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Abstract:This paper considers the problem of global asymptotic stability of a class of two-dimensional (2-D ) uncertain

discrete systems described by the Fornasini–Marchesini second local state-space (FMSLSS) model under the influence

of various combinations of quantization/overflow nonlinearities and interval-like time-varying delay in the state. The

systems under consideration involve parameter uncertainties that are assumed to be deterministic and norm-bounded.

A delay-dependent stability criterion is established by bounding the forward difference of the 2-D Lyapunov functional

using the reciprocally convex approach. The criterion is compared with a recently reported criterion.

Key words: Delay-dependent stability criterion, finite wordlength effect, Lyapunov stability, state-delayed system,

two-dimensional system, uncertain system

1. Introduction

During the past two decades, significant research has been done on two-dimensional (2-D ) systems and their

practical applications in the field of digital image processing, digital control systems, thermal processes, chemical

reactors, river pollution modeling, seismographic data processing, gas filtration process [1–4], etc. Therefore,

2-D system analysis and design has received a substantial amount of interest and is considered a challenging

task.

Finite wordlength nonlinearities such as quantization and overflow are inherently present in discrete

systems implemented using fixed-point arithmetic. Such nonlinearities may lead to instability in the designed

system [5]. The problem of global asymptotic stability of 2-D discrete systems with quantization or overflow

nonlinearities has received considerable attention (see, for instance, [6–11] and the references cited therein).

Since the practical 2-D discrete systems operate under the influence of the combination of quantization and

overflow nonlinearities, the study of stability properties of discrete systems involving both types of nonlinearities

appears to be more realistic [12–16].

Physical systems may suffer from parameter uncertainties that arise due to modeling errors, variations

in system parameters, finite resolution of the measuring equipments or some ignored factors [17]. The existence

of parameter uncertainties may lead to instability in the designed system.

Delays are another source of instabilities that are frequently encountered in many physical, industrial,

and engineering applications such as processing of images, cold rolling mills, decision making of manufacturing

systems [17, 18] etc. Time delays are an outcome of the finite computational time or transportation delay
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among the various parts of the system [17]. Delays can be constant or time-varying in nature. In general,

the stability criteria for discrete state-delayed systems can be classified into delay-independent [17, 19, 20] and

delay-dependent [11, 16, 17, 21–28]. It is well known that the delay-dependent criteria generally lead to less

conservative results as compared to the delay-independent criteria with a computational overhead [22, 25]. The

development of the techniques for the delay-dependent stability criteria has been targeting the conservativeness

and computational complexity of the stability conditions. Based on Lyapunov’s stability theory, selection of a

suitable Lyapunov functional is one of the primary steps to reduce the conservativeness, and a large amount

of work (see, for instance, [22, 23, 29, 30]) has been dedicated in this aspect in order to obtain improved

results. The commonly used techniques to obtain delay-dependent stability criteria include the free-weighting

matrices method to relax the matrix cross-products [16, 22, 27] and the bounding techniques of the cross-terms

and sum terms in the forward difference of the Lyapunov functional [23, 26, 28]. Although the free-weighting

matrices method [16, 22, 27] is an effective way to reduce conservatism of the stability criteria, introduction of

too many free matrix variables makes the criteria mathematically complex and computationally less effective

and complicates the system analysis/synthesis procedure. Therefore, it remains a challenge to derive improved

stability results without increasing the computational burden.

The problem of establishing delay-dependent criteria for the global asymptotic stability of uncertain

2-D discrete systems described by the Fornasini–Marchesini second local state-space (FMSLSS) model with

time-varying delay subject to various combinations of quantization and overflow nonlinearities in their physical

models is a realistic and challenging task. Recently, a delay-dependent stability criterion for such systems has

been reported in [16]. Due to the utilization of free-weighting matrices, the criterion in [16] generally leads to

heavier computational burden. Thus, there is still some room to improve the stability criterion in [16].

In this paper, we investigate the problem of global asymptotic stability of 2-D uncertain discrete systems

described by the FMSLSS model involving finite wordlength nonlinearities and interval-like time-varying delay in

the state. The main contributions of the proposed method are highlighted as follows: (a) The 2-D system under

consideration is comprehensive and employs various combinations of quantization/overflow nonlinearities, time-

varying delays, and parameter uncertainties. (b) To derive the delay-dependent stability conditions, unlike [16],

a tighter bounding technique based on the reciprocally convex method [28, 31] is used in this paper to deal with

the sum terms, which reduces the computational demand and simplifies system analysis/synthesis procedure.

(c) Motivated by the work on one-dimensional (1-D ) systems presented in [26], a 2-D Lyapunov functional is

introduced to derive computationally tractable conditions under which the global asymptotic stability of the

addressed system is guaranteed.

This paper is organized as follows. Section 2 describes the system under consideration and presents the

lemmas used. A new delay-dependent linear matrix inequality (LMI) based criterion for global asymptotic

stability of uncertain 2-D discrete systems described by the FMSLSS model with interval-like time-varying

state-delays employing various combinations of quantization and overflow nonlinearities is proposed in Section

3. In Section 4, with the help of examples, the proposed criterion is compared with a recently reported criterion

[16].

2. System description

Notations: The notations used throughout this paper are standard. Rp denotes the p-dimensional Euclidean

space; Rp×q is the set of p× q real matrices; 0 represents null matrix or null vector of appropriate dimension;
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I is the identity matrix of appropriate dimension; BT stands for the transpose of the matrix (or vector) B ;

B > 0 (≥ 0) means that B is a positive definite (semidefinite) symmetric matrix; B < 0 represents that

B is a negative definite symmetric matrix; diag {g1, g2, . . . , gn} is a diagonal matrix with diagonal elements

g1, g2, . . . , gn ; Z+ is the set of nonnegative integers; Q(·) represents quantization nonlinearities; O(·) denotes

overflow nonlinearities; f(·) is the composite nonlinear function; ∥ · ∥ represents any vector or matrix norm;

sup{·} denotes the supremum or least upper bound of a set; the symbol ‘∗ ’ represents the symmetric terms in

a symmetric matrix.

Consider a class of 2-D discrete uncertain systems represented by the FMSLSS model [32] with interval-

like time-varying delays under various combinations of quantization and overflow nonlinearities. Specifically,

the system under consideration is described by

x(i+ 1, j + 1) = O{Q(y(i, j))} = f(y(i, j))

= [f1(y1(i, j)) f2(y2(i, j)) · · · fn(yn(i, j))]
T
, (1a)

y(i, j) =(A1 +∆A1)x(i, j + 1) + (A2 +∆A2)x(i+ 1, j)

+ (Ad1 +∆Ad1)x(i− α(i), j + 1) + (Ad2 +∆Ad2)x(i+ 1, j − β(j))

=[y1(i, j) y2(i, j) . . . yn(i, j)]
T (1b)

where i ∈ Z+ and j ∈ Z+ are horizontal coordinate and vertical coordinate, respectively; x(i, j) ∈ Rn is

the local state vector; A1 , A2 , Ad1 , Ad2 ∈ Rn×n are the known constant matrices; ∆A1 , ∆A2 , ∆Ad1 ,

∆Ad2 ∈ Rn×n are the unknown matrices representing parametric uncertainties in the state matrices; α(i) and

β(j) are time-varying delays along horizontal direction and vertical direction, respectively. Assume that α(i)

and β(j) satisfy

αl ≤ α(i) ≤ αh, βl ≤ β(j) ≤ βh, (1c)

where αl and βl are constant nonnegative integers representing the lower delay bounds along horizontal and

vertical directions, respectively; αh and βh are constant nonnegative integers representing the upper delay

bounds along horizontal and vertical directions, respectively.

In the event of Q(·) being either magnitude truncation or roundoff, f(·) is confined to the sector [ko, kq] ,

i.e.

fk(0) = 0, koy
2
k(i, j) ≤fk(yk(i, j))yk(i, j) ≤ kqy

2
k(i, j), k = 1, 2, ..., n, (2a)

where

kq =

{
1, for magnitude truncation

2, for roundoff
, ko =


0, for zeroing or saturation

−1

3
, for triangular

−1, for two’s complement.

(2b)

The uncertainties in the state matrices are assumed to be of the form [14, 16, 19]

[∆A1 ∆A2 ∆Ad1 ∆Ad2 ] = [HFE1 HFE2 HFEd1 HFEd2 ] (3)

where H ∈ Rn×p , E1 , E2 , Ed1 , Ed2 ∈ Rq×n are known constant matrices and F ∈ Rp×q is an unknown

matrix that satisfies F TF ≤ I .
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It is assumed [11, 16, 21, 22, 25] that system (1) has a finite set of boundary conditions, i.e. there exist two

positive integers K and L such that

x(i, j) = 0, ∀i ≥ K, j = −βh,−βh + 1, . . . , 0,

x(i, j) = uij , ∀ 0 ≤ i < K, j = −βh,−βh + 1, . . . , 0,

x(i, j) = 0, ∀j ≥ L, i = −αh,−αh + 1, . . . , 0,

x(i, j) = vij , ∀ 0 ≤ j < L, i = −αh,−αh + 1, . . . , 0,

u00 = v00. (4)

Eqs. (1)–(4) can be used to represent a large class of uncertain discrete dynamical 2-D systems operating under

the influence of quantization and overflow nonlinearities and delays in the state. Such systems include finite

wordlength implementation of 2-D digital control systems, dynamical processes represented by the Darboux

equation [33, 34], river pollution modeling [2], networked control systems or event controlled systems via

communication network [35], wireless sensor platforms employing fixed-point digital processors [36], and so
on.
The following definition and lemmas are needed in the proof of our main result.

Definition 1 [1, 32] The system described by (1) is asymptotically stable if lim
l→∞

xl = 0 for all boundary

conditions in (4), where xl = sup {∥x(i, j)∥ : i+ j = l, i, j ≥ 1} .

Lemma 1 [28, 31] For any vectors ξ1 , ξ2 , matrices R , S and real numbers α1 ≥ 0 , α2 ≥ 0 satisfying

[
R S

∗ R

]
≥ 0, α1 + α2 = 1, (5)

ξi = 0, if αi = 0 (i = 1, 2) (6)

then

− 1

α1
ξT1 Rξ1 −

1

α2
ξT2 Rξ2 ≤ −

[
ξ1

ξ2

]T [
R S

∗ R

][
ξ1

ξ2

]
. (7)

Lemma 2 [23] For any positive definite matrix J ∈ Rn×n , two positive integers r and r0 satisfying r ≥ r0 ≥ 1 ,

and vector function χ(i, j) ∈ Rn , one has

(
r∑

i=r0

χ(i, j)

)T

J

(
r∑

i=r0

χ(i, j)

)
≤ (r − r0 + 1)

r∑
i=r0

χT (i, j)Jχ(i, j). (8)

3. Main result

In this section, an LMI-based criterion for the global asymptotic stability of the system (1)–(4) is established.

The main result may be stated as follows.
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Theorem 1 Given positive integers αl , αh , βl , βh satisfying 0 < αl < αh and 0 < βl < βh , the system

represented by (1)–(4) is globally asymptotically stable if there exist matrices P i > 0 (i = 1, 2) , Qi >

0 (i = 1, 2, . . . , 6) , Zi > 0 (i = 1, 2, 3, 4) , a positive definite diagonal matrix G = diag(g1, g2, ..., gn) , matrices

Si (i = 1, 2) with compatible dimensions, and a positive scalar ϵ such that the following LMIs hold

Θ̄ =

[
Z2 S1

∗ Z2

]
≥ 0, Θ̂ =

[
Z4 S2

∗ Z4

]
≥ 0, (9)



Ξ11 + ϵET
1 E1 ϵET

1 E2 ϵET
1 Ed1

ϵET
1 Ed2

Z1 0

∗ Ξ22 + ϵET
2 E2 ϵET

2 Ed1
ϵET

2 Ed2
0 0

∗ ∗ Ξ33 + ϵET
d1

Ed1
ϵET

d1
Ed2

Z2 − ST
1 −S1 + Z2

∗ ∗ ∗ Ξ44 + ϵET
d2

Ed2
0 0

∗ ∗ ∗ ∗ −Q1 − Z1 − Z2 S1
∗ ∗ ∗ ∗ ∗ −Q2 − Z2
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 Ξ19 + kqAT
1 G −kq

√
−2koAT

1 G 0

Z3 0 Ξ29 + kqAT
2 G −kq

√
−2koAT

2 G 0

0 0 kqAT
d1

G −kq
√

−2koAT
d1

G 0

Z4 − ST
2 −S2 + Z4 kqAT

d2
G −kq

√
−2koAT

d2
G 0

0 0 0 0 0
0 0 0 0 0

−Q4 − Z3 − Z4 S2 0 0 0
∗ −Q5 − Z4 0 0 0

∗ ∗ Ξ99 +

 ko

2kq

G

√
−ko

2
G kqGH

∗ ∗ ∗ −kqG −kq
√

−2koGH
∗ ∗ ∗ ∗ −ϵI



< 0

(10)

where

Ξ11 =− P 1 +

3∑
i=1

Qi + αhlQ3 −Ξ19 −Z1, Ξ19 = −(α2
lZ1 + α2

hlZ2), (11)

Ξ22 =− P 2 +

6∑
i=4

Qi + βhlQ6 −Ξ29 −Z3, Ξ29 = −(β2
l Z3 + β2

hlZ4), (12)

Ξ33 =−Q3 − 2Z2 + ST
1 + S1, Ξ44 = −Q6 − 2Z4 + ST

2 + S2, (13)

Ξ99 =P 1 + P 2 −Ξ19 −Ξ29 − 2G, (14)

αhl =αh − αl, βhl = βh − βl. (15)

The proof of Theorem 1 is given in the Appendix.

Remark 1. The conditions given in Theorem 1 are in the form of LMIs that can be conveniently solved using

MATLAB environment along with YALMIP 3.0 parser [37] and SeDuMi 1.21 solver [38]. With the SeDuMi

solver, the numerical complexity of Theorem 1 is proportional to M2
1L

5
2
1 +L

7
2
1 [29] with L1 (total row size of the

LMIs) = 27n+p+1 and M1 (total number of scalar decision variables) = 8n2+7n+1. On the other hand, the

numerical complexity of Theorem 1 in [16] is M2
2L

5
2
2 +L

7
2
2 , where L2 = 49n+ p+ 1 and M2 = 26n2 + 11n+ 1.

Thus, as compared to Theorem 1 in [16], Theorem 1 is advantageous in terms of numerical complexity. The

Table shows a comparison of the numerical complexity for p = 1.
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Table. Comparison of numerical complexity.

Methods Numerical complexity using SeDuMi solver (M2L
5
2 + L

7
2 )

n = 2 n = 3 n = 4

Theorem 1 in [16] 1.62× 109 1.95× 1010 1.17× 1011

Proposed method (Theorem 1) 53154295 5.59× 108 3.14× 109

Remark 2. The Lyapunov functional (see (A-1)–(A-4)) used in the proof of Theorem 1 may be treated as an

extension of the 1-D Lyapunov functional employed in [26] for delay-dependent stability analysis of discrete-time

systems with time-varying delay.

Remark 3. In our approach, the matrix variables S1 and S2 in (9) are the degrees of freedom and they play

an important role in reducing the conservativeness of Theorem 1.

Remark 4. Condition (10) is dependent on the parameters ko and kq . Note that ko and kq are independent

of wordlength used to implement the 2-D system (1). Thus, Theorem 1 can also be used as a global asymptotic

stability test for 2-D systems implemented with different wordlengths (or variable wordlengths) for various sig-

nals (resulting in different quantization step sizes and/or different overflow levels). Moreover, using Theorem 1,

it may be possible to determine the various combinations of quantization and overflow that would be required

to ensure the absence of limit cycles in the 2-D system.

4. Comparative evaluation

To demonstrate the effectiveness of the present result and compare it with a previous result [16], we now consider

the following examples.

Example 1. Consider the system (1)–(4) with

A1 =

[
0.02 1
−0.09 0.15

]
, A2 =

[
0.2 0
0.26 0.12

]
, Ad1 =

[
0 0.1
0 0

]
, Ad2 =

[
0.02 0
0 −0.12

]
,

H =

[
0
0.1

]
, E1 = E2 = [0.01 0], Ed1 = Ed2 = [0 0.01], αl = 3, αh = 7, βl = 2 (16)

and the composite nonlinearities belong to the sector [ko, kq] = [−1, 1] which includes saturation, zeroing,

triangular, two’s complement overflow, magnitude truncation, combinations of saturation and magnitude trun-

cation, zeroing and magnitude truncation, triangular and magnitude truncation, two’s complement overflow

and magnitude truncation, etc. By using YALMIP 3.0 parser [37] and SeDuMi 1.21 solver [38], it is found

from Theorem 1 that the present system is globally asymptotically stable for the delay range 3 ≤ α(i) ≤ 7 and

2 ≤ β(j) ≤ 10. For the present example, Theorem 1 in [16] also succeeds in establishing the global asymptotic

stability for βh = 10, which is identical to that arrived at via Theorem 1. However, as shown in the Table,

Theorem 1 has much smaller numerical complexity than Theorem 1 in [16].
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Example 2. Consider a system represented by the following Darboux equation [33, 34]:

∂θ(x, t)

∂x
= −∂θ(x, t)

∂t
− a0θ(x, t)− a1θ(x, t− τ), (17)

where θ(x, t) is the temperature at space x ∈ [0, xf ] and time t ∈ [0,∞), τ is the time delay, and a0 and a1

are real coefficients. Eq. (17) may be used to describe thermal processes in chemical reactors, heat exchangers,

pipe furnaces [16, 21, 25], etc. As shown in [16], (17) can be transformed into the following FMSLSS model:

x(i+ 1, j + 1) =

[
0 1
0 0

]
x(i, j + 1) +

[
0 0
∆t
∆x

(1− ∆t
∆x

− a0∆t)

]
x(i+ 1, j)

+

[
0 0
0 0

]
x(i− α(i), j + 1) +

[
0 0
0 −a1∆t

]
x(i+ 1, j − β(j)). (18)

In the presence of finite wordlength nonlinearities and parameter uncertainties, the system (18) converts

itself into the format of (1)–(4). Now choose a0 = 5, a1 = 1.2, ∆x = 0.4, ∆t = 0.1, [ko, kq] = [−1, 1],

H =
[
0 0.1

]T
, E1 = E2 = [0.01 0], Ed1

= Ed2
= [0 0.01]. This example was also considered in [16].

Using Theorem 1, it turns out that the present system is globally asymptotically stable over the delay range

3 ≤ α(i) ≤ 7 and 2 ≤ β(j) ≤ 17. It is verified that Theorem 1 in [16] assures the global asymptotic stability

for the same delay range but with a heavier computational burden.

From the above examples, it is clear that Theorem 1 may provide the same level of conservativeness with

significantly reduced computational burden in comparison with [16].

5. Conclusion

By using the reciprocally convex approach, a delay-dependent LMI-based stability criterion (Theorem 1) for a

class of 2-D uncertain discrete systems with interval-like time-varying delays subject to various combinations

of quantization and overflow nonlinearities has been proposed. As compared to [16], the proposed criterion

leads to the same level of conservativeness with significantly reduced computational burden. The 2-D stability

results presented in this paper can be easily extended to m-D (m > 2) systems. Further work is required to

reduce the conservativeness of Theorem 1 by possibly making use of frequency-dependent Lyapunov functions

[30] along with more precise characterization of uncertainties, nonlinearities, and delays.
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Appendix. Proof of Theorem 1

Proof : Consider a 2-D Lyapunov functional

V (x(i, j)) = V̄ (x(i, j)) + V̂ (x(i, j)), (A-1)

where

V̄ (x(i, j)) =xT (i, j)P 1x(i, j) +

−1∑
r=−αl

xT (i+ r, j)Q1x(i+ r, j)

+

−1∑
r=−αh

xT (i+ r, j)Q2x(i+ r, j) +

−αl∑
θ=−αh

−1∑
r=θ

xT (i+ r, j)Q3x(i+ r, j)

+ αl

0∑
θ=−αl+1

−1∑
r=−1+θ

ηT
1 (i+ r, j)Z1η1(i+ r, j)

+ αhl

−αl∑
θ=−αh+1

−1∑
r=−1+θ

ηT
1 (i+ r, j)Z2η1(i+ r, j), (A-2)

V̂ (x(i, j)) =xT (i, j)P 2x(i, j) +

−1∑
r=−βl

xT (i, j + r)Q4x(i, j + r)

+

−1∑
r=−βh

xT (i, j + r)Q5x(i, j + r) +

−βl∑
θ=−βh

−1∑
r=θ

xT (i, j + r)Q6x(i, j + r)

+ βl

0∑
θ=−βl+1

−1∑
r=−1+θ

ηT
2 (i, j + r)Z3η2(i, j + r)

+ βhl

−βl∑
θ=−βh+1

−1∑
r=−1+θ

ηT
2 (i, j + r)Z4η2(i, j + r) (A-3)

and

η1(i, j + 1) =x(i+ 1, j + 1)− x(i, j + 1) = f(y(i, j))− x(i, j + 1), (A-4a)

η2(i+ 1, j) =x(i+ 1, j + 1)− x(i+ 1, j) = f(y(i, j))− x(i+ 1, j). (A-4b)

Now, following [7, 14, 16], we define ∆V (x(i, j)) as

∆V (x(i, j)) = ∆1V̄ (x(i, j)) + ∆2V̂ (x(i, j)), (A-5)

1
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where

∆1V̄ (x(i, j)) =V̄ (x(i+ 1, j + 1))− V̄ (x(i, j + 1))

=fT (y(i, j))P 1f(y(i, j))− xT (i, j + 1)P 1x(i, j + 1)

+ xT (i, j + 1)Q1x(i, j + 1)− xT (i− αl, j + 1)Q1x(i− αl, j + 1)

+ xT (i, j + 1)Q2x(i, j + 1)− xT (i− αh, j + 1)Q2x(i− αh, j + 1)

+ (αhl + 1)xT (i, j + 1)Q3x(i, j + 1)−
−αl∑

r=−αh

xT (i+ r, j + 1)Q3x(i+ r, j + 1)

+ α2
l η

T
1 (i, j + 1)Z1η1(i, j + 1) + α2

hlη
T
1 (i, j + 1)Z2η1(i, j + 1)

− αl

−1∑
r=−αl

ηT
1 (i+ r, j + 1)Z1η1(i+ r, j + 1)

− αhl

−αl−1∑
r=−αh

ηT
1 (i+ r, j + 1)Z2η1(i+ r, j + 1), (A-6)

∆2V̂ (x(i, j)) =V̂ (x(i+ 1, j + 1))− V̂ (x(i+ 1, j))

=fT (y(i, j))P 2f(y(i, j))− xT (i+ 1, j)P 2x(i+ 1, j)

+ xT (i+ 1, j)Q4x(i+ 1, j)− xT (i+ 1, j − βl)Q4x(i+ 1, j − βl)

+ xT (i+ 1, j)Q5x(i+ 1, j)− xT (i+ 1, j − βh)Q5x(i+ 1, j − βh)

+ (βhl + 1)xT (i+ 1, j)Q6x(i+ 1, j)−
−βl∑

r=−βh

xT (i+ 1, j + r)Q6x(i+ 1, j + r)

+ β2
l η

T
2 (i+ 1, j)Z3η2(i+ 1, j) + β2

hlη
T
2 (i+ 1, j)Z4η2(i+ 1, j)

− βl

−1∑
r=−βl

ηT
2 (i+ 1, j + r)Z3η2(i+ 1, j + r)

− βhl

−βl−1∑
r=−βh

ηT
2 (i+ 1, j + r)Z4η2(i+ 1, j + r). (A-7)

In view of Lemma 2, we have the following relations:

−αl

−1∑
r=−αl

ηT
1 (i+ r, j + 1)Z1η1(i+ r, j + 1)

≤ −[xT (i, j + 1)− xT (i− αl, j + 1)]Z1[x(i, j + 1)− x(i− αl, j + 1)], (A-8)

−βl

−1∑
r=−βl

ηT
2 (i+ 1, j + r)Z3η2(i+ 1, j + r)

≤ −[xT (i+ 1, j)− xT (i+ 1, j − βl)]Z3[x(i+ 1, j)− x(i+ 1, j − βl)]. (A-9)

2
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Define γ̄1(i, j) = x(i− αl, j + 1)− x(i− α(i), j + 1) and γ̄2(i, j) = x(i− α(i), j + 1)− x(i− αh, j + 1). Using

Lemma 2, we obtain

− αhl

−αl−1∑
r=−αh

ηT
1 (i+ r, j + 1)Z2η1(i+ r, j + 1)

= −αhl

−αl−1∑
r=−α(i)

ηT
1 (i+ r, j + 1)Z2η1(i+ r, j + 1)− αhl

−α(i)−1∑
r=−αh

ηT
1 (i+ r, j + 1)Z2η1(i+ r, j + 1)

≤ − 1

α(i)− αl

αhl

γ̄T
1 (i, j)Z2γ̄1(i, j)−

1

αh − α(i)

αhl

γ̄T
2 (i, j)Z2γ̄2(i, j). (A-10)

Note that γ̄1(i, j) = 0 , if {α(i)− αl} /αhl = 0 and γ̄2(i, j) = 0 , if {αh − α(i)} /αhl = 0. In view of Lemma 1

and (A-10), one can obtain that if there exists a matrix S1 satisfying Θ̄ ≥ 0 then

− αhl

−αl−1∑
r=−αh

ηT
1 (i+ r, j + 1)Z2η1(i+ r, j + 1) ≤ −

[
γ̄1(i, j)
γ̄2(i, j)

]T

Θ̄

[
γ̄1(i, j)
γ̄2(i, j)

]
. (A-11)

Similarly, one can show that if there exists a matrix S2 satisfying Θ̂ ≥ 0 then

−βhl

−βl−1∑
r=−βh

ηT
2 (i+ 1, j + r)Z4η2(i+ 1, j + r)≤−

[
γ̂1(i, j)
γ̂2(i, j)

]T

Θ̂

[
γ̂1(i, j)
γ̂2(i, j)

]
(A-12)

where γ̂1(i, j) = x(i+ 1, j − βl)− x(i+ 1, j − β(j)) and γ̂2(i, j) = x(i+ 1, j − β(j))− x(i+ 1, j − βh). It is

easy to verify that

−
−αl∑

r=−αh

xT (i+ r, j + 1)Q3x(i+ r, j + 1) ≤ −xT (i− α(i), j + 1)Q3x(i− α(i), j + 1), (A-13)

−
−βl∑

r=−βh

xT (i+ 1, j + r)Q6x(i+ 1, j + r) ≤ −xT (i+ 1, j − β(j))Q6x(i+ 1, j − β(j)). (A-14)

Let

Ā1 = A1 +∆A1, Ā2 = A2 +∆A2, Ād1 = Ad1 +∆Ad1 , Ād2 = Ad2 +∆Ad2 . (A-15)

Employing (A-5)− (A-15), we have the following inequality

∆V (x(i, j)) ≤ ξT (i, j)Ψ1ξ(i, j)− 2δ (A-16)

where ξ(i, j) =
[
xT (i, j + 1) xT (i+ 1, j) xT (i− α(i), j + 1) xT (i+ 1, j − β(j))

xT (i− αl, j + 1) xT (i− αh, j + 1) xT (i+ 1, j − βl) xT (i+ 1, j − βh) fT (y(i, j))
]T

and

δ =

n∑
l=1

gl[kqyl(i, j)− fl(yl(i, j))][fl(yl(i, j))− koyl(i, j)]

= [kqy(i, j)− f(y(i, j))]TG[f(y(i, j))− koy(i, j)], (A-17)

3
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Ψ1 =



Ξ11 − 2kqkoĀT
1 GĀ1 −2kqkoĀT

1 GĀ2 −2kqkoĀT
1 GĀd1

−2kqkoĀT
1 GĀd2

∗ Ξ22 − 2kqkoĀT
2 GĀ2 −2kqkoĀT

2 GĀd1
−2kqkoĀT

2 GĀd2
∗ ∗ Ξ33 − 2kqkoĀT

d1
GĀd1

−2kqkoĀT
d1

GĀd2
∗ ∗ ∗ Ξ44 − 2kqkoĀT

d2
GĀd2

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Z1 0 0 0 Ξ19 + (kq + ko)ĀT
1 G

0 0 Z3 0 Ξ29 + (kq + ko)ĀT
2 G

Z2 − ST
1 Z2 − S1 0 0 (kq + ko)ĀT

d1
G

0 0 Z4 − ST
2 Z4 − S2 (kq + ko)ĀT

d2
G

−Q1 − Z1 − Z2 S1 0 0 0
∗ −Q2 − Z2 0 0 0
∗ ∗ −Q4 − Z3 − Z4 S2 0
∗ ∗ ∗ −Q5 − Z4 0
∗ ∗ ∗ ∗ Ξ99


. (A-18)

The quantity δ (see (A-17)) is nonnegative in view of (2) [13, 14]. From (A-16), it follows that ∆V (x(i, j)) < 0

for ξ(i, j) ̸= 0 if Ψ1 < 0 and (9) holds true. Moreover, ∆V (x(i, j)) = 0 only when ξ(i, j) = 0 . Now, following

[16], it can be shown that x(i, j) −→ 0 as i −→ ∞ and/or j −→ ∞ for any boundary conditions satisfying (4)

if ∆V (x(i, j)) < 0. Thus, Ψ1 < 0 and (9) provides sufficient conditions for the global asymptotic stability of

the system (1)–(4).

Using the well-known Schur’s complement [39], the condition Ψ1 < 0 is equivalent to

[
Ψ̂1 Υ
∗ −kqG

]
< 0 (A-19)

where

Ψ̂1 =



Ξ11 0 0 0 Z1 0 0 0 Ξ19 + kqĀT
1 G

∗ Ξ22 0 0 0 0 Z3 0 Ξ29 + kqĀT
2 G

∗ ∗ Ξ33 0 Z2 − ST
1 Z2 − S1 0 0 kqĀT

d1
G

∗ ∗ ∗ Ξ44 0 0 Z4 − ST
2 Z4 − S2 kqĀT

d2
G

∗ ∗ ∗ ∗ −Q1 − Z1 − Z2 S1 0 0 0
∗ ∗ ∗ ∗ ∗ −Q2 − Z2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q4 − Z3 − Z4 S2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q5 − Z4 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 +

 ko

2kq

G



(A-20)

and Υ =
[
−kq

√
−2koGĀ1 −kq

√
−2koGĀ2 −kq

√
−2koGĀd1 −kq

√
−2koGĀd2 0 0

0 0

√
−ko
2

G

]T

. Further, using (3) and (A-15), the condition (A-19) can be rewritten in the following

form:

M + H̄F Ē + Ē
T
F T H̄

T
< 0, (A-21)

where H̄
T
=

[
0 0 0 0 0 0 0 0 kqH

TG −kq
√
−2koH

TG
]
,

4
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Ē =
[
E1 E2 Ed1 Ed2 0 0 0 0 0 0

]
and

M =



Ξ11 0 0 0 Z1 0 0
∗ Ξ22 0 0 0 0 Z3

∗ ∗ Ξ33 0 Z2 − ST
1 Z2 − S1 0

∗ ∗ ∗ Ξ44 0 0 Z4 − ST
2

∗ ∗ ∗ ∗ −Q1 −Z1 −Z2 S1 0
∗ ∗ ∗ ∗ ∗ −Q2 −Z2 0
∗ ∗ ∗ ∗ ∗ ∗ −Q4 −Z3 −Z4

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

0 Ξ19 + kqA
T
1 G −kq

√
−2koA

T
1 G

0 Ξ29 + kqA
T
2 G −kq

√
−2koA

T
2 G

0 kqA
T
d1
G −kq

√
−2koA

T
d1
G

Z4 − S2 kqA
T
d2
G −kq

√
−2koA

T
d2
G

0 0 0
0 0 0
S2 0 0

−Q5 −Z4 0 0

∗ Ξ99 +

(
ko
2kq

)
G

√
−ko
2

G

∗ ∗ −kqG


. (A-22)

By using Lemma 1 of [14], (A-21) is equivalent to

M + ϵ−1H̄H̄
T
+ ϵĒ

T
Ē < 0. (A-23)

Using Schur’s complement, (A-23) leads to (10). This completes the proof of Theorem 1.
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