (scale = 5), and 98.44% (scale = 6) for complex ripplet-I

transform and complex valued ANN.

The leave-one-out cross-validation method was used for the generalization of the ANN. While 39 images

from the database formed from a total of 40 images were used in ANN training, ANN testing was performed

using the remaining image. Then the image used for the test was included in the training process and ANN

testing was performed by using one of the images used in the training. By repeating the same iterative process

40 times, the reliability of the obtained results is increased via all images in the database.

The STARE database was used in order to test system performance with different background intensity,

noise, and degeneration. Similarly, the same processes were applied to 20 images of STARE database. Obtained
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images and target images labeled by Adam Hoover and Valentina Kouznetsova were separately compared. For

the STARE database (labeled by Adam Hoover), accuracy rates were obtained as 98.40% (scale = 4), 99.15%

(scale = 5), and 99.25% (scale = 6) for complex ripplet-I transform and complex valued ANN. For the other

labeled data (by Valentina Kouznetsova), accuracy rates were obtained as 96.72% (scale = 4), 97.80% (scale =

5), and 98.03% (scale = 6) for complex ripplet-I transform and complex valued ANN.

Results of DRIVE and STARE images are presented in Table 2. In the table, NCCP refers to the number

of correct classified pixels and NICP refers to the number of incorrect classified pixels. The proposed methods

were compared using the SEN statistical method and the results are given in Table 2.

Table 1. Optimum ANN architecture.

Error goal No. of hidden nodes Learning rate Momentum constant No. of maximum iterations
1e-20 8 0.05 0.2 1000

Table 2. Results for DRIVE and STARE databases.

Data
Test
NCCP NICP Accuracy (%) SEN

DRIVE database (scale = 4) 256,495 5649 97.85 0.794
DRIVE database (scale = 5) 258,018 4126 98.43 0.852
DRIVE database (scale = 6) 258,049 4095 98.44 0.853
STARE database labeled by A Hoover (scale = 4) 326,463 5313 98.40 0.945
STARE database labeled by V Kouznetsova (scale = 4) 320,880 10,896 96.72 0.900
STARE database labeled by A Hoover (scale = 5) 328,958 2818 99.15 0.971
STARE database labeled by V Kouznetsova (scale = 5) 324,476 7300 97.80 0.933
STARE database labeled by A Hoover (scale = 6) 329,299 2477 99.25 0.974
STARE database labeled by V Kouznetsova (scale = 6) 325,232 6544 98.03 0.940

Randomly selected images (no.1; no.8) from the DRIVE and STARE databases are given in Figure 3 (a1;

b1), respectively. (a2), (a3), and (a4) in Figure 3 present ANN outputs for the DRIVE database. Similarly,

(b2), (b3), and (b4) in Figure 3 present ANN outputs for the STARE database. Scale values are 4, 5, and 6 for

all of the images in these figures. Target images for these databases are given in Figure 3 ((a5), (b5), and (b6)).

From the comparison of the proposed method with previous studies that used the DRIVE and STARE

databases (with the same images), it was observed that it gave a higher accuracy value. The comparison is

presented in Tables 3 and 4.

As can be seen in Tables 3 and 4, by combining the complex ripplet-I transform with the complex valued

ANN, more successful results were obtained when compared with using only multiresolution analysis or using

them with classifiers (kNN, SVM, etc.). The success of the proposed system in terms of separating vessels

from the background is revealed by the success of complex ripplet-I transform in representing (separating) the

image and the success of the complex valued ANN in classifying feature matrices. Most of the studies given in

Tables 3 and 4 do not have information about segmentation time. This study was performed using a computer

with a 2.00 GHz processor and 4 GB RAM, and segmentation time per image was 6.27 s for complex ripplet-I

transform.
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Figure 3. Resultant images for DRIVE and STARE databases (DRIVE database): a1) Original image no.1, a2) Result

of complex ripplet-I transform for image no.1 (scale = 4), a3) Result of complex ripplet-I transform for image no.1

(scale = 5), a4) Result of complex ripplet-I transform for image no.1 (scale = 6), a5) Target for image no.1; ( STARE

database) b1) Original image no.8, b2) Result of complex ripplet-I transform for image no.8 (scale = 4), b3) Result of

complex ripplet-I transform for image no.8 (scale = 5), b4) Result of complex ripplet-I transform for image no.8 (scale

= 6), b5) Target for image no.8 (V Kouz.), b6) Target for image no.8 (A Hoover).
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Table 3. Comparison of the proposed method and other methods in previous studies for DRIVE database.

Study Year Methods Accuracy (%)
Staal et al. [6] 2004 Image ridges and kNN classifier 94.41
Soares [7] 2006 Gabor wavelet 94.66
Mendonça and Campilho
[8]

2006 Combining of morphological reconstruction and
centerlines detection

94.52–94.63

Ricci and Perfetti [9] 2007 Line operator and support vector machine
(SVM)

95.95

Martinez-Perez et al. [10] 2007 Multiscale feature extraction 93.44
Zhang et al. [12] 2007 Nonlinear orthogonal projection 96.40
Xu and Luo [16] 2010 Curvelet transform, wavelet transform, and

SVM
93.2

Moghimirad et al. [18] 2010 2D medialess function 96.59
Akram and Khanum [20] 2010 Wavelet transform, threshold probing, and

adaptive thresholding
94.69

Marin et al. [21] 2011 Gray-level and moment-invariant feature ex-
traction

94.52

Miri and Mahloojifer [22] 2011 Curvelet transform 94.58
Fraz et al. [23] 2011 Line strength, multiscale Gabor, and morpho-

logical features
94.76

Onkaew et al. [24] 2011 Gradient orientation analysis 93.58
Fraz et al. [25] 2011 Morphological curvature and adapted hysteresis

thresholding
94.19

Xiang et al. [26] 2011 Combining radial symmetry transform and it-
erated graph cuts

94.45

Kharghanian and Ahmady-
fard [27]

2012 Gabor wavelet transform and line operator 94.28–94.94

Shahbeig [30] 2012 Curvelet transform, component analysis, adap-
tive filter

96.15

Shajahan and Roy [31] 2012 Multistructure elements morphology 97.44

Oliveira et al. [33] 2012
Combined matched filter, Frangi filter, Gabor
wavelet filter, oriented and region-scalable fit-
ting energy

95.66

Combined matched filter, Frangi filter, Gabor
wavelet filter, fuzzy C-means

95.80

Oliveira et al. [34] 2012 Average of synthetic exact filters and Hessian
matrix

96.07

Johnson et al. [35] 2012
Curvelet transform 98.4
Contourlet transform 98.31

Silvia and Poovizhi [36] 2012 Ripplet-I and morphological gradient -
Shanmugam and Banu [37] 2013 Extreme learning machine 97.25
Fraz et al. [38] 2013 Linear discriminant classifier 94.52
Ocbagabir et al. [39] 2013 Star networked pixel tracking 95.83
Sheet et al. [41] 2013 Transfer learning of tissue specific photon inter-

action statistical physics
97.66

Ceylan and Yaşar [42] 2013 Complex wavelet transform and complex valued
ANN

98.56

Our study 2014 Complex Ripplet-I transform and complex val-
ued ANN (scale = 4)
Complex Ripplet-I transform and complex val-
ued ANN (scale = 5)
Complex Ripplet-I transform and complex val-
ued ANN (scale = 6)

97.85
98.43
98.44
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Table 4. Comparison of the proposed method and other methods in previous studies for STARE database.

Study Year Methods Accuracy (%)

Staal et al. [6] 2004 Image ridges and kNN classifier 95.16

Soares [7] 2006 Gabor wavelet 94.80

Mendonça and Campilho
[8]

2006 Combining of morphological reconstruction and
centerlines detection

94.21–94.79

Zhang et al. [12] 2007 Nonlinear orthogonal projection 90.87

Lam and Yan [13] 2008 Laplacian operator and gradient vector field 94.74

Kande et al. [14] 2008 Red and green channels and weighted fuzzy C-
means

93.85

Akram et al. [15] 2009 2-D Gabor wavelet and sharpening filter 94.39

Peng et al. [17] 2010 Radial projection and aggregate gradient 94.22

Moghimirad et al. [18] 2010 2D medialess function 97.56

Peng et al. [19] 2010 Radial projection and supervised classification 94.92

Akram and Khanum [20] 2010 Wavelet transform, threshold probing, and adap-
tive thresholding

95.02

Marin et al. [21] 2011 Gray-level and moment-invariants feature ex-
traction

95.26

Fraz et al. [23] 2011 Line strength, multiscale Gabor, and morpholog-
ical features

95.79

Onkaew et al. [24] 2011 Gradient orientation analysis 94.23

Fraz et al. [25] 2011 Morphological curvature and adapted hysteresis
thresholding

94.34

Xiang et al. [26] 2011 Combining radial symmetry transform and iter-
ated graph cuts

95.03

Yin et al. [32] 2012 Bayesian method 92.90

Oliveira et al. [33] 2012
Combined matched filter, Frangi filter, Gabor
wavelet filter, oriented and region-scalable fitting
energy

95.92

Combined matched filter, Frangi filter, Gabor
wavelet filter, fuzzy C-means

95.82

Oliveira et al. [34] 2012 Average of synthetic exact filters and Hessian
matrix

96.13

Shanmugam and Banu [37] 2013 Extreme learning machine 98.62

Fraz et al. [38] 2013 Linear discriminant classifier 95.01

Asad et al. [40] 2013 Ant colony system 91.39

Our study (labeled by A
Hoover)

2014 Complex Ripplet-I transform and complex val-
ued ANN (scale = 4)
Complex Ripplet-I transform and complex val-
ued ANN (scale = 5)
Complex Ripplet-I transform and complex val-
ued ANN (scale = 6)

98.40
99.15
99.25

Our study (labeled by V
Kouznetsova)

2014 Complex Ripplet-I transform and complex val-
ued ANN (scale = 4)
Complex Ripplet-I transform and complex val-
ued ANN (scale = 5)
Complex Ripplet-I transform and complex val-
ued ANN (scale = 6)

96.72
97.80
98.03
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4. Discussion and conclusions

This study proposed the use of complex valued ANN architecture with complex ripplet-I transform for the

procedure of the extraction of blood vessels in retinal images. At the end of the study, the obtained results

were much better than those in some studies [16,22,29,30,35] where curvelet transform was used. One of the

basic reasons for the success of this study is that ripplet-I transform, which is the generalized version of curvelet

transform, was used in the study. It is known from the previously made study [42] that the usage of the complex

versions of the transforms has a positive impact on the study results. In this study, the usage of a complex

version of ripplet-I transform has increased the success of the study. On the other hand, usage of an ANN

instead of SVM is another factor that has increased the success of the study. The SVM tries to obtain thin

vessel structures by iterative estimations from the images, obtaining large vessel structures. However, the ANN

considers the image as a whole instead of making the distinction of thin vessel structures. This makes it easy

to associate vessels with each other. On the other hand, the nature of SVMs, which are more convenient in

terms of working with small data sets and performing classification of neural classifiers using easier control, and

which have lower computation requirements, reveals the reason why the ANN obtains more successful results

compared with similar studies.

The proposed system being tested by different background intensities and noises (STARE database) as

well as the DRIVE database has increased the reliability of the study results. Together with the usage of target

displays labeled by two different people for the STARE database, the effect of label difference on the general

success of the system was observed. The proposed system has produced very good results for even much more

complex labeling including small vein structures. Besides, as the scale value increased for ripplet-I transform,

namely as the size of the property matrix where operation is made decreased, it was observed that the system

success increased.

Feature matrices were excluded from the suggested structure through multiple resolution analysis since

the ANN produces faster solutions with higher accuracy. Passing image matrices directly to the ANN without

any preprocessing increases the number of operations and makes the convergence of the ANN to the target

difficult.

Together with this study, the complex version of ripplet-I transform, the real version of which started

to be used earlier, was used for the first time. As a result of this study, satisfactory numerical results were

obtained using complex ripplet-I transform for the extraction of blood vessels in retinal images for the first

time. Obtained results of the complex ripplet-I transform are better than those of curvelet transform. This

situation will be experienced in the field of multiresolution analysis of recent development that has proven that

it is important for medical image processing.

Even though other studies used different transforms, the inclusion of an ANN in the proposed structure

increased accuracy. The presence of the ANN enabled an automated solution and developed a different

perspective through creating a basis for different artificial intelligence approaches. Different accuracy levels can

be obtained through changing the model, structure, parameters, etc. of the ANN, which is important for creating

a new solution-targeted approach. The development of semi/fully automatic systems in the segmentation of

medical images in particular demonstrates the fact that ANNs and similar structures are an important part of

the solution.
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CEYLAN and YAŞAR/Turk J Elec Eng & Comp Sci

[20] Akram MU, Khanum A. Retinal images: blood vessel segmentation by threshold probing. In: IEEE Symposium

on Industrial Electronics & Applications; 3–5 October 2010; Penang, Malaysia. New York, NY, USA: IEEE. pp.

493-497.

[21] Marin D, Aquino A, Gegundez-Arias ME, Bravo JM. A new supervised method for blood vessel segmentation in

retinal images by using gray-level and moment invariants-based features. IEEE T Med Imaging 2011; 30: 146-158.

[22] Miri MS, Mahloojifar A. Retinal image analysis using curvelet transform and multistructure elements morphology

by reconstruction. IEEE T Bio-Med Eng 2011; 58: 1183-1191.

[23] Fraz MM, Remagnino P, Hoppe A, Velastin S, Uyyanonvara B, Barman SA. A supervised method for retinal

blood vessel segmentation using line strength, multiscale Gabor and morphological features. In: IEEE International

Conference on Signal and Image Processing Applications; 16–18 November 2011; Kuala Lumpur, Malaysia. New

York, NY, USA: IEEE. pp. 410-415.

[24] Onkaew D, Turior R, Uyyanonvara B, Kondo T. Automatic extraction of retinal vessels based on gradient orientation

analysis. In: International Joint Conference on Computer Science and Software Engineering; 11–13 May 2011;

Nakhon Pathom, Thailand. New York, NY, USA: IEEE. pp. 102-107.

[25] Fraz MM, Basit A, Remagnino P, Hoppe A, Barma SA. Retinal vasculature segmentation by morphological curva-

ture, reconstruction and adapted hysteresis thresholding. In: International Conference on Emerging Technologies;

5–6 September 2011; Islamabad, Pakistan. New York, NY, USA: IEEE. pp. 1-6.

[26] Xiang D, Tian J, Deng K, Zhang X, Yang F, Wan X. Retinal vessel extraction by combining radial symmetry

transform and iterated graph cuts. In: International Conference of the IEEE Engineering in Medicine and Biology

Society; 30 August–3 September 2011; Boston, MA, USA. New York, NY, USA: IEEE. pp. 3950-3953.

[27] Kharghanian R, Ahmadyfard A. Retinal blood vessel segmentation using Gabor wavelet and line operator. Inter-

national Journal of Machine Learning and Computing 2012; 2: 593-597.

[28] Devi KK, Anto A, Peter KJ. Curvelet transform and multi structure elements morphology by reconstruction based

retinal image analysis. International Journal of Soft Computing and Engineering 2012; 2: 548-553.

[29] Kalaivani M, Jeyalakshmi MS, Aparna V. Extraction of retinal blood vessels using Curvelet transform and Kirsch’s

templates. International Journal of Emerging Technology and Advanced Engineering 2012; 2: 360-363.

[30] Shahbeig S. Retinal image analysis using multi-directional functors based on geodesic conversions. Turk J Electr

Eng Co 2014; 22: 768-779.

[31] Shajahan SN, Roy RC. An improved retinal blood vessel segmentation algorithm based on multistructure elements

morphology. International Journal of Computer Applications 2012; 57: 31-36.

[32] Yin Y, Adel M, Bourennane S. An automatic tracking method for retinal vascular tree extraction. In: IEEE

International Conference on Acoustics, Speech and Signal Processing; 25–30 March 2012; Kyoto, Japan. New York,

NY, USA: IEEE. pp. 709-712.

[33] Oliveira WS, Ren TI, Cavalcanti GDC. An unsupervised segmentation method for retinal vessel using combined

filters. In: International Conference on Tools with Artificial Intelligence; 7–9 November 2012; Athens, Greece. New

York, NY, USA: IEEE. pp. 750-756.

[34] Oliveira WS, Ren TI, Cavalcanti GDC. Retinal vessel segmentation using average of synthetic exact filters and

hessian matrix. In: International Conference on Image Processing; 30 September–3 October 2012; Orlando, FL,

USA. New York, NY, USA: IEEE. pp. 2017-2020.

[35] Johnson RC, Padmagireesan SJ, Raheem A, Pillai AV. Comparison of curvelet and contourlet transforms for retinal

analysis. In: IEEE India Conference; 7–9 December 2012; Kochi, India. New York, NY, USA: IEEE. pp. 1214-1217.

[36] Silvia MJ, Poovizhi S. Retinal image analysis using ripplet-I transform and segmentation using morphological

gradient. International Journal of Emerging Technology and Advanced Engineering 2012; 2: 719-724.

[37] Shanmugam V, Banu RSDW. Retinal blood vessel segmentation using an extreme learning machine approach. In:

IEEE Point-of-Care Healthcare Technologies; 16–18 January 2013; Bangalore, India. New York, NY, USA: IEEE.

pp. 318-321.

3226

http://dx.doi.org/10.1109/ISIEA.2010.5679415
http://dx.doi.org/10.1109/ISIEA.2010.5679415
http://dx.doi.org/10.1109/ISIEA.2010.5679415
http://dx.doi.org/10.1109/TMI.2010.2064333
http://dx.doi.org/10.1109/TMI.2010.2064333
http://dx.doi.org/10.1109/TBME.2010.2097599
http://dx.doi.org/10.1109/TBME.2010.2097599
http://dx.doi.org/10.1109/ICSIPA.2011.6144129
http://dx.doi.org/10.1109/ICSIPA.2011.6144129
http://dx.doi.org/10.1109/ICSIPA.2011.6144129
http://dx.doi.org/10.1109/ICSIPA.2011.6144129
http://dx.doi.org/10.1109/JCSSE.2011.5930102
http://dx.doi.org/10.1109/JCSSE.2011.5930102
http://dx.doi.org/10.1109/JCSSE.2011.5930102
http://dx.doi.org/10.1109/ICET.2011.6048487
http://dx.doi.org/10.1109/ICET.2011.6048487
http://dx.doi.org/10.1109/ICET.2011.6048487
http://journals.tubitak.gov.tr/elektrik/issues/elk-14-22-3/elk-22-3-19-1205-47.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-14-22-3/elk-22-3-19-1205-47.pdf
http://dx.doi.org/10.1109/ICASSP.2012.6287982
http://dx.doi.org/10.1109/ICASSP.2012.6287982
http://dx.doi.org/10.1109/ICASSP.2012.6287982
http://dx.doi.org/10.1109/ICTAI.2012.106
http://dx.doi.org/10.1109/ICTAI.2012.106
http://dx.doi.org/10.1109/ICTAI.2012.106
http://dx.doi.org/10.1109/ICIP.2012.6467285
http://dx.doi.org/10.1109/ICIP.2012.6467285
http://dx.doi.org/10.1109/ICIP.2012.6467285
http://dx.doi.org/10.1109/INDCON.2012.6420803
http://dx.doi.org/10.1109/INDCON.2012.6420803
http://dx.doi.org/10.1109/PHT.2013.6461349
http://dx.doi.org/10.1109/PHT.2013.6461349
http://dx.doi.org/10.1109/PHT.2013.6461349
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