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Abstract: A biogeography-based optimization (BBO) algorithm was used for tuning the parameters of a proportional

integral derivative (PID) controller-based power system stabilizer (PSS). The proposed method minimizes the low

frequency electromechanical oscillations (0.1–2.5 Hz) and enhances the stability of the power system by optimally tuning

the PID parameters. This was achieved by minimizing the objective function of the integral square error for various

disturbances. The performance of the BBO algorithm was tested on a single machine infinite bus system for a different

range of operating conditions and the results were compared with particle swam optimization, adaptation law, and

conventional PSS. The result analysis concluded that the BBO algorithm damps out the low frequency oscillations in

the rotor of the synchronous machine effectively when compared to other methods. The algorithms were simulated with

MATLAB/Simulink. The results from the simulation showed that the proposed controller yields a fast convergence rate

and better dynamic performance.

Key words: Power system stabilizer, PID controller, particle swarm optimization, adaptation law, biogeography-based

optimization algorithm

1. Introduction

The ability of a system to regain its steady state when subjected to any disturbances is referred to as power

system stability. In general, power systems are nonlinear and complex. Due to insufficient damping torque, these

systems exhibit low frequency electromechanical oscillations caused by disturbances such as faults, load changes,

and voltage collapse [1]. Power system stability includes 2 distinct types of system oscillations: interarea mode

oscillations (0.1 to 0.8 Hz) and local mode oscillations (1 to 2 Hz). In interarea mode, generators are in the

same area and, because of the strong electric link, the oscillation between these generators tend to be of higher

frequency. In local mode, one generator swings in a generating station against the rest of the system.

Power system stabilizers (PSSs) are used to generate supplementary feedback stabilizing signals to the

excitation system to suppress these oscillations. Conventional power system stabilizers (CPSSs) are designed

based on stabilizer gain (Kstab), washout time (Tw), and lead–lag compensators (T1 & T2). In a CPSS, the

parameters are fine-tuned and fixed for certain operating conditions to provide better damping over a defined

operating range. When the operating condition changes, the low frequency oscillations may not be damped

satisfactorily and they exhibit a lack of robustness [2].

The proportional integral derivative (PID) controller is one of the earliest and most efficient control
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devices and is used widely in industrial control systems. Their performance is robust, and implementation is

easy [3]. In view of these advantages, the PID controller is used as an additional controller for the power system

stabilizer to damp low frequency electromechanical oscillations in the single machine infinite bus (SMIB) system

under a wide range of operating conditions.

We have designed a coordinated controller, where the parameters of the PID controller were tuned using

a trial and error method for certain operating conditions. The effectiveness of the coordinated controller was

tested for different case studies and proved to provide a better stability enhancement in the power system [4].

However, sometimes these methods do not provide good optimization and tend to produce surges and overshoots.

Several intelligent approaches have been suggested, such as the genetic algorithm (GA) [5–7], particle swarm

optimization (PSO) [8–10], and ant colony optimization (ACO) [11], to enhance the traditional PID gains tuning

techniques.

The PSO algorithm proposed by Eberhart and Kennedy [12] is a stochastic optimization technique based

on the social behavior of fish schooling and bird flocking. There are many similarities between PSO and

evolution computation techniques such as the GA. A random solution of the population is initialized and will

search for optimum values by updating the generations. However, PSO differs from the GA in that it has no

evolution operator such as mutation or crossover, but it shares some drawbacks like the premature convergence

phenomenon.

Adaptation law (AL), a method suggested by Hsu and Wu [13], is a real-time self-tuning PID controller

based on the continuous measurement of inputs and outputs of the system. AL maintains a good damping

characteristic whenever there is a severe change in the system operating conditions. Here the recursive least

square identifier method was used to minimize the search space. Although the AL method has advantages, it

requires more sample data of inputs and outputs for its optimization process.

The biogeography-based optimization (BBO) algorithm was first introduced by Simon [14]. It is a

new population-based type of evolutionary algorithm (EA). Biogeography is a branch of biology, and it is a

synthetic discipline that relies heavily on the theory and data collected from earth sciences, population biology,

systematics, and ecology [15]. It studies the migration of species between islands from less to more habitable

places and how they share information with others by probability-based migration. In biogeography, the species

movement from one island to another depends on suitability index variables, which include water resources,

the diversity of vegetation, temperature, and land area and are represented as vectors of real numbers. Many

researchers have applied the BBO to optimize the PID gains for several applications. In [16], the BBO algorithm

was applied to optimize the PID controller for nonlinear systems and was tested over an inverted pendulum

and mass–spring damper system. In [17], the BBO algorithm was introduced for self-tuning PID parameters

by improving the efficiency of migration and overcoming the premature convergence. Furthermore, the optimal

PID controller was designed using the BBO to improve the rotor angle stability of the synchronous machine

and results were tested on the SMIB system for a wide operating range [18]. The simulation results confirm the

robustness of the BBO-PID over the BBO-PSS and CPSS.

Earlier, the BBO algorithm was used to tune the parameters of a PID controller alone and the stability

of the power system was improved, using either the BBO-PID or BBO-PSS. An attempt is made in this paper,

by combining the effectiveness of the BBO-PID and PSS, to further enhance the stability of the power system

when subjected to different operating conditions.

In this paper, a method of applying the BBO algorithm is used that has better search speed and

optimization compared to a PSO algorithm and AL. The proposed method has been proved to be the best
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by comparing the performance of a synchronous machine (i.e. speed deviation and rotor angle deviation) with

other methods. In this scheme, the BBO algorithm is used to optimize PID gains and this objective is achieved

by minimizing the integral square error (ISE). This approach improves system stability, efficiency, dynamism,

and reliability of the designed controller.

2. Background

2.1. Power system stabilizer (PSS)

A block diagram of the CPSS is shown in Figure 1. A generic PSS consists of the stabilizer gain, wash-out

block, phase compensation system, and output limiter. The input signal given to the PSS is the speed deviation

signal (∆ω) and the output is the stabilizing signal (∆VPSS). In a CPSS, the gain block determines the extent

of damping that the stabilizer imposes, and the value of the gain KPSS must be chosen in the range between

20 and 200. The wash-out block acts as a high pass filter used to reduce the overresponse of the damping

during severe events. This block allows the PSS to respond when speed deviation occurs, and Tw must be

selected within 10–200. The lead-lag block is used to provide phase lead to compensate the phase lag between

the electrical torque and excitation voltage of the synchronous machine. The limiter is used to limit the output

of the PSS.

Figure 1. Conventional power system stabilizer.

2.2. PID tuning

The tuning of the PID controller is a process of determining the controller parameters, which produce the

desired output, improve robust stabilization, and minimize error. The controller tuning involves the selection of

optimized values of proportional gain (KP ), integral gain (KI), and derivative gain (KD). The mathematical

expression of the PID controller consists of control signal u(t) and control error e(t). The expression is given

by:

u(t) = KP e(t) +
1

Ti

t∫
0

e(τ)dτ + Td
de(t)

dt
(1)

where T i = integral time, Td = derivative time.

The gain KI and KD can be described as KD = KP Td and KI = KP /T i , respectively. Increasing

the value of KP makes the controller action slower, which in turn slows down the system response and increases

the error. Increasing values of KI removes or reduces the steady state error and may lead to the oscillatory

response increasing or decreasing the amplitude, which is undesirable, and the system may become unstable.

Increasing values of KD decreases the overshoot, but the system becomes unstable due to the amplification of

error signals. The stability of any system depends on rise time, decay ratio, overshoot, and settling time. The

structure of the PID controller is shown in Figure 2.
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Figure 2. PID structure.

3. Tuning of PID gains using optimization methods

3.1. Adaptation law

In [13], AL was used to tune the PID controller connected with a PSS to enhance the stability of a power system

over a wide range of operating condition. To maintain good damping characteristics in real time, the PID gains

are optimized using the system inputs and outputs. In this method, the inputs and outputs were the sampled

data of field voltage and speed deviation. In [19], AL-based PID tuning was clearly explained and implemented

on a SMIB system.

The gains, KP , KI, and KD , are calculated at each sampling instant using the estimated values of the

4 coefficients a1 , a2 , b l , and b2 , characterizing the dynamic behavior of the generator at that instant. The

values of these parameters when the damping factor α = 0.72 and sampling time Ts = 0.01 s are shown in the

Table 1.

Table 1. Parameters obtained using recursive least square algorithm.

Load Faults a1 a2 b1 b2

Normal load 200 MV
Ground –0.3603 –0.3238 –0.0135 0.0143
3-Phase –0.348 –0.5004 –0.0359 0.0381

Heavy load 600 MV
Ground –0.3741 –0.334 –0.0146 0.0182
3-Phase –0.357 –0.514 –0.038 0.040

3.2. Particle swarm optimization algorithm

PSO was developed and proposed by Kennedy and Eberhart in 1995 [12]. The PSO algorithm was designed to

simulate the behavior of birds seeking food, which is defined as a cornfield vector. Birds cooperate with others

to find food. This approach was expanded to multidimensional searches. In [20] the optimization of PID gains

using the PSO algorithm was explained extensively.

PSO parameters and values are: iteration kmax = 50; generation n = 20; wmin = 0.4; wmax = 0.9; C1

& C2 = 2. The PSO algorithm is used to solve the optimization problem and search for the optimal set of PID
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parameters. The range of PID parameters using the PSO algorithm are: 0 ≤ KP ≤ 9, 0 ≤ KI ≤ 1.2, and 0

≤ KD ≤ 1.9.

3.3. Biogeography-based optimization

A new computation algorithm based on population-based evolutionary theory was introduced based on biogeog-

raphy by Simon in 2008 [14]. The BBO model algorithm explains the migration of species from one island to

another, forming new species and making some species extinct. The habitat suitability index (HSI) defines a

suitable place for the species to reside, which features diversity of vegetation, rainfall, temperature, and land

area. An island or habitat with high HSI is considered as a good performance in an optimization problem and a

low HSI means bad performance. The number of features in each habitat is called the suitability index variable

(SIV). The number of SIVs in each of the habitats corresponds to the problem’s dimensions. SIVs are the

independent variables and HSI is considered as the dependent variable. An island with a good HSI has a high

emigration rate and a low immigration rate, and vice versa for an island having low HSI, as shown in Figure 3.

Figure 3. Model of immigration rate and emigration rate.

Here, So = number of species at equilibrium; Smax = maximum number of species; λ = immigration

rate; mu = emigration rate.

The emigration rate and immigration rate can be obtained from the graph.

λ = I.

(
1− S

Smax

)
(2)

µ =
E.S

Smax
(3)

The BBO algorithm consists of 2 important subalgorithms, which are migration and mutation. A model of the

migration and mutation algorithm was developed to obtain the best KP , KI , and KD parameters of the PID

controller.

Figure 3 is a simplified model of biota of an island; this simplified model still provides good general

relationships of immigration and emigration. In order to model the concepts of BBO in detail, consider PS as

the habitat containing exactly S species. PS changes from time t to (t+∆t) as below:

PS(t+∆t) = PS(t)(1− λS∆t− µS∆t+ PS−1λS−1∆t+ PS+1µS+1∆t) (4)

where λS and µS are the immigration and emigration rates when there are S species in the habitat.
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3.3.1. Migration

Each value of KP , KI , and KD in the solution vector is considered as a SIV. In order to know how good or

bad the habitat (solution) is, a computation is made on the HSI. In order to optimize the PID values, the HSI

would be considered as the objective functions, which are ITAE, IAE, ITSE, and ISE. In this paper, the integral

square error (ISE) of the speed deviation (∆ω) is considered as the objective function. The ISE performance

index has the advantages of producing smaller overshoots and oscillations than the IAE (integral of the absolute

error) or the ITAE (integral time absolute error) performance indices. The parameters of the PID controller

are tuned using a performance index (ISE).

The fitness function is as follows:

ISE : J =

∞∫
0

∆ω2(t)dt,∞ = t∼ (5)

where tsim = simulation time.

The speed deviation (∆ω) is the parameter that was chosen to evaluate the performance of the design

system. As the random set of KP , KI , and KD values is generated in initialization of the problem space,

each set of KP , KI , and KD is fed into the PID controller and the speed deviation performance is obtained by

evaluating the performance index, J . The KP , KI , and KD values that generate the smallest J to satisfy the

least error condition are the best values.

Thus, the problem in tuning the PID is in choosing the best habitat (solution) to minimize the perfor-

mance index, J . In BBO we say that a habitat with high HSI has a lot of species, whereas a habitat with

a low HSI has few species. Eventually the number of species will help us to decide the immigration rate and

emigration rate of each habitat.

3.4. Mutation

Mutation in BBO is considered as SIV mutation, which are KP , KI , and KD values in a habitat. The species

count probability is used to determine the mutation rate. A very low HSI and a very high HSI have less chance

to mutate when compared to a habitat that has a medium HSI. The reason for this is that a habitat that has

a very high HSI or very low HSI is given a chance to further improve the performance, whereas a medium HSI

is unlikely to mutate due to the habitat. Elitism is used to save the features of the habitat that has the best

KP , KI , and KD values in the BBO process, so even if the mutation ruins its HSI, we can revert back based

on the save features.

m = mmax

(
1− PS

Pmax

)
(6)

Here,

PS = probability of each island containing S species; Pmax = maximum of PS ;

mmax = maximum mutation rate (user defined); m = mutation rate.

The ranges of optimized parameters of the PID controller are:

Kmin
P ≤ KP ≤ Kmax

P = 0.5 ≤ KP ≤ 80
Kmin

I ≤ KI ≤ Kmax
I = 0.2 ≤ KI ≤ 30

Kmin
D ≤ KD ≤ Kmax

D = 0.1 ≤ KD ≤ 15
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The flow chart shown in Figure 4 explains the BBO algorithm for tuning the PID parameters. The parameters

of BBO for tuning the PID controller are given in Table 2.

Figure 4. BBO algorithm for optimization.

Table 2. Parameters for tuning PID gains using BBO.

Parameters Size
Habitat modification probability 1
Population number 50
Mutation rate 0.05
Iteration count 50
Number of elite habitat 4
Max. emigration and immigration rate 1
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4. Model of proposed system

The proposed system combines a PID controller with a PSS to provide a better performance for a differing

range of operating conditions. Figure 5 shows a block diagram of the proposed system. In the proposed system,

a BBO algorithm is used for tuning the PID gains to enhance the stability of the synchronous machine for

the wide range of operating conditions. The generator speed deviation (∆ω) is given as the input signal to

the proposed controller. The PSS provides the electrical damping torque in phase with the speed deviation to

improve the damping of the power system. The controller output is given to the excitation system through an

automatic voltage regulator. The aim is to control the phase difference between the generator and load. The

objective of using a BBO-based PID controller connected with a PSS is to provide a better solution to the

stability problem compared with power systems utilizing either PSS or PID controllers alone.

Figure 5. Proposed model.

5. Simulation results

To analyze the performance of the BBO-based coordinated controller, a simulation model was developed

using MATLAB/Simulink. The effectiveness of the proposed controller was investigated for various operating

conditions using the Simulink model.

The optimized values of the parameters of the generic PSS of the proposed system were [4]: KPSS =

125; Tw = 2; lead–lag time constants, T1 = 5000, T2 = 2000, T3 = 3 and T4 = 5.4; limiter = –0.5 to 0.5.

The values of the PID controller obtained using 3 methods are presented in Table 3.

The optimization results were computed and the convergence characteristics of the BBO and PSO

methods are shown in Figure 6. From the convergence plot, the BBO algorithm has better convergence than

the PSO algorithm. The dynamic behaviors and convergence characteristics of the algorithms can be analyzed

with the statistical indices mean (M) and standard deviation (σ), which are given by:

M =

n∑
i=1

f(Ki)

n
(7)
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σ =

√√√√ 1

n

n∑
i=1

(f(Ki)−M)2 (8)

where f(Ki)is the fitness value of individual Ki and n is the population size.

Table 3. Parameters obtained using 3 methods.

Tuning method
PID gains Performance
KP KI KD index (J)

BBO algorithm 52.6 20.2 9.73 6.24
PSO algorithm 5.14 0.9 1.63 23.41

Adaptation law

Normal load with ground fault –0.264 –1.53 1.24 -
Normal load with 3φ fault –0.256 –1.46 1.14 -
Heavy load with ground fault –0.261 –1.50 1.21 -
Heavy load with 3φ fault –0.25 –1.44 1.12 -

Figure 6. Comparison of fitness function.

The BBO algorithm results in a better fitness value compared to the PSO algorithm, as shown in Table 4.

Table 4. Comparison of computational efficiency of PSO and BBO algorithms.

Optimization methods Max. Min. Range Mean (M) Standard. deviation (σ)
PSO 45 23.41 21.59 26.592 5.4904
BBO 45 6.22 38.78 12.363 9.8884

Therefore, the BBO-based PID controller obtains the optimal parameters more quickly and efficiently.

The performance of BBO, PSO, AL, and CPSS were simulated and analyzed in the MATLAB/Simulink

environment for different operating conditions and the following test cases were considered for simulations.

5.1. Case 1: Normal load (200 MVA) with ground fault

Here the synchronous machine was subjected to a normal load (active power P = 200 MVA; inductive reactive

power QL = 160 MVA; capacitive reactive power QC = 160 MVA) with a ground fault condition in the

transmission line. At each transition time, the selected fault breakers opened and closed depending on the
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initial state. The ground fault is applied at t = 0.6/60 s and closed at t = 6/60 s in the transmission line.

Figures 7 and 8 show the time response of speed deviation and rotor angle deviation for Case 1.
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Figure 7. Speed deviation for normal load with ground

fault.

Figure 8. Rotor angle deviation for normal load with

ground fault.

5.2. Case 2: Normal load (200 MVA) with 3-phase fault

In this case a 3φ fault was introduced in the transmission line. In a 3φ fault condition, the fault switching of

phase A, phase B, and phase C is activated. The initial status of the fault breaker is usually 0 (open). In a 3φ

fault condition, the transition time is applied at t = 0.6/60 s and closed at t = 6/60 s in the transmission line,

similar to the ground fault. Figures 9 and 10 show the response of speed deviation and rotor angle deviation

for Case 2.
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Figure 9. Speed deviation for normal load with 3-phase

fault.

Figure 10. Rotor angle deviation for normal load with

3-phase fault.
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5.3. Case 3: Heavy load (600 MVA) with 3-phase fault

In this case, a heavy load (3 times the normal load) of active power P = 600 MVA; inductive reactive power

QL = 480 MVA; capacitive reactive power QC = 480 MVA was introduced to the synchronous machine with

ground fault condition in the transmission line. The fault transition time is same as in the previous cases. Speed

deviation and rotor angle deviation responses for Case 3 are shown in Figures 11 and 12.
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Figure 11. Speed deviation for heavy load with 3-phase

fault.

Figure 12. Rotor angle deviation for heavy load with

3-phase fault.

The above cases clearly illustrate how the proposed controller suppresses the overshoot and settling time

to the nominal level. Both the overshoot and settling time obtained by the BBO algorithm are better compared

to other methods. It can be clearly observed that the BBO-based PID PSS achieves a steady state faster than

the other methods and provides better stability.

6. Conclusion

In this paper, a BBO algorithm was used to tune the parameters of a PID controller connected with a PSS.

The design of the PID controller was considered as the optimization problem, which has been solved by the

BBO algorithm. The performance of the proposed BBO-based coordinated controller has been compared and

analyzed with PSO and AL methods. It was observed that the proposed controller significantly suppressed the

electromechanical low frequency oscillations of the rotor speed and power angle. The damping characteristics

of the proposed method were good with low-frequency oscillations, and the system stabilized quickly. The

proposed idea successfully improves the system stability, efficiency, dynamism, and reliability.
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