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Abstract: In this paper, the restricted Bayes approach is studied in a decentralized detection problem. All decisions

on which the hypothesis is true are made by local sensors through conditionally independent observations. Then these

decisions are transmitted to the fusion center for the final decision. In the conventional approach, all thresholds of local

sensors and the fusion center are considered as deterministic variables and optimized according to the given criterion for

given test statistics of local sensors and the fusion center. In this paper, it is shown that setting thresholds as random

variables instead of deterministic ones can improve the performance according to the restricted Bayes criterion. It is

proved that optimal random thresholds are dependent on each other, and the probability density function of each one

consists of at most two point masses. Two methods for the implementation of this scheme are proposed. A necessary and

sufficient condition for improvability of the conventional approach through replacing optimal deterministic thresholds by

optimal random ones is derived. Finally, theoretical results are investigated through simulations.
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1. Introduction

The decentralized detection problem was first presented in [1], and has been studied extensively in recent years

A limited capacity of the wireless channel is one of the most important issues raised in decentralized detection

problems In [2], the decentralized detection problem is studied in a binary hypothesis-testing framework under

a limitation on the capacity of wireless channel, over which the maximum transmission rate is specified by R

bits of information per unit time It is shown that using R identical binary sensors is asymptotically the optimal

strategy, where the number of observation at the local sensors converges to infinity and observations are modeled

as identical and independent Gaussian or exponential random variables As an alternative approach to addressing

the limited capacity of the wireless channel, data reduction at the local sensors is considered in terms of the

optimal quantizer design according to both Bayesian and Neyman–Pearson criteria [3] In the presence of full

uncertainty about a distribution of the additive noise at the local sensors, a universal decentralized scheme is

proposed in [4], which is operating under the bandwidth constrained communication channels between sensors

and the fusion center The error probability is shown to decay exponentially with a rate that is bounded from

below by the noise range for bounded noise and by SNR for unbounded noise.

The frequency of occurrence of one hypothesis happens to be much higher than that of the others under

some scenarios in decentralized detection problems [5,6] In those circumstances, the censoring scheme is proposed

for sensor networks operating under the limited energy resources and limited wireless channel capacity in order
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to exploit this gap between the frequencies of occurrence of hypotheses [5] Under the censoring scheme, local

sensors do not transmit the observation for which the corresponding value of the local likelihood ratio is in

the censoring interval, which means that the related observation is not considered as informative and simply

discarded [5] The censoring scheme is also studied for sensor networks including randomized decision rules and

operating in the presence of uncertainty about the observations at the local sensors [6].

In the collaborative human decision making problem under a binary hypothesis testing framework,

thresholds used by the individual human agents to decide on which hypothesis is true are modeled as random

variables because of mainly unpredictability and cognitive limitations of humans [7] Decentralized detection

schemes find extensive applications areas in defense systems; therefore it is important to develop novel schemes

performing better than conventional ones To that end, in this study, thresholds of local sensors and the fusion

center are set as random variables to improve the performance over the conventional approach, in which

thresholds are deterministic, according to the restricted Bayes criterion in a decentralized detection problem

under a binary hypothesis testing framework It turns out that optimum random thresholds are dependent on

each other and the probability density function (PDF) of each consists of at most two point masses This case

can in fact be considered as dependent randomization of decision rules of local sensors and the fusion center,

where each decision rule is selected from a set of deterministic decision rules based on the realization of the
associated discrete random variable [8] In our case, the set of deterministic decision rules consists of the decision

rules with the same test statistics but different deterministic thresholds Dependent randomization of decision

rules is studied in [8] under the Neyman–Pearson framework in a general sense In this study, we focus on

threshold randomization, which is a special case of randomization of decision rules, under the restricted Bayes

framework Focusing on threshold randomization instead of generic randomization of decision rules allows us to

do quantitative and detailed analysis of the proposed scheme To the best of our knowledge, there is no study

considering the effects of replacing deterministic thresholds with random ones on decentralized detection under

the restricted Bayes framework.

In order to implement optimal random thresholds that are dependent on each other, one way is to allow

the fusion center to control all thresholds of local sensors However, this requires extensive communication

capacity and increase in the level of centralization opposed to the nature of decentralized detection as stated

in [8] for dependent randomization of decision rules There are two alternative ways proposed in [8] for generic

implementation of dependent randomization of decision rules under the Neyman–Pearson framework However,

they can be easily adapted to our case of dependent randomization of thresholds as follows One of the alternative

ways is to make all local sensors and the fusion center implement a predefined sequence of the different sets of

thresholds without any communication among themselves The other alternative is to use the common clock in

all local sensors and the fusion center to choose which threshold to use.

In this study, we consider the restricted Bayes criterion to handle the uncertainty in the observations

of the local sensors. More specifically, the aim of this study is to investigate the effects of setting and

accordingly optimizing thresholds as random variables instead of deterministic variables under the restricted

Bayes framework, whose aim is to minimize the global probability of error while keeping the worst-case global

probability of error below the predefined level [9,10]. We also consider the likelihood ratio as a test statistic

for the fusion center, which is a common use in practice. Uncertainty in the transmission of decisions of local

sensors to the fusion center is modeled by a binary asymmetric channel (BASC).

To the best of our knowledge, the restricted Bayes approach has never been studied before in decentralized

detection problems. Therefore, this study also aims to illustrate the use of this approach in the presence of

uncertainty about observations at the local sensors. Along with the illustration of the restricted Bayes approach
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in sensor networks, it is also shown how to optimize the restricted Bayes criterion by employing dependent

random thresholds at the local sensors and the fusion center.

The paper is organized as follows. In Section 2, the problem formulation is given, and derivations for

optimum random thresholds are provided. The statistical characterization of the optimum random thresholds

is studied along with the calculation of the optimal PDFs of thresholds in Section 3. In Section 4, a sufficient

and necessary condition for the improvability of the conventional approach through replacing deterministic

thresholds by random ones is provided. In Section 5, a numerical example is studied to investigate theoretical

results. Finally, concluding remarks are presented in Section 6.

2. Problem formulation

Consider the decentralized detection problem, in which each local sensor decides on which hypothesis is true;

then all decisions of the local sensors are transmitted to the fusion center where the final decision is made. We

have N local sensors and the observation vector xi ∈ RK at the local sensor i can be expressed under binary

hypotheses as follows:

H0 : xi = si0 + ni,H1 : xi = si1 + ni, (1)

where ni is the background noise with PDF pni(·). The signals are modeled as random vectorss0 =

[sT10s
T
20...s

T
N0]

T with the estimated PDF ps0(·) under the hypothesis H0 and s1 = [sT11s
T
21...s

T
N1]

T with the

estimated PDF ps1(·) under the hypothesis H1 . In practice, true PDFs of the signals can be very different from

the estimated ones due to estimation errors in obtaining ps0(·) and ps1(·) [9,10]. In other words, there exists

uncertainty in the PDFs of the signals. In the restricted Bayes criterion, the worst-case scenario is also involved

to take this uncertainty into account [9,10]. Therefore, in the restricted Bayes framework, the least-favorable

PDFs of the signals corresponding to the worst-case scenario are also considered along with the estimated ones

[9,10]. Let us denote the least favorable PDFs of the signals under hypotheses H1 and H0 with plss1(·) andp
ls
s0(·),

respectively. Observations of the local sensors are also assumed to be conditionally independent. It should be

noted that the least-favorable PDFs of the signals may be dependent on thresholds, that is, when the thresholds

of the local sensors and the fusion center change the least-favorable PDFs may accordingly change in some
cases.

The fusion center and all local sensors employ fixed test statistics. Let us denote the test statistic at the

local sensor i with Ti(·) and at the fusion center with L(·). In the conventional approach, thresholds of the

fusion center and local sensors are considered as deterministic variables, and optimized according to the given

criterion [8,11], which is the restricted Bayes criterion in this study.

Let us denote the threshold of the local sensor i with ηi and the threshold of the fusion center with τ .

In this study, while a random variable is denoted in bold font, its realization is depicted without bold font. We

define the random vector η with the PDF pη(·) consisting of all thresholds of the local sensors: η =[η1η2 ···ηN ]T .

The decision rule at the local sensor i is denoted with ϕi , where ϕi(xi) = 1if Ti(xi) ≥ ηi , otherwise

ϕi(xi) = 0. The observation received at the fusion center from the local sensor i is denoted with ui , where

ui ∈ {0, 1} . Define the random vector u consisting of all observations received at the fusion center from the

local sensors: u =[u1u2 · · · uN ]T . The fusion center makes a final decision based on the observation u, that is,

ϕ(u) = 1if L(u) ≥ τ , otherwise ϕ(u) = 0, where ϕ(·) is the decision rule employed at the fusion center.

A binary asymmetric channel (BASC) is assumed, and the crossover probabilities are defined as c0i =

p(ui = 1|ϕi(xi) = 0) and c1i = p(ui = 0|ϕi(xi) = 1) for i = 1, 2. . . , N .
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When the signal and thresholds of local sensors are given, observations (ui for i = 1, 2..., N) at the

fusion center are independent from each other. Accordingly, we have the following:

p(u|η, sk,Hk) =

N∏
i=1

p(ui|ηi, sik,Hk). (2)

The probability of local sensor i deciding on H1 when the threshold and the signal are given is denoted with

Fik(ηi, sik) = p(ϕi(xi) = 1|ηi, sik,Hk). Then p(ui|ηi, sik,Hk) can be expressed as follows:

p(ui = 1|ηi, sik,Hk) = (1− c1i)Fik(ηi, sik) + c0i(1− Fik(ηi, sik)) (3)

p(ui = 0|ηi, sik,Hk) = (1− c0i)(1− Fik(ηi, sik)) + c1iFik(ηi, sik) (4)

The PDFs of the observations received at the fusion center for the expected and the worst-case scenarios can

be calculated as follows:

p(u|Hk) =

∫
RN

∫
RK

p(u|η, skHk)psk(sk)pη(η)dskdη

pls(u|Hk) =

∫
RN

∫
RK

p(u|η, skHk)p
ls
sk
(sk)pη(η)dskdη

In this study, the fusion center is assumed to use the likelihood ratio as a test statistic. When the thresholds of

the local sensors are given, the likelihood ratio can be calculated as follows:

L(u) =
∫ p(u|η,s1H1)ps1

(s1)

RK ds1∫ p(u|η,s0H0)ps0 (s0)

RK ds0
=
G1(u, η)

G0(u, η)
, (5)

where Gk(u, η) =
∫ p(u|η,skHk)psk

(sk)

RK dsk for k = 0, 1. For convenience, let us also define Gls
k (u, η) =∫ p(u|η,skHk)p

ls
sk

(sk)

RK dsk for k = 0, 1.

Since ui ∈ {0, 1} , the size of the set consisting of the possible realizations of u is 2N . Therefore, L(u)
can take 2N different values corresponding to a possible realization of u. Let us arrange the values of L(u)

in ascending order as l1, l2, ..., l2N with corresponding values of u denoted with u1 , u2 ,. . . , u2
N

, that is,

li = L(ui) = G1(u
i,η)

G0(ui,η) .

For convenience let us represent all thresholds with the random vector θ having the PDF pθ(·), which is

defined as θ = [ηT τ ]T . Then probabilities of the fusion center deciding on H1 given that the true hypothesis is

H1 (the global detection probability) for the expected and the worst-case scenarios can be calculated as follows:

PD(θ) =
2N−1∑
i=0

PDi(θ) (6)

P ls
D (θ) =

2N−1∑
i=0

P ls
Di

(θ), (7)
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wherePD0(θ) = I(τ ≤ l1) ,PDi(θ) = I(li < τ ≤ li+1)
(
G1(u

i+1, η) +G1(u
i+2, η) + · · ·+G1(u

2N , η)
)
, similarly

P ls
Di

(θ) = I(τ ≤ l1), P
ls
Di

(θ) = I(li < τ ≤ li+1)
(
Gls

1 (u
i+1, η) +Gls

1 (u
i+2, η) + · · ·+Gls

1 (u
2N , η)

)
for i =

1, 2,. . . ,(2N -1) . Here I(·) denotes an indicator function: If the event A is true then I(A) = 1, otherwise

I(A) = 0.

The probabilities of the fusion center deciding on H1 given that the true hypothesis is H0 (the global

false alarm probability) for the expected and the worst-case scenarios can be computed as follows:

PF (θ) =

2N−1∑
i=0

PFi(θ) (8)

P ls
F (θ) =

2N−1∑
i=0

P ls
Fi
(θ), (9)

where PF0(θ) = I(τ ≤ l1),PFi(θ) = I(li < τ ≤ li+1)
(
G0(u

i+1, η) +G0(u
i+2, η) + · · ·+G0(u

2N , η)
)
, similarly

P ls
F0
(θ) = I(τ ≤ l1), P

ls
F i(θ) = I(li < τ ≤ li+1)

(
Gls

0 (u
i+1, η) +Gls

0 (u
i+2, η) + · · ·+Gls

0 (u
2N , η)

)
for i = 1,

2,. . . ,(2N -1).

The global error probabilities at the fusion center for the expected and the worst-case scenarios can be

calculated as follows:
PE(θ) = π1(1− PD(θ)) + (1− π1)PF (θ) (10)

P ls
E (θ) = π1(1− P ls

D (θ)) + (1− π1)P
ls
F (θ), (11)

where π1 is the prior probability of hypothesis H1 .

In the restricted Bayes criterion, the goal is to minimize the global probability of error corresponding

to the expected scenario under the constraint on the global error probability corresponding to the worst-case

scenario.

Therefore, in the conventional approach, the following optimization problem is solved to obtain optimum

deterministic thresholds:
min
θ
PE(θ)

Subject to P ls
E (θ) ≤ β, (12)

where β is a predefined parameter determined based on the level of uncertainty [9,10,12]. Let us denote the

optimal deterministic thresholds with θopt ; then in the conventional approach the global error probabilities

corresponding to the expected and the worst-case scenarios are PE(θ
opt) and P ls

E (θopt), respectively. The

restricted Bayes criterion generalizes the minimax and the Bayes criteria, and includes them as special cases.

In (12), as β increases the restricted Bayes criterion converges to the Bayes criterion, and after some value of

β the restricted Bayes becomes equivalent to the Bayes criterion [9,10]. Similarly, as β decreases the restricted

Bayes criterion converges to the minimax criterion, and at the minimum value of β the restricted Bayes becomes

equivalent to the minimax criterion [9,10]. In fact, the minimum value of β is the probability of error when the

minimax criterion is employed.
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In the case of thresholds being random variables, the aim is to obtain optimum PDFs of the thresholds

that minimize the average global probability of error corresponding to the expected scenario while keeping the

average global error probability corresponding to the worst-case scenario below the predefined level:

min
pθ(·)

Eθ{PE(θ)}

Subject to Eθ{P ls
E (θ)} ≤ β. (13)

It should be noted that when the value of β is high enough so that the constraint on the average global

error probability corresponding to the worst-case scenario becomes ineffective, then the optimization problem in

(13) reduces to the minimization of average global probability of error corresponding to the expected scenario,

which is the optimization problem of the Bayes criterion. Under this case, replacing deterministic thresholds

by random ones is useless since optimal PDFs of random thresholds that minimize the average global error

probability corresponding to the expected scenario consist of only one point mass, which means that random

thresholds are indeed deterministic ones.

Since instantaneous error probabilities are equivalent to average error probabilities for deterministic

thresholds, all error probabilities mentioned throughout the rest of the paper are averaged ones.

3. Characterization and calculation of optimal solution

The following proposition shows that the optimal PDF of each of the thresholds consists of at most two point

masses, and the optimal thresholds depend on each other.

Proposition 1 Assume that PE(θ) and P ls
E (θ) are continuous functions, and θ belongs to a finite closed set.

Then the optimum PDF for θ is in the form of pθ(θ) = λδ(θ − θ1) + (1− λ)δ(θ − θ2) , where 0 ≤ λ ≤ 1.

Proof The proof is similar to the proof of Proposition 1 in [13].

We can reformulate (13) by employing the results in Proposition 1:

min
{λ,θ1,θ2}

λPE(θ1) + (1− λ)PE(θ2)

Subject to λP ls
E (θ1) + (1− λ)P ls

E (θ2) ≤ β. (14)

Techniques for obtaining solution of (14) are extensively studied in [14,15]. In Section V, the particle swarm

optimization (PSO) algorithm is used to solve the problem in (14).

Proposition 1 characterizes the optimal PDFs of random thresholds together with the optimum way of

implementing them. Specifically, the optimal PDFs consist of at most two point masses, and the optimum way

of employing thresholds is to sync them together. To exemplify, for a given time interval T, all local sensors and

the fusion center synchronously employ the corresponding thresholds specified by θ1 during the time interval

λT , and they use the thresholds specified by θ2 in a synchronous manner in the rest part of the time interval

(T- λT ). According to Proposition 1, the only restriction on the thresholds is them being finite, which is

emphasized there by the statement that θ must be confined in finite set, which is already the case in practice.

Thanks to the results in Proposition 1, the optimization problem in (13) is reformulated in a manageable form,

which has already been well studied.
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4. A necessary and sufficient condition for nonimprovability

Next, a necessary and sufficient condition is presented for the nonimprovability of the conventional approach

through replacing deterministic thresholds by random ones. To that end, define the auxiliary function J(t) =

inf(PE(θ)|P ls
E (θ) = t). Then we have the following proposition:

Proposition 2 Conventional approach cannot be improved through replacing deterministic thresholds by ran-

dom ones if and only if there exist ξ ≤ 0 such that

J(t) ≥ (t− β)ξ + J(β)∀t (15)

Proof The proof is based on the approach in the proof of Proposition 3 in [13]. We only present the sufficiency

of the condition due to space limitation. Consider a generic PDF for θ as pθ(θ) = λδ(θ− θ1)+ (1−λ)δ(θ− θ2);

then we have t1= P ls
E(θ1) and t2= P ls

E(θ2). Based on the condition in the proposition, we have the following

J(t1) ≥ (t1 − β)ξ+ J(β) and J(t2) ≥ (t2 − β)ξ+ J(β). Therefore, employing pθ(θ)gives the following relation:

PE(θ1) + (1− λ)PE(θ2) ≥ λJ(t1) + (1− λ)J(t2) ≥ J(β)− ξ(β − (λt1 + (1− λ)t2)) ≥ PE(θ
opt),

because of ξ ≥ 0 and λt1 + (1− λ)t2 ≤ β .

In Proposition 2, we assume that P ls
E (θopt) = β , which is the case in practice since β is set by the

designer based on the uncertainty level. If J(t) is first-order continuously differentiable, we have the relation

ξ = J ′(β).

In some circumstances, deterministic thresholds turn out to be optimal. In those cases, there is no need

to engage in the optimization problem in (13). Proposition 2 specifies these circumstances completely, and

beforehand gives us certain information about the form of the solution.

5. Numerical results

Consider the decentralized detection problem with two local sensors, and scalar observations at the local sensor

i are given as follows:

H0 : xi = n,H1 : xi = s+ n, (16)

where s is a random variable with the PDF in the form of ps(s) = 0.5δ(s−A) + 0.5δ(s+A) , where δ(·) is the

Dirac delta function and the value of A is estimated based on previous experience. In this model, the signal

under H1 employs binary modulation, namely, binary phase shift keying (BPSK). The background noise n is

symmetric Gaussian mixture with the PDF:

pn(n) =
M∑
i=1

ωiψi(n− µi), (17)

where M is the number of Gaussian components in the mixture noise PDF, µi is the mean values of the Gaussian

components,
∑M

i=1 ωi = 1 , ωi ≥ 0 , ψi(y) = (1
/√

2πσi) exp{−y2
/
(2σ2

i )} for i = 1, . . . , M , with σibeing

the standard deviations of the Gaussian components. All parameters are adjusted to make the PDF symmetric

around the origin.
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The local sensors employ the following test statistics T1(x1) = x21 and T2(x2) = x22 . For this exam-

ple, we can present Fik(ηi, sik) in the closed form expression: Fik(ηi, sik) = p
(
(n+ sik)

2 ≥ ηi|ηi, sik,Hk

)
=

M∑
m=1

ωm

(
Q
(√

ηi−sik−µm

σm

)
+Q

(√
ηi+sik−µm

σm

))
,

where si0 = 0and si1 ∈ {−A,A} , and Q-function is given as Q(x) = (1
/√

2π)
∫∞
x
e−t2/2dt . Based on

previous experience, A is assumed to be estimated as 5, but it is also assumed to be known for sure that A ≥ 3.

In this case, the estimated PDF for the signal is obtained by inserting 5 for A in ps(s) since A is estimated

as 5, and the least-favorable PDF is obtained by inserting 3 for A in ps(s) since in the scenario studied in

the remaining part of the section the maximum value of means of the gaussian components in the background

noise is 2, to which 3 is the closest value A can take. In this example, the least-favorable PDF of the signal is

independent from the thresholds for the scenario studied in the remaining part of the section.

In the Figure, the curves of error probability corresponding to the expected scenario versus error proba-

bility corresponding to the worst-case scenario are plotted for the case of thresholds being optimal deterministic

variables and the case of thresholds being optimal random variables, where c0i = c1i = 0.01 for i = 1, 2,

M = 2, µ1 = −µ2 = 2, ω1 = ω2 = 0.5, σ1 = σ2 = 0.8, π1 = 0.82. The optimal random thresholds improve

performance over optimal deterministic ones for β ∈ (0.18, 0.2378), which is also confirmed by Proposition 2.

In the cases of β = 0.18 and β = 0.2378, the restricted Bayes criterion is equivalent to the minimax and Bayes

criteria, respectively. For these cases, using random thresholds does not provide any benefits over deterministic

thresholds. It is also interesting to note that the curve corresponding to optimal random thresholds is convex.
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Figure. The curves of error probability corresponding to the expected scenario versus error probability corresponding

to the worst-case scenario for the case of using optimal deterministic thresholds and the case of using optimal random

thresholds, where c0i = c1i = 0.01for i = 1,2, M = 2, µ1 = −µ2 = 2, ω1 = ω2 = 0.5, σ1 = σ2 = 0.8, π1 = 0.82.

In the Table, the optimal PDFs of thresholds are presented for various values of β . From the Table, it is

observed that the optimal PDF of thresholds consists of at most two point masses as stated in Proposition 1.

Because of uncertainty issues, the designer sets an upper bound for error performance according to design

metrics. Performances higher than the upper bound are not tolerable from the designer’s perspective. In our
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study, the upper bound is an error probability corresponding to the worst-case scenario. Therefore, the designer

first sets an upper bound, which is the worst-case error probability in our case, and then aims to optimize the

expected error probability, which is true error probability if all estimations turn out to be perfectly correct.

In the Figure, it is shown that for some values of the upper bound, which is the worst-case error probability,

optimal random thresholds outperform optimal deterministic ones in terms of minimizing the expected error

probability, which is the approach adopted in the restricted Bayes criterion.

Table. Optimal PDFS of random thresholds under the scenario in the Figure for various values of β , pθ(θ) =

λδ(θ − θ1) + (1− λ)δ(θ − θ2) , where θ1 = [η11 η12 τ1] and θ2 = [η21 η22 τ2] .

β λ η11 η12 τ1 η21 η22 τ2
0.20 0.3621 10.4206 10.4376 3.2090 0 0.1320 0.3597
0.21 0.4550 11.3602 8.0927 0.5258 0 2.1927 0.0916
0.22 0.6974 9.9897 9.7801 1.0889 0 0.3333 0.2290
0.23 0.13 0.0866 0 0.4212 9.8691 9.7368 0.4975
0.24 1 9.4285 9.4285 0.7844 - - -

6. Concluding remarks

In this paper, the effects of replacing deterministic thresholds of local sensors and the fusion center by random

ones have been investigated according to the restricted Bayes criterion. It has been shown that the optimal

random thresholds are dependent on each other and contain at most two point masses. Two methods for the

implementation of the optimal random thresholds are proposed. A necessary and sufficient condition has been

presented to determine when employing the optimal random thresholds outperforms employing the optimal

deterministic ones. Through simulations, the effectiveness of the using the optimal random thresholds in place

of the optimal deterministic ones has been observed. Employing the absolute worst-case error probability as a

performance metric in place of the average worst-case error probability as a more conservative approach will be

investigated in future work. Considering the fact that implementing independent randomized rules is much less

costly than implementing dependent randomized ones, optimization of independent random thresholds instead

of dependent ones can also be investigated in a future study. Effects of adding correlated noises to observations

at local sensors can be investigated in other future work.
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