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Abstract: Nodes in mobile ad hoc networks (MANET) suffer from limited battery power and bandwidth. Particularly

for real time multimedia communications through MANET, metrics like residual node energy, bandwidth, and end-to-

end delay have major impacts. In MANET, designing a dynamic routing algorithm to satisfy quality of service (QoS)

requirements is a challenging task. Additionally, multiconstrained QoS routing aims to optimize multiple QoS metrics

while providing required network resources and is an admittedly complex problem. It has been proved to be NP-complete

when a combination of additive, concave, and multiplicative metrics are considered. Hence, this problem can be solved

using metaheuristic methods like ant colony optimization (ACO) and the genetic algorithm (GA). The proposed energy-

efficient ACO GA hybrid metaheuristic approach aims to utilize the benefits of both as a combined approach in order

to reduce the routing complexities in the dynamic environment. After due investigation, it has been shown that the

proposed hybrid approach improves the performance of MANET routing with satisfied QoS requirements.

Key words: Quality of service routing, multiobjective optimization, ant colony optimization, genetic algorithm, hybrid

metaheuristic, mobile ad hoc network, energy-efficient routing

1. Introduction

Because of the dynamic nature of mobile ad hoc networks (MANETs) static routing protocols are not suitable.

Hence, there is a need for a dynamic routing protocol. The dynamic routing protocol should be able to provide

a certain level of quality of service (QoS) as demanded by the application. Provisioning of QoS is an important

task, particularly for real time audio/video/multimedia streaming applications where there is a need for adequate

resource requirements. Average end-to-end delay, available bandwidth, delay jitter, battery power, processing

power, hop-count, packet delivery ratio, and packet loss ratio are some of the QoS parameters.

Since a MANET comprises mobile nodes, the nodes participating in the network are powered by limited

battery resources. Battery depletion can instigate network failure. Efficient utilization of battery resources is

an important issue. Energy awareness needs to be adopted by the protocols at all layers in the protocol stack,

and it has to be considered as one of the important design objectives for such protocols. QoS metrics could be

defined in terms of either any one of the parameters or a set of parameters in varied proportions.

Multiconstrained QoS routing aims to optimize multiple QoS metrics while provisioning required network

resources and is an admittedly complex problem. QoS routing is NP-complete when a combination of additive,

∗Correspondence: nivethasen@gmail.com

3698



NIVETHA and ASOKAN/Turk J Elec Eng & Comp Sci

concave, and multiplicative metrics are considered. Hence, this problem can be solved using a stochastic

optimization method. In general, stochastic programs work by using probabilistic methods to solve problems

as in genetic algorithms (GAs), simulated annealing, stochastic neural networks, and ant colony optimization

(ACO).

In this paper, we propose a hybrid approach that combines the advantages of the 2 most popular

metaheuristic techniques, namely the GA and ACO, in order to reduce the complexities involved in energy-

efficient multiconstrained QoS routing for the dynamic environment of MANETs.

2. Related work and motivation

2.1. QoS enabled routing in MANETs

In the last 2 decades, provisioning of QoS in MANET routing has become an emerging area of research. Various

papers [1–5] presented reviews of various QoS routing schemes and design considerations in MANET. As per

these reviews, several works targeted a single metric like delay, bandwidth, jitter, loss rate, or energy for route

selection and very few considered 2 QoS metrics. In [6] the authors proposed several design challenges for

energy-efficient routing. In [7,8] the authors considered energy as an important metric for efficient and reliable

routing. Even though an energy metric was considered, for reliable multimedia applications, multiple QoS

metrics have to be considered. In all of these works, the authors did not use any optimization techniques.

However, considering more than 2 metrics for route selection has proved to be an NP-hard [9] problem that

requires an optimization algorithm for solving.

Several research works were proposed in the literature using these stochastic optimization methods.

Among them, ACO and the GA are the most promising and interesting methods for researchers. Each has its

own advantages and disadvantages that seem complementary to each other. Hence, we have aimed to combine

ACO and the GA to obtain results closer to the optimum. Some reviews on the ACO and GA methods are

presented next, along with a few initiatives on the combinations.

2.2. ACO-based QoS routing in MANETs

AntNet [10] was an early initiative among ACO-based algorithms, and it considers delay and congestion status.

In [11], the ant routing algorithm considers delay as a metric for route selection and reduces routing overhead.

AntHocNet [12] is a hybrid routing model considering delay and congestion. In [13], the algorithm takes the

remaining energy of a node, path cost, and hop-count as metrics for routing. Swarm-based distance vector

routing [14] considers delay, jitter, and energy as route selection metrics.

HOPNET [15] is a hybrid optimization algorithm based on ACO and zone routing framework to compare

a random way point model and random drunken model. In [16], the author reviewed a few ACO-based protocols

and compared them with traditional protocols, ad hoc on-demand distance vector and dynamic source routing,

against the QoS parameters such as end-to-end delay and packet delivery ratio based on the random waypoint

mobility model. Based on the simulation studies, the author concluded that biological inspiration such as ACO

in MANET routing helps in improving QoS. Although many routing algorithms were proposed in the literature

based on ACO, until now no algorithm has satisfied end-to-end delay, hop-count, bandwidth, and node energy

together.
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2.3. GA-based QoS routing in MANETs

A GA-based routing method for MANET (GAMAN) [17] was proposed to find a feasible path from multiple

paths, hence providing robustness, and it is a source-routing protocol . E-GAMAN [18] is an enhanced version of

GAMAN with the addition of an effective topology extraction algorithm to reduce the search space of GAMAN.

In [19] and [20], the authors used the GA for effective tree construction. One of our previous works [21] proposed

route optimization with 3 metrics, namely average end-to-end delay, bandwidth, and hop-count using GA. From

this review, it was clear that the GA can be effectively applied for reducing the search space and producing

only the fittest solutions.

2.4. Combined ACO and GA-based routing

A hybrid genetic algorithm based on the GA and ACO was proposed in [22] to solve QoS optimization problems,

which uses the global search capability of the GA. The result is then given as a pheromone value for ACO and

it updates local and global pheromone values to determine the optimal solution.

To minimize the travel distance of the dynamic travelling salesman problem, ACO and the GA are applied

[23] to the problem space one by one, and the results obtained in each are compared for finding the optimum

shortest path. In [24], the author proposed a hybrid GA-ACO for the travelling salesman problem. In this

work, one of the properties of the GA, fitness function evaluation, is applied for all ant agents. Although this

work shows insignificant results for small amounts of data, it produces improved results for large amounts of

data. However, this work focused only on how to combine the GA and ACO procedurally, leaving the detailed

implementation to get better results and performance for the future. Thus, based on the literature, hybrid

mechanisms have been proven to provide optimum results in shortest path problems.

Although many research works have been done for QoS routing optimization problems, they either

optimize 1 or 2 of the QoS parameters. However, real time communication through ad hoc networks requires

lowest delay, shortest distance, energy efficiency, and bandwidth efficient routing. This work aims to suggest a

single approach to achieve all 4 using a hybrid metaheuristic that has been already initiated for other problems

and has proven to be a useful method for achieving optimum results.

3. Problem formulation

3.1. Defining the network

The problem space is considered as a graph G = (V, E), where each vertex represents a node and V is the

set of all nodes in the network, and each edge represents a link between 2 nodes and E is a set of all links.

For each node, ‘r’ is the range of transmission and ‘d’ is the distance between 2 adjacent nodes. If d ≤ r then

there exists a 2-way link e(e ϵ E) between them. P is the set of all paths from source s(s ϵ V) to destination

t(t ϵ V). E(p) and N(p) represent the set of all edges and set of all nodes of a path p(p ϵ P), respectively.

Figure 1 shows a sample graph with 15 nodes where 1 is the source node and 7 is the destination. Each radio

link is represented with its cost such as [delay, distance]. Delay is varied from [0–30] and distance is uniformly

distributed as [1–50].

3.2. Defining the QoS parameters

A path P must be chosen when the bandwidth is greater than the minimum, the delay is less than the maximum,

the hop-count is kept as minimum as possible, and node energy is greater than the threshold. The average

3700



NIVETHA and ASOKAN/Turk J Elec Eng & Comp Sci

end-to-end delay, available bandwidth, hop-count, and average node residual energy are the routing metrics

considered. Packet delivery ratio (PDR) and routing overhead are the performance metrics considered. They

are defined as follows:

Figure 1. Sample scenario with 15 nodes.

End-to-end delay (additive metric): the amount of time needed to successfully deliver a packet from the

source to the destination. In Eq. (1), the value of Delay(p), which represents the delay of a path p(pϵP), is

calculated by adding the summation of delay that occurred at all edges/links in path p and the summation of

delay that occurred at all intermediate nodes of path p. D is the maximum delay tolerable and is fixed for a

particular run as 150 ms. If Delay(p i) is 120 ms, then this path satisfies the quality requirement.

Delay (p)=
∑

e∈E(p)

Delay (e)+
∑

n∈N(p)

Delay(n),Delay (p)≤ D (1)

Bandwidth (concave metric): the amount of data that can be carried from one point to another in a given time

period. The bandwidth of a path is determined by the link with the minimum available bandwidth. For example,

if a path p i contains 3 hops with 1 Mbps, 0.5 Mbps, and 2 Mbps as the available bandwidth, respectively, then

Bandwidth(p i) is 0.5 Mbps. B is the minimum bandwidth required for a particular application. If B = 1 Mbps,

then p idoes not satisfy the quality requirement.

Bandwidth (p)= min{Bandwidth (e) , e ∈ E (p)}, Bandwidth (p)≥ B (2)

Hop-count (additive metric): the number of intermediate nodes between the source and destination. Hop-

count(p) is always kept as minimum as possible.

Hopcount (p)= |E (p)| (3)

Residual node energy (concave metric): the remaining energy/battery power of a node after a data transmission.

R i is the residual battery charge at node i. Using this value, the energy lifetime of a link (L ij) between nodes i

and j can be captured. En ij is the energy required to transmit a data packet of any specified size over the link

between node i and j.

Lij=
Ri

Enij
(4)
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Enij=
Tij

(1−Pij)
H

(5)

Here, T ij is the energy required for a packet transmission attempt, which is set as 1.5 W, and P ij is the packet

error probability of the link between node i and j, which is the expectation value of packet error rate (ratio

between incorrect number of packets received and total number of received packets) retrieved from the link layer

protocol. The value of H will be 1 as it follows a hop by hop routing.

Packet delivery ratio (PDR): the ratio of successfully delivered data packets to the total data packets

sent from the source to the destination.

PDR (s, t)=
XA

XI
(6)

Here, XA is the number of data packets received successfully and XI is the number of data packets sent in

total.

Routing overhead (RO): the ratio of routing packets transmitted to the total data packets delivered.

Routing packets include control packets used for route discovery, route maintenance, and pheromone updates.

RO (s, t)=
XC

XZ
(7)

Here, XZ is the number of packets sent in total and XC is the number of control packets sent.

4. Proposed hybrid metaheuristic

The proposed algorithm uses ACO to find the possible paths from any source node to the destination node for

the given network topology. Once the set of possible routes are found based on the pheromone concentration

of delay and hop-count by the artificial ants, the resulting set of routes forms the initial population for the GA

phase. Then, based on the fitness function and genetic operations, the set of optimal paths is identified from the

initial population for the network for any source-destination pair. A fitness function is designed with minimum

required bandwidth in addition to node energy required for the given data traffic. The GA cycle is continued

until either the predefined number of generations is reached or there are no unique offspring included in the

new population for 3 successive turns. As the algorithm proceeds, the weaker solutions tend to be discarded

and hence the resulting population will have the optimal set of paths required for multipath routing. This work

is summarized in the flowchart in Figure 2.

4.1. Design of ACO algorithm

Ant colony optimization is an iterative algorithm [25] where, at each iteration, artificial ants are created to

build solutions by walking from node to node on the network with the constraint of not visiting any node that

they have already visited. Additionally, ants deposit a certain amount of pheromone on the links that they

traverse. The amount of pheromone ∆τ deposited may depend on the quality of the path found. Subsequent

ants use the pheromone information as a guide towards promising regions of the search space. At each step of

the solution construction, an ant selects the next node to be visited according to a stochastic mechanism that

is biased by the pheromone. At the end of an iteration, on the basis of the quality of the solutions constructed

by the ants, the pheromone values are updated in order to bias ants in future iterations to construct solutions

similar to the best ones previously constructed.
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Construct ant solutions where path selection based on delay and 
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Local Update  

Global Update  
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Initial population of identified paths with updated pheromones  
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Apply genetic operations  

Selection  

Crossover  

Mutation  

Is objective achieved?  

Is terminating condition satisfied?  

Terminate algorithm  

No 

Yes  

Figure 2. Flowchart for ACO GA hybrid metaheuristic approach.

Encoding and setting parameters: ‘M’ numbers of artificial ants are created at each iteration. The value

of ‘M’ is chosen based on the size of the network topology. Each link is associated with a special variable called

a pheromone, which can be read and modified by ants. The pheromone value τij deposited on the link e ij is

associated with the solution component c ij.The set of all possible solution components is denoted by C. The

number of pheromone variables is based on the number of quality metrics considered for route selection. For this

work, delay and distance (hop-count) are the 2 additive metrics considered for route selection. The maximum

value of iterations Imax = 50.
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Objective function (O(f)): the rule for the stochastic choice of solution components is as follows: a) The

cost (minimum delay and minimum hops) of the selected route should be minimum. b) The selected route must

be an existent link. c) The path must meet the transmission constraints.

O (f)=
1

cost(p)
, where cost (p) considers 2 additive QoS parameters (8)

When an ant is in node i , the following node j is selected stochastically among the previously unvisited ones.

Specifically, the unvisited path is selected with a probability that is proportional to the pheromone associated

with the link e ij .

The path construction starts from an empty set Sp = ϕ . At each construction step, the path set Sp

is extended by adding a feasible solution component from the set N(Sp) ⊆ C, which is defined as the set of

components that can be added to the current partial solution Sp without violating any of the constraints of the

objective function.

Path selection: when the ant k is at node i , the next node node j should be selected according to the

following formula:

P k
ij =


[τij ]

∝·[ηij ]
β ·[Dij ]

γ∑
c
il∈N(SP )

[τij ]∝·[ηij ]β ·[Dij ]γ

0, otherwise

, if cil∈N(SP ) (9)

where P k
ij is the probability with which ant k selects edge e ij , and N(Sp) is the set of feasible components that

is edge (i, l), where l is a node unvisited by ant k. [Dij ]
γ

is a relative metric for delay from i to j. α and β

are control parameters with the relative importance of the pheromone [26] versus the heuristic information ηij ,

which is given by:

ηij=
1

dij
(10)

where d ij is the distance between adjacent nodes i and j.

Local update: in order to avoid several ants producing identical solutions during a single iteration it has

been suggested to decrease the pheromone concentration on the traversed edges and encourage subsequent ants

to choose other edges and hence produce different solutions. The pheromone is updated using the following

formula when ant k successfully completes a hop from i to j:

τij= (1−ρ).τij+

m∑
k=1

∆τkij 0 <ρ < 1 (11)

where ρ is the residual pheromone coefficient, (1 – ρ) is the pheromone evaporation rate, m is the total number

of ants, and ∆τkij is the pheromone value deposited by the k th ant while passing through e ij . ∆τkij is calculated

based on the following formula in order to meet the defined objective function, i.e. ants selecting a path that

has minimum delay and less number of hops:

∆τ =


Q

Delayij .Hop-countij .
,& where kth ant passing by eij

0, otherwise
(12)
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where Q is a constant, and Delay ij and Hop-count ij are relative metrics for end-to-end delay and number of

hops between source to destination.

Global update: it is called an offline pheromone update when it is performed at the end of the construction

process. It is done as per the following formula:

τij= (1−ρ).τij+ρ.∆τ (13)

In Table 1, the pheromone values calculated for sample paths are shown. The pheromone value lies between the

range of 0 to 1. To compute the shortest distance from node 1 to node 7 in addition to minimum delay, data

discovery is done, and as a result paths 1-8-9-12-7, 1-8-10-12-7, 1-2-11-12-7, 1-3-4-6-7, 1-2-5-12-7, 1-2-4-6-7, and

1-8-10-9-12-7 are identified, as the probabilities of these paths are best in the dynamic environment. Path-5

has the highest pheromone value with 4 hops but Path-7 has an even higher pheromone value although it has 5

hops. Similarly, paths are discovered for all other nodes for destination node 7 and the best optimal path can

then be chosen taking the pheromone value into consideration. The pheromone value is based on indicating

the goodness of the outgoing link to various destinations. The paths with the highest pheromone values are

considered as the better solutions. These solutions are given as the initial population for the GA phase where

the path sequence is encoded as the genome structure.

Table 1. Pheromone values for sample paths.

Paths Delay Bandwidth Hop-count Pheromone value
Path-1 0.03696 0.76972 4 0.401770
Path-2 0.039296 0.87679 4 0.499231
Path-3 0.04032 0.97523 4 0.540702
Path-4 0.04064 0.70689 4 0.537341
Path-5 0.036608 0.85423 4 0.669612
Path-6 0.04073 0.71341 4 0.542679
Path-7 0.032241 0.70012 5 0.742222

End conditions: at the end of the global update, the solution set contains the available paths from any

source to the destination that satisfies the minimum QoS requirement. If the number of iterations reaches the

Imax value, then ACO hands over the solution set to the GA phase.

4.2. Design of GA algorithm

The resulting path set with good quality pheromone indications calculated by the ants of the ACO phase is

now considered as the initial population for the GA phase. The GA will try to eliminate the weaker paths from

the set and retain the best fit paths based on the fitness function and based on the applied genetic operations.

At the end of this phase, we will have an optimal path set satisfying the required QoS parameters useful for

multipath routing.

Encoding rules: in the GA, each node sequence of a path is considered as an individual and coded as

a chromosome. The node in the identified network path is thus coded as a gene. As the number of hops

between source and destination can vary, chromosome length can be varied. The following shows the encoded

chromosomes between the source destination pair (1,7) of the sample scenario in Figure 1.

1-2-11-12-7; 1-2-5-12-7; 1-2-4-6-7; 1-3-4-6-7;
1-8-9-12-7; 1-8-9-10-12-7; 1-8-10-12-7; 1-8-10-9-12-7.
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Fitness function: every individual is evaluated based on the fitness function for superiority. The fitness

function is composed of the objective function and the penalty function. The objective function O(f), which

influences the path cost on the individual, is similar to ACO. It is defined as follows:

O (f)=
1

cost(p)
(14)

where cost(p) considers the minimum required bandwidth and node energy for a particular data traffic as QoS

parameters. Then the penalty function is defined for each metric considering the set of constraints (Φ) for each.

The bandwidth penalty function B(f) is defined as:

B (f)=Φb {B − Bandwidth (p)} Φz
b=

{
1, &z ≤ 0

rb, &z > 0(0 <rb< 1)
(15)

where rb is a constant value that determines the penalty degree for bandwidth. The residual node energy

penalty function RE(f) is defined as:

RE (f)=Φre {Ri−Lij} Φz
h=

{
1, &z ≤ 0

rre, &z > 0(0 <rre< 2)
(16)

where rre determines the penalty degree for residual node energy, R i is the residual energy at node i, and L ij

is the energy lifetime of the link between nodes i and j. The residual node energy threshold is set as 2J. If a

node’s residual energy falls below this threshold, it will not be considered for packet forwarding/it should not

forward packets. However, it can receive packets because it may be the receiver for those packets. Based on

this, the fitness function for each computed path is defined as follows:

F (p)= O (f) (µ.B (f)+ω.RE(f)) (17)

where µ and ω are positive real numbers used as normalization coefficients for bandwidth and node energy,

respectively. As per the above formulas, it is seen that the penalty function value is 1 if the path satisfies the

QoS constraints; otherwise, it is a real number from 0 to 1.

Initializing population: the initial population is achieved by encoding the multiple paths searched stochas-

tically through the total network by artificial ants with goodness of pheromones. The optimal population size

Psize is determined based on Eq. (18). It is used to restrict the number of paths from source to destination

if many are satisfying the minimum fitness criteria. Based on the fitness evaluation and ranking, only the top

ranked paths are retained. However, this equation will be applicable only for atypical situations.

Psize= Number of nodes − 15 (18)

Selection operation: in general, selection operators are stochastic, probabilistically selecting good solutions [27]

and removing bad ones based on the evaluation given to them by the objective function. We applied a roulette

wheel procedure, where each path i is assigned a probability p i to be chosen for reproduction, after which the

cumulative probability c i is calculated for each. A path is selected if c ibecomes greater than a random number

r selected a priori.

ci=
∑
j=1

pj (19)
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Crossover operation: it is a genetic recombination process, in which crossover operators randomly select a set

of nodes from each valid path to form a new best path. For example, paths p i and p j are randomly selected

and the nodes that appear in both are identified. Among the similar nodes either a gene pattern or a single

gene is identified for crossover and then exchanged between the nodes. If it is a single node, then a single point

crossover is applied, meaning that from that node onwards the packet follows a different path. If it is a node

pattern, then a 2 point crossover is applied, meaning that the data follow a different subset of the path. The

crossover pattern is determined based on the chromosome length, i.e. the length of the path. If there are no

common nodes identified between the 2 randomly selected paths, then it will choose another set of paths. For

example, let Ta and Tb be the selected parents as given in Figure 3 and Figure 4, respectively. The crossover

operator generates a child Tc by identifying the same links between Ta and Tb and retains the common links

in Tc , which is represented in Figure 5. Retaining these common links may generate separate subtrees. The

subtrees are then connected with the least delay path.

Figure 3. Parent Ta . Figure 4. Parent T b .

Figure 5. Child T c .

Mutation operation: in terms of implementation, mutation consists of randomly changing one or more

parts of a chromosome. This is done by changing a randomly chosen node x from a randomly chosen path p i

into another node y. y is identified from the adjacent node set Ay . This replacement is based on the adjacent

node set and avoids introducing an unavailable path. If there is no proper node in the adjacent node set for

replacement, this may be omitted.

Terminal conditions: for each population the GA operators are applied to the chromosomes to lead

to a new generation of individuals, ameliorating in the process the best fitness among the individuals of the

generation. The process is terminated after a fixed number of generations GN(GNmin<GN <GNmax), where

GNmin /GNmax represents minimum and maximum genetic iteration, has been reached, or when the best fitness
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value is no longer ameliorated from one generation to the next and there are no unique offspring included in

the new population for 3 successive times.

5. Results and discussion

5.1. Simulation scenario

In order to analyze the performance of this work, we used the event-driven network simulator NS2 version 2.34.

The existing ant algorithm available for MANET routing is extended in order to include the calculations based

on fitness function, selection, crossover, and mutation operators of GA. The simulation area is 1500 × 1500

m2 with 50 to 100 nodes placed randomly. The channel transmission rate is 2 Mbps whereas the data flow

transmission rate is 10 packets/s. Initial node energy for all the nodes is set as 100 J. The transmission power

and receiving power of each node is set as 1.5 W and 1.0 W, respectively. The other simulation parameters are

shown in Table 2.

Table 2. Parameters for the simulation scenario.

Node communication range 250 m
Node initial placement Random
Medium access mechanism IEEE 802.11b
Traffic source model CBR
Packet size 512 bytes
Mobility model Random waypoint
Node speed 10 m/s
Pause time 0–480 s
Simulation time 900 s
Number of simulations 15

We considered number of nodes and node pause time as the scenario metrics that define the environment in

which an ad hoc network functions. Packet delivery ratio, average end-to-end delay, average residual node

energy, hop-count, and routing overhead were used as the performance metrics to compare the performance

with the existing system. Each simulation result (each reported point on each curve) represents an average of

15 independent trials.

5.2. Simulation results

First the simulation results are analyzed under different numbers of nodes. Six different numbers of nodes,

from 50 to 100, were modeled to observe the effect of the algorithm. The pause time was set to 50 s. The

speed was set to 10 m/s. Each simulation result for the proposed energy-efficient ACO GA hybrid metaheuristic

(EAGHM) approach was compared to that of an ACO-based algorithm swarm-based hybrid routing protocol

(SHRP) [28] and a GA-based algorithm EGHRP [29]. In SHRP, the results were obtained using QualNet. For

proper comparison, the same algorithm is simulated using NS 2.34 with similar configurations.

The EAGHM results in 10% less delay than the ACO model and 20% less delay than the GA model. This

is shown in Figure 6. The end-to-end delay gradually decreases when the number of nodes increases. This is

because during the 50-node scenario the nodes are spread over a 1500 × 1500 m2 area and there is a possibility

of increase in distance between adjacent nodes. When the network size is scaling high, more adjacent nodes are

available to act as intermediate nodes. If the size increases beyond 100, there may be a chance of more packet

drops due to collision.
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Figures 7 and 8 show graphs for varying numbers of nodes with packet delivery ratio and bandwidth

utilization, respectively. The proposed EAGHM has staged improvements when compared to the other 2

models. The reason for the improved bandwidth utilization may be that the other 2 models were not taking

the bandwidth into consideration while computing the route. When the number of nodes is 70 we can see the

maximum utilization, and it could slightly reduce after that.
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Figure 6. Number of nodes vs. average end-to-end delay

(s).

Figure 7. Number of nodes vs. packet delivery ratio.

The graph in Figure 9 shows the average number of hops exploited for data transfer between a particular

source and destination pair. The earlier graphs show that the performance of the ACO model is better than

the GA model but here the GA model outperforms the ACO model. From the graph, we see that the number

of hops exploited is minimum in the EAGHM. Figure 10 shows the average residual node energy after the

simulation. The involvement of the remaining node energy in route selection helps in avoiding any node losing

its battery energy fully, which may lead to network break and thus extended network life. As route selection

involves the remaining node energy, this graph illustrates that the energy utilization is effective while using the

EAGHM.
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Figure 8. Number of nodes vs. available bandwidth

utilization.

Figure 9. Number of nodes vs. hop-count.

The simulation results are also analyzed under different pause times. Seven different values of pause times

from 0 s to 480 s are considered to investigate the effect of the algorithm. The number of nodes was set to 100.

The speed was set to 10 m/s. As per the graph shown in Figure 11, when the pause time increases, the delay

incurred by the EAGHM algorithm is reduced drastically. This is because when the pause time is more, the

topology is static for longer periods and hence the identified path set is effective without more recomputation.

The PDR tends to increase as the pause time increases. This is manifest since the active path is less likely

to break as the network becomes static. However, the PDR first decreases as the pause time increases. Due to
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mobility, the active path may break. When all paths, including the backup paths, to the destination break, a

new path can be discovered only after a change of topology of the network, i.e. a node that can form a path to

the destination should come into the transmission range. Note that the change of topology is proportional to

mobility. Hence, as mobility decreases it becomes more difficult to recover from the broken path. This explains

the downtime that appears when the pause time is 60 s in Figure 12.
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energy.

Figure 11. Node pause time (s) vs. delay (s).

The graph for the effective utilization of the available bandwidth is shown in Figure 13. From the graph

it has been identified that the EAGHM more effectively utilizes the bandwidth than the other models. Figure

14 depicts the reduction in number of hop-counts utilized for data transfer between a particular source and

destination pair. This has been analyzed while varying the node pause time. When pause time increases,

number of hops decreases in all the 3 protocols.
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Figure 12. Node pause time (s) vs. packet delivery ratio. Figure 13. Node pause time (s) vs. available bandwidth

utilization (%).

At the end of the simulation, the remaining node energies of all the nodes are noted and the average is

calculated. The same is analyzed in Figure 15 for all the protocols. As route selection involves the remaining

node energy, this graph illustrates that the energy utilization is effective while using the EAGHM.

The routing overheads computed under varying number of nodes and varying pause times are shown in

Figure 16 and Figure 17, respectively. Since more control packets are required at the route discovery of the

ACO phase, and periodical update and extra control packets are required for route selection in the GA phase,

the routing overhead of the EAGHM is slightly higher than that of other protocols. The overhead for path

monitoring can be reduced by piggybacking the pheromone information on data packets if appropriate traffic

exists in the opposite direction. Because of the periodic updates, the EAGHM requires a certain amount of
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routing overhead, but when the pause time increases, the overhead is reduced because of the relatively static

nature of the topology.
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Figure 16. Number of nodes vs. routing overhead. Figure 17. Node pause time (s) vs. routing overhead.

6. Conclusions and future work

In a MANET, routing and satisfying QoS requirements is a challenging task because of the characteristics of the

network. In the proposed work, the performance and the efficiency of the network are enhanced by combining

the benefits of the metaheuristic approaches such as ACO and the GA, which is simulated under varying

numbers of nodes and varying node pause times. This work results in better performance when compared to

the pure ACO model and the pure GA model, but still it incurs some routing overhead when the node pause

time for the network is below 120 s. The algorithm shows better results when the node pause time is very high.

Furthermore, other metaheuristic approaches can also be combined as a new hybrid technology so as to study

the performance of optimized QoS routing in MANETs.
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