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Abstract:This paper presents an approach for acute hypotensive episode (AHE) time series forecasting based on hybrid

feature space and a neuro-fuzzy network. Prediction was accomplished through a combination of time domain and

wavelet features by using six vital time series of each patient, obtained from MIMIC-II and available in the context of

the Physionet-Computers in Cardiology 2009 Challenge. At first, statistical time domain features were used and then

the wavelet coefficient was utilized for extracting time scale features. Further UTA feature selection was applied and 30

effective features were determined and achieved to predict AHE with 96.30 accuracy 1.5 h before AHE onset.

Key words: Acute hypotensive episode (AHE), prediction, neuro-fuzzy network (NF), wavelet transform, feature

selection, mean arterial blood pressure (MAP)

1. Introduction

Time series forecasting is an important area of research and has many applications in various fields, such as

engineering, economics, financial management, and medicine. The most common time series models include:

1) Linear model: autoregressive integrated moving average (ARIMA)

2) Nonlinear model: neural network models and fuzzy system models [1].

Recently, the application of artificial neural networks (ANNs) in time series forecasting has been growing

and ANNs are used as important tools for prediction of nonlinear and nonstationary time series. Prediction

of physiological time series helps physicians to choose more effective treatment and prevent occurrence of

physiological disorders such as hypertension and hypotension, through proper intervention [2]. Hypotension is

a common occurrence in the intensive care unit in which the blood pressure is abnormally low. It can deprive

the brain and other vital organs of oxygen and nutrients, damage the organ, or eventually cause death, and so

early detection of hypotension is essential [3].

In [4] the shape of atrial blood pressure (ABP) waveforms taken from invasive beat-by-beat blood pressure

measurement devices was examined and parametric and nonparametric methods were suggested to characterize

ABP before AHE.

In [5] a similarity-based searching and pattern matching algorithm was presented that were classified and

predicted AHE. In [6] the variance of the ABP signal and the variance of the ABP wave’s slope were used as

relevant features to predict AHE.

AHE prediction was the subject of the Physionet and Computers in Cardiology for 2009 Challenge and
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a wide range of researchers were worked on it. In [7] generalized regression neural network models integrated in

to a multimodel structure was proposed for prediction of MAP signal and diagnosis of AHE. Considering other

vital signals in this methodology may reduce the number of multimodels or increased the horizon of prediction.

In [8] AHE was predicted by using Haar wavelet decomposition and reconstruction together with a feed-

forward neural network structure and achieved effective prediction by using only ABP signals. In [2] a local

linear neuro-fuzzy model was used in order to predict mean arterial blood pressure (MAP) time series. In [9],

the predicting model was developed by using median and maximum of wavelet coefficient based on support

vector machine (SVM). In [10] a hybrid methodology based on discrete wavelet transform and time delay

embedding neural network structure was applied to MAP time series and estimated prediction. In [11] effective

time domain features were selected by genetic algorithm and prediction performed with a simple linear support

vector classifier (LSVC) that can find the optimal linear boundary between two classes.

All mentioned publications presented the best AHE prediction over a one hour forecast horizon and used

a long period of ABP signals. Accordingly, in order to increase forecast horizon and reduce the observation

window as compared to the previous studies, this paper attempts to consider other significant time series in

addition to ABP signals and improving the generalizing ability of the intelligent network by considering a large

scale database. All segments of the signal are depicted in Figure 1.

Figure 1. Data segmentation.

This paper presents an algorithm that is based on a hybrid time and time-scale feature vector and a

powerful neuro-fuzzy classifier. This algorithm used a much larger database to validate and generalize the

prediction. Section 2 of this study presents three different classifiers for AHE prediction: multilayer perceptron

(MLP) network, k nearest neighbor (KNN), and neuro-fuzzy network. In the third section, the best structure is

chosen and feature selection is done in order to maximize the forecasting horizon. There are four different types

of features categorized into four groups named statistical time domain, time domain, time scale, and statistical

time scale features.

2. Procedure methodology

There are various classifier structures for predicting time series. In this research, three different classifiers were

tested using a hybrid feature vector over different forecasting horizon in order to determine maximum achievable

effective forecast horizon for hypotension event prediction.

2.1. Feature extraction

Six vital time series that are more easily available for patients in the MIMIC-II Database were selected: heart

rate (HR), diastolic blood pressure (DBP), systolic blood pressure (SBP), mean arterial blood pressure (MAP),

SPO2 saturation, and respiration rate (RESP).

Each signal was divided into three time intervals as described in section 3. Prediction was done based on

the best observation window that is before AHE onset and which is named T0 . Features were extracted from

each case base on the observation window of six time series.
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The observation window of each signal was divided into five minutes windows for extracting features.

Mean, median, variance, and skewness as important statistical features are extracted from the five minute

selected windows. Mean and median represent the magnitude of each physiologic variable, variance describes

the variability of ones, and skewness is the third moment of amplitude distribution [12].

Another type of feature extracted is the discrete wavelet transform features depicting the signal in both

time and frequency (scale) domain. Wavelet transform is an effective tool for nonstationary signal processing.

Each signal can decompose to different ranges of frequency signals that are known as wavelet coefficients.

The original signal passes through low-pass and high-pass filters and emerges approximation and details as

shown in Figure 2.

Multiple-level decomposition was applied in this paper and approximations were decomposed in turn and

it is depicted in Figure 3, so that one signal was broken down into many lower-resolution components. AL (t)

and DL (t) are approximation and the detail coefficients at level L, respectively [13,14].

Figure 2. Wavelet transform. Figure 3. Multiple-level decomposition.

In previous studies, Haar wavelet [8] or Daubechies wavelet [9] was employed to extracting features

and they employed only MAP signal. [15] stated that Haar wavelet is not smooth and suitable enough for

nonstationary signals. In [16] it was shown that forecasting accuracy can be approved using Daubechies wavelet

as compared to Haar.

Daubechies basis wavelet was chosen here and statistical analysis was performed on AL (t) and DL (t) of

each time series.

2.2. Classification

The first classifier used was the well-known general model of multilayer perceptron (MLP), which is a feed

forward artificial neural network and in this approach the back propagation technique was used for training.

The structure of the MLP is shown in Figure 4. The MLP network is composed of hidden layers with hyperbolic

tangent activation function and an output layer. The exact number of the hidden neurons was determined by

trial and error and initial weights were selected randomly.

The learning approach was implemented and corrected weights from the last layer to the first layer until

satisfying the stop condition. The learning process was performed for prespecified iteration or until the error

was less than a prespecified number. Finally, the output network was compared to the expected result [17].
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Figure 4. MLP structure.

The second classifier used was the K nearest neighbor (KNN). This classifier uses an instance-based

method that classifies examples in the test set based on their similarity with examples in the training set. In

this approach, KNN classified examples between two classes described in section 3 and compared them with the

expected output.

The third classifier is a neuro-fuzzy network. There exist two approaches for designing a fuzzy system

from input-output pairs:

1) Fuzzy IF-THEN rules are generated from input-output pairs, and the fuzzy system is then constructed

according to choice of fuzzy inference engine, fuzzifier and defuzzifier.

2) The structure of the fuzzy system is specified first and some parameters are free to change and they are

obtained according to the input-output pairs in training.

In this paper the second approach was applied. The used fuzzy structure is defined with product inference

engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership function. The output of the

network is evaluated using Eq. (1).
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depicts the fuzzy system f (x) of Eq. (1) such as a feed forward neuro-fuzzy network.

Designing the fuzzy system through gradient descent learning was done through the following steps:

Step1: the fuzzy system was considered as Eq. (1) and the initial parameters were randomly selected

and the number of rules selected by trial and error (M).

Step2: for each input-output pair (xp
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Figure 5. Network representation of the fuzzy system.

b =
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zl (3)
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ȳl (q) zl (4)

f = a/b (5)

Step3: the free parameters were updated by using Eq. (6) to Eq. (8) for q=1, 2,. . . ,M and i=1,2,. . . ,n :
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where i is the number of features used, l is the number of rules l=1,2,. . . ,M , and α is the learning rate and

it is between 0 and 1.

Step4: if the error |f − yp0 | or mean square error (MSE) gets less than a prespecified value or until

prespecified iteration or gets the best result before overtraining, which is used here, free parameters and M are

saved and training stage finishes, else go step 5.

Step5: the process was repeated from step 2 by presenting inputs of the training set to the fuzzy system

for the next iteration.

The learning algorithm applied here performed such as back-propagation error procedure; therefore, this

algorithm is called the error back-propagation learning algorithm [18].
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3. Result

3.1. Data

The presented algorithm was tested over the MIMIC-II database, which is composed of vital signals and is

available at www.Physionet.org. Each selected record consisted of three time intervals: 1) 10 or 30 minute

observation window 2) forecast window defined as the 1.5 hour period before T0 or AHE onset 3) 30 minute

target window. The target window of each record was classified into “Hypotensive” or “Control”. Records

in group H contain an episode of acute hypotension beginning during the forecast window and those in group

C contain no episodes of acute hypotension during their stay in hospital or forecast window according to the

MIMIC-II database. An AHE is defined as any period of 30 minutes or more during which at least 90% of the

mean arterial blood pressure measurements were at or below 60 mmHg.

3.2. Training and test datasets

180 patients of both groups are randomly selected from MIMIC-II. Either the training set or test set included 90

cases. Each record includes six time series (HR, SBP, DBP, MAP, RESP, SPO2) which has at least 60 minutes’

data before T0 . All signals’ sampling intervals are 60 s. The missing information of time series was obtained by

linear interpolation. The range of variability of every signal was normalized to the [0,1] interval. Ten minutes’

data before T0 were used for time domain feature extraction and statistical time scale features are extracted

from the last 30 minutes of the original signals for the 4th decomposition level and the Daubechies Wavelet

transform (db4) was selected for appropriate content of the features in this level.

3.3. Acute hypotensive episode prediction result

The error back-propagation neuro-fuzzy structure proposed in section 2 has three layers: input layer, hidden

layer, and output layer. The best number of hidden neurons was selected by trial and error.

Table 1 indicates the best predictive performance results for three networks. These algorithms were

utilized for different forecast horizon as 1 hours, 1.5 hours and 2 hours. The best effective forecast horizon was

selected 1.5 hours and 102 time domain features were used for all algorithms.

Table 1. Results of different neural networks for different forecast horizon.

Observation window: 10 min Forecast horizon: 60 min
Algorithm SE SP ACC MSE
MLP N102,12,8,10,2 81.48 88.89 85.19 0.002
KNN, K=3 81.48 70.37 75.93 3.4 × 10−4

NF N102,22,2 85.19 88.89 87.04 0.002
Observation window: 10 min Forecast horizon: 90 min
Algorithm SE SP ACC MSE
MLP N102,18,14,2,2 85.19 81.48 83.33 0.15
KNN , K=4 70.37 85.19 77.78 0.19
NF N102,30,2 88.89 85.19 87.04 0.004
Observation window: 10 min Forecast horizon: 120 min
Algorithm SE SP ACC MSE
MLP N102,44,16,11,2 70.37 75.93 79.63 0.18
KNN , K=2 70.37 74.07 72.22 6.3 × 10−6

NF N102,30,2 85.19 81.48 83.33 8.1 × 10−4
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According to the Table 1, each algorithm used the same feature vector, which consisted of time domain

features as mean, median, variance, and skewness of the 2 last consequent five minutes of each signal together

with the original data of the 10 last minutes of the signals and described the result as accuracy, sensitivity and

specificity, described as follows:

Sensitivity (SE) is the percentage of records correctly identified as group H, specificity (SP) is the

percentage of records correctly identified as group C, and accuracy (ACC) is the percentage of true prediction.

Sensitivity =
TP

(TP + FN)
× 100 (9)

Specificity =
TN

(TN + FP)
×100 (10)

Accuracy =
(TP + TN)

(TP + TN+ FP + FN)
×100 (11)

The terms of TP, TN, FN, and FP are true positive, true negative, false negative, and false positive, respectively.

Because of the NF network’s good results, it was selected for feature selection in order to improve its

overall performance.

As stated in Table 2, when the time domain features were applied to the network, the result as compared

to previous papers was 87.04% accuracy, while the observation window was reduced to 10 minutes, and it was

increased to 90.74% by adding time scale features to the vector. In order to select effective and consistent

features, the feature selection technique was used. The UTA approach was proposed in [19] and it is based on

a trained network that was used.

Table 2. Feature selection and prediction result

Algorithm Feature SP SE ACC MSE
NF N102, 30, 2 102 time domain 88.89 85.19 87.04 0.004
1stage UTA NF N16, 30,2 16 time domain 88.89 85.19 87.04 0.006
2stage UTA NF N8, 28, 2 8 time domain 85.19 88.89 87.04 0.004
NF N146, 24, 2 8 time domain+ 138 wavelet 96.30 85.19 90.74 5 × 10−4

1 stage UTA NF N45, 38, 2 4 time domain+ 41 wavelet 96.30 96.30 96.30 8 × 10−4

2 stage UTA NF N30, 34, 2 3 time domain+ 27 wavelet 92.59 1 96.30 7 × 10−5

In the UTA method, the theory of feature effectiveness is based on the fact that if a feature is constant

for all the instances then it could not participate in classification because the classifier could not differentiate

between instances using that feature. In the UTA algorithm the features are selected one by one and a constant,

which is the mean value of that feature in all instances, is replaced instead of that feature. The FP+FN minus

the previous value (the FP+FN using original features) could be zero, positive, or negative, which means that

the selected feature is not efficient, efficient, or destructive, respectively. UTA was implemented in the test

dataset.

If FP+FN new > FP+FNold then feature is efficient.

If FP+FN new < FP+FNold then feature is not efficient.

If FP+FN new = FP+FNold then feature is destructive.

In this paper UTA first was implemented on time domain features in 2 stages and eventually 8 relevant

time domain feature were selected from 102 features. These features were extracted from 5 time series (SBP,
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DBP, MAP, RESP, and SPO2). After that, time scale features were added to them and accuracy was increased

by using the new feature vector; then UTA was applied in two times in order to minimizing the feature vector.

Figure 6 depicts the last two stages feature selection.
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Figure 6. UTA algorithm on time scale and time domain features (a) 1Stage UTA in NF network (b) 2Stage UTA in

NF network.

Optimal features were obtained from 5 time series: HR, SBP, DBP, MAP, and RESP, and the feature

selection process reduced features from 146 to 30 effective and consistent features. None of the SPO2 extracted

features were determined as effective in AHE prediction.

Table 2 shows the results of the UTA process. The best neuro-fuzzy network has 30 features, which

consisted of 3 time domain features that were extracted from SBP, DBP, and MAP signals and 27 time scale

features extracted from HR, SBP, DBP, MAP, and RESP signals. Table 3 depicts the details of the best

neuro-fuzzy network.

4. Comparison of the proposed method with other approaches

Table 4 shows a comparison of the best prediction between previous works, which are mentioned in the first

section, and the proposed method. Most of them used training and test datasets in the Physionet-Computers

in Cardiology 2009 Challenge, except [7–12] in which they selected large dataset from MIMIC-II. In this paper
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each sample is related to one patient and the first experience of AHE is predicted, but in [7–12] some records

were divided into some segments as a sample in which both groups (H and C) may contain one patient.

Table 3. Results of the best algorithm.

Algorithm Feature Control class Hypotensive class
TP1=25 TP2=27

NF N30, 34, 2 with 3 time domain+ TN1=27 TN2=25
UTA feature selection 27 wavelet FN1=2 FN2=0

FP1=0 FP2=2

Table 4. Comparison between the different methods.

Method Signal SE SP ACC
Observation Forecast
window horizon

[7] Generalized regression neural network
MAP - 78.4 82.8 - 60 min

(GRNN)
[12] Principal Component Analysis and MAP-DBP-

81.2 86.4 86.3 30 min 60 min
MLP neural network SBP-HR
Proposed approach (time domain features MAP-DBP-

88.89 85.19 87.04 10 min 90 minand neuro-fuzzy network without feature SBP-HR-
selection) RESP-SPO2
[9] Wavelet transform and support vector

MAP 81.25 - 92.96 60 min 60 min
machine classifier
[11] Feature selection through genetic

MAP 92.40 94.42 93.65 90 min 60 minalgorithm and simple linear support
vector classifier
[8] wavelet transform and feed-forward

MAP 94.74 93.55 94 120 min 60 min
neural network
[10] wavelet transform and time delay

MAP 93.3 96 95 - 60 min
embedding neural network
Proposed approach (Hybrid features with MAP-DBP-

1 92.59 96.30 30 min 90 minUTA feature selection and neuro-fuzzy SBP-HR-
network) RESP-SPO2

Table 3 depicts the ability of the proposed method before and after using hybrid features and feature

selection in comparison with other methods. Some previous works stated ACC as the final result; comparison

is done based on the best ACC while in the proposed method either ACC or MSE is calculated.

5. Conclusion

The concept of ANN is a powerful tool for time series forecasting. This paper investigated three different

neural and neuro-fuzzy networks. The proposed method used time domain features together with time scale

features in a hybrid vector to predict hypotension 1.5 hours before using neuro-fuzzy classifier. Further it

utilized UTA feature selection to find effective features in order to minimize the feature vector size and improve

the classification performance. The proposed model achieved 100% sensitivity, 92.59% specificity, and 96.30%

accuracy. Using the hybrid effective features together with the neuro-fuzzy network led to a longer forecast

horizon and reduced the observation window; also it has an acceptable accuracy compared to all the presented

approaches as listed in Table 4. The presented approach, unlike previously presented researches, is generalized

and proves its ability on the whole MIMIC-II and it may have practical application.
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