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Abstract: We investigated how to use cross-company (CC) data in software fault prediction and in predicting the fault

labels of software modules when there are not enough fault data. This paper involves case studies of NASA projects

that can be accessed from the PROMISE repository. Case studies show that CC data help build high-performance fault

predictors in the absence of fault labels and remarkable results are achieved. We suggest that companies use CC data if

they do not have any historical fault data when they decide to build their fault prediction models.
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1. Introduction

Software fault prediction is a quality-assurance technique within the software quality engineering discipline and

includes tasks such as fault tolerance, testing, and inspection [1]. However, software testing is not familiar to

most software practitioners. We need more practical tools for the widespread usage of this technique.

According to experimental studies, only a small number of modules cause software faults [2]. Therefore,

the identification of these modules helps quality assurance groups or project managers to allocate testing

resources in an efficient manner. One approach might be to test fault-prone modules in detail; these modules

can be identified by using a fault prediction model. This policy will probably detect more faults in a short

period of time. Since the testing phase is not unlimited, but rather must be finished within an allocated time

and budget, fault prediction models help companies to identify problematic code blocks that negatively affect

the maintainability and reusability characteristics of the product.

Artificial neural networks, tree-based methods, fuzzy logic, genetic programming, analogy-based ap-

proaches, statistical procedures, and several biology-inspired computing paradigms, such as artificial immune

systems, have been used to build fault prediction models so far [3]. Early studies did not use public datasets and

it was very difficult to assess the relative performance of each model in literature. Later, researchers recognized

the use of public datasets and comparative studies primarily used NASA public datasets from the PROMISE

repository. This helped the software engineering community to identify high-performance machine learners.

Researchers mostly built fault prediction models that used metrics and fault data. These kinds of models,

which implement different types of learning algorithms, are known in the field of machine learning as supervised

learning approaches. When there are no prior fault data, we cannot use supervised learning methods.

It is known that fault prediction is more useful for high-risk projects in which fault data are generally

recorded. Therefore, practitioners might assume that all high-risk projects will always have fault data for every
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case. However, this assumption is not true in the case of the first release of a software product. In this case,

there are no fault data and it is not possible to use within-company data in this context. The question in this

scenario is whether we can use cross-company (CC) data to predict the fault-proneness labels of our modules or

not. Also, when we consider the global nature of software engineering, and the fact that software is developed

in different geographical regions, some companies that produce outsourced software might not collect defect

data for several reasons. For example, a subcontractor company might believe that recording every fault in the

bug-tracking system creates the perception of a poorly developed software system. Therefore, they might not

update the bug-tracking system correctly and very few labeled instances might exist for the project. As we see

in this scenario, if the company does not collect fault data for a version, there will not be any historical data

for modeling.

For the project cost estimation problem [4] in software engineering, some researchers applied datasets

from other companies. Although software fault prediction and cost estimation problems are quite different from

many perspectives, some researchers published satisfactory results prior to our research.

Also, as Turhan et al. stated [5], people do not want to collect new data, even if these projects belong

to NASA; instead, they just want to use the old data. Although these projects were developed for NASA, they

were developed by different NASA contractors that are in different geographical regions in the United States.

Turhan et al. [5] used 7 datasets from NASA and stated that they treated these projects as different projects

from 7 different companies. They also emphasized that it is possible to examine the CC defect prediction,

even if experiments were performed on NASA datasets. These are very different projects, such as satellite

instrumentation, flight control modules, ground control systems, video guidance systems, and zero-gravity

experiments.

Turhan et al. [5] published the first paper on CC dataset usage for the fault prediction problem and

reported that it is possible to use CC data if the nearest-neighborhood filtering approach is used. Datasets were

taken from NASA contractors [5] after extensive work over 5 years and these datasets were used as CC data in

their study.

Later, Zimmermann et al. [6] worked on 622 cross-project fault predictions for several software applica-

tions. In their study, four projects were from the open source community and the rest were from the commercial

applications of Microsoft Corporation. Contrary to Turhan et al. [5], Zimmermann et al. [6] stated that projects

from a similar domain might not be enough to build high-performance models. They concluded that domain,

code data, and process should also be investigated for a true fault prediction model.

This study is another investigation of CC data to design a fault prediction model, and the results of our

approach are very promising. We preferred public NASA datasets because they are publicly available in the

PROMISE repository, they were carefully collected over 5 years from several NASA contractors, and they are

not proprietary applications. In this study, we designed and implemented a fault prediction technique that uses

metrics threshold values instead of machine learner-based predictive models.

The motivation behind this threshold-based approach is the practical considerations of metrics threshold

values, as explained by Shatnawi et al. [7]. Shatnawi et al. [7] stated that building and running a metrics

model on a daily basis is impractical for software engineers, and the use of threshold values is relatively easier

than building metrics-based predictive models. In their study, they proposed a new metric threshold calculation

approach that uses receiver operating characteristic (ROC) curves. The research questions are as follows:

• Can we use CC data to calculate metrics threshold values and apply these threshold values in a compre-

hensive software fault prediction technique instead of complex machine learning-based approaches?
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• Is the proposed threshold-based approach better than the popular naive Bayes-based models?

The proposed fault prediction technique is uncomplicated, but it is comprehensive and high-performance. In

the proposed technique, when the majority of the metric values exceed their corresponding threshold values,

that module is classified as fault-prone.

The contributions of this paper are two-fold:

1. A new comprehensive and high-performance fault prediction technique based on metrics threshold values.

The performance of our model is better than the performance of naive Bayes with logarithmic filter in

terms of the probability of detection (PD) value. Area under ROC curve (AUC) values are similar. The

PD is slightly better than the naive Bayes-based approach’s PD and the probability of false alarm (PF) is

slightly worse. For mission-critical systems that require high PD values, the proposed approach is much

more suitable.

2. New evidence that CC data are useful for building fault prediction models.

The method first calculates metrics threshold values based on ROC curves and uses these values to
classify modules into two groups. Even though a different approach than the naive Bayes-based prediction

technique has been applied, CC data were very useful in this context.

The remainder of the paper is structured as follows. Section 2 introduces software fault prediction and

related practical problems. Section 3 presents related work. Section 4 describes the methodology and the

threshold-based technique. Section 5 presents empirical case studies. Section 6 contains the conclusion and

suggestions for future work.

2. Absence of fault labels

Software fault prediction models require software metrics that are collected from version control systems, such

as Subversion, and fault data belonging to the previous version of software from change management or bug-

tracking systems, such as Bugzilla.

Software fault prediction without prior fault data is shown in Figure 1. To solve this challenging problem,

Zhong et al. [8] developed a technique based on clustering algorithms. Modules were separated into clusters with

clustering algorithms. After that, an experienced engineer classified each cluster into two groups, fault-prone

and nonfault-prone, by examining the statistical features of each cluster. This method combined clustering

and expert-based software quality estimation in order to solve the problem of missing fault labels. However,

finding an expert to label the modules is difficult for many companies. During the labeling process, statistical

features of the clusters have been investigated. According to our literature survey, Zhong et al. [8] worked on

this problem for the first time, and still we see a huge potential for further research. In this study, we aimed to

remove the expert dependency and design a totally automated approach [9].

The design and use of complex machine-learning algorithms for practical software fault prediction prob-

lems is very frustrating for software engineers and we aimed to build comprehensive prediction models for cases

where there are no, or limited, fault data. Existing limited fault data can be discarded and the problem can

easily be transformed into a no-fault-data problem. We removed the class labels of the NASA datasets to

simulate the absence of fault data before the prediction is performed.
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Figure 1. Fault prediction without fault data.

3. Related work

So far, most of the models reported in the literature used within-company data as previous fault data [10].

Although most companies do not collect within-company data in practice, there are only a few studies that

explain what to do when there are not enough fault data. One approach is to use CC data as previous fault

data and run classification algorithms for prediction.

Turhan et al. [5] worked on seven datasets that were collected from NASA’s contractors. When one

dataset is tested, the remaining datasets are used as CC data. A popular classification algorithm known as

naive Bayes has been applied to the problem. Zimmerman et al. [6] used open source projects and commercial

software from Microsoft Corporation for defect prediction. Most of the authors in Zimmerman et al.’s [6] paper

work in Microsoft Research; therefore, they could easily access the data of applications developed by Microsoft

Corporation.

Another approach is to use unsupervised learning algorithms in the absence of fault information. Zhong

et al. [8] applied clustering methods to solve the problem, as explained in the previous section. Later, Zhong et

al. [11] applied it to a large dataset known as JM1. Seliya et al. [12] proposed a semisupervised clustering model

that applied a K-means clustering approach. This approach helped the expert much more than the unsupervised

learning algorithm. However, it is difficult to identify the number of clusters and it is still dependent on the

expert.

The expectation-maximization method was applied by Seliya et al. [13] to limited fault data problems,

demonstrating that this prediction model is better than the classification algorithms. However, semisupervised

classification algorithms do not always perform better [14]. In fact, the use of unlabeled data in the scope

of semisupervised classification may degrade the classifier performance if data do not conform to the model

assumptions, as explained in previous section.

Shatnawi et al. [7] proposed a new approach that uses ROC curves to calculate metric threshold values.

The threshold calculation approach in our study differs from that of Shatnawi et al. [15]. Researchers in the

machine learning community apply the AUC metric for benchmarking [16]. In their study, they selected the

candidate threshold having maximum values for specificity and sensitivity as the real threshold value.

In our study, we computed an AUC that passed from the following points: (PD, PF), (0, 0), and (1,

1). We selected the candidate threshold that had the highest AUC value for the real threshold value. We used

Table 1 to calculate the confusion matrix of candidate thresholds. When the module’s value was smaller than
the candidate’s value, this module was predicted as nonfault-prone [15]. Otherwise, this module was classified
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as fault-prone, according to Table 1. We already had information about the actual labels of modules, and we

easily computed (PD, PF) pairs for candidate thresholds.

Table 1. Error matrix for candidate metric [15].

Predicted

Actual
Fault-prone Not fault-prone

Metric ≥ threshold True positive False positive
Metric <threshold False negative True negative

Eqs. (1) and (2) show how to calculate PD and PF. “Each pair, (PD, PF), represents the classification

performance of the threshold value that produces this pair. The pair that produces the best classification

performance is the best threshold value to use in practice” [7].

PD =
TP

TP + FN
(1)

PF =
FP

FP + TN
(2)

Shatnawi et al. [7] decided to select a candidate threshold that had a maximum value of PD and a minimum

value of PF for the best threshold value [15]. We observed that this might not always be possible. Also, it is

possible to see that one candidate may reach the highest PD value, and another candidate may provide the

lowest PF [15]. Therefore, we decided to change our threshold calculation policy.

According to our threshold calculation approach, the candidate with the highest AUC value was selected

as the best threshold value. In addition, the AUC for the selected candidate value could not be less than 0.5.

This approach was used to calculate the threshold value of each metric.

After calculating the threshold values of metrics in datasets, we used these values in the threshold-based

fault prediction approach. The training dataset is the collection of six datasets, with the test dataset excluded.

For example, if the prediction was done for the KC2 dataset, the training dataset of that experiment was the

collection of datasets KC3, CM1, PC1, MW1, and MC2.

The most popular classification algorithm in machine learning is naive Bayes, although it is not a very

complicated method [17]. It has been previously shown that naive Bayes is very good at predicting faults when

it is applied with a logarithmic filter for datasets collected from NASA projects [18].

Researchers first took the logarithm of metrics in datasets and applied the naive Bayes method on this

converted dataset. Menzies et al. [19] showed that only 50 modules might be enough to build an acceptable

prediction model, and that naive Bayes provided the best performance, as in their previous study [18].

They stated that we must not focus on new machine learning methods. Instead, we must take into

account the information content of the available datasets. In their study, it was concluded that using a small

dataset instead of a large one does not affect the performance dramatically.

4. Methodology

This section introduces the proposed threshold-based fault prediction approach. Our threshold-based fault

prediction approach is straightforward. After metrics threshold values are calculated, a module can be predicted

as fault-prone or not fault-prone depending on the module’s metrics values. In Figure 2, the flowchart of our

approach is depicted.
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Figure 2. Our fault prediction approach.

When the majority of the software metrics exceed their threshold values, that module is classified as

fault-prone. For nine metrics, the majority value is five. Therefore, when at least five software metrics values

exceed their corresponding threshold values, that module is labeled as fault-prone. Otherwise, it is labeled as not

fault-prone. NASA datasets include 21 metrics, but most researchers prefer 13 metrics because the remaining

ones are derived metrics, which are not useful for prediction [15]. We eliminated four software metrics (count of

lines of comments, count of blank lines, lines of comment and code, Halstead line count) because the threshold

values were not meaningful for the first three of them and the last metric was very similar to McCabe lines of

code. Therefore, we worked with nine metrics for the experiments.

These metrics are cyclomatic complexity, lines of code, unique operands, essential complexity, design

complexity, unique operators, total operands, total operators, and branch count. The experimental studies

showed that this threshold-based fault prediction approach is effective in detecting fault-prone modules. The

number of software metrics can change from one development environment to another and the main motivation

behind this approach is the use of software metrics threshold values. Even though the technique seems limited

to these nine metrics, this approach can be used with different metrics subsets.

5. Experimental results

In this section, experimental results are explained. Section 5.1 will show the datasets used in this study and

Section 5.2 will explain the performance parameters. Section 5.3 provides details on benchmarking and Section

5.4 gives the experimental results.

5.1. System description

We used NASA projects from the PROMISE repository. Public datasets known as KC2, KC3, CM1, MW1,

MC2, and PC1 were applied during the experiments. The KC2 dataset was a data processing project developed
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with C++ language and included 523 modules, of which 15% were defective. The KC3 dataset was a storage

management project developed with Java language and included 458 modules, of which 9% were defective [20].

The CM1 dataset was a NASA spacecraft instrument project developed with C language and included 498

modules, of which 10% were defective. MW1 was a software project related to zero-gravity experiments and

was developed with C++ language. It included 434 modules, of which 8% were defective. MC2 was a video

guidance system developed with C++ language and included 161 modules, of which 32% were defective. PC1

was flight software for an Earth-orbiting satellite developed with C language and included 1109 modules, of

which 7% were defective.

Datasets included 21 metrics that were developed by Halstead [21] and McCabe [22]. As explained in

Section 4, derived metrics were discarded because they were redundant data for the datasets we used. Metrics

we preferred were consistent with the metrics used by researchers who develop models for defect predictions.

Rodriguez et al. [20] used the same metrics set to evaluate the models they developed. They emphasized the

negative impact of irrelevant and redundant features in their study. When the number of features increases

for a problem, the number of data instances we collect must increase; this problem is known as the curse

of dimensionality [20]. A dataset that has fewer features works faster and generally produces better results.

Metrics we used belong to three categories. The first category of metrics are McCabe metrics: lines of code,

cyclomatic complexity, essential complexity, and design complexity. Cyclomatic complexity shows the number

of independent paths in a program that must be tested to ensure the correct behavior of the program. Essential

complexity explains how much complexity is left if we remove well-structured complexity; it can be defined as

the cyclomatic complexity of the reduced control flow graph after replacing control structures. By using this

metric, unstructured constructs are detected and the degree of structuredness is measured. Design complexity

measures the interaction between modules. The second category of metrics are Halstead metrics. These metrics

are counts of tokens in a source code. For example, logical/arithmetic/relational/assignment operators might

be used in a program and variables/constants might be used as operands. Number of operators, number of

operands, unique number of operators, and unique number of operands are the metrics that were used from this

category. The last category is the branch category. We had only one metric, which was branch count. It shows

the number of branches in a flow graph.

5.2. Performance evaluation

In this study, we used AUC, PF, and PD for benchmarking.

5.3. Benchmarking

Our benchmarking used two techniques, naive Bayes with logNum and the threshold-based fault prediction

approach, on six NASA datasets. For each dataset, the other five datasets were combined and considered as

a training dataset. For the naive Bayes approach, the training dataset and test dataset were filtered with

the logNum function. After filtering, training was performed with naive Bayes. After prediction, performance

evaluation parameters were calculated. For threshold-based fault prediction, the training dataset was used to

calculate threshold values. After the corresponding thresholds were calculated, prediction was done on the test

dataset. Performance evaluation parameters were calculated for these two techniques, and then these results

were compared.

5.4. Results and analysis

We used AUC, PD, and PF parameters for performance evaluation. Tables 2 and 3 show the results for threshold-

based fault prediction approach and naive Bayes with logNum. The results are very similar. Tables show that
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ÇATAL/Turk J Elec Eng & Comp Sci

PD values of the threshold-based approach are larger than the naive Bayes-based approach. This means that

fault-prone modules are detected more efficiently. However, PF values of the threshold-based approach are

slightly larger than those of the other approach.

These experimental results show that the naive Bayes-based fault prediction approach and our threshold-

based fault prediction approach both work well when a CC dataset is used. Our main purpose was to evaluate

the effect of CC datasets when there are no prior fault data and we empirically observed that it helps companies.

Menzies et al. [23] stated that mission-critical systems that are risk-averse may prefer high PF and high

PD. For less critical software systems, which are cost-averse, a midrange PD is preferred if the PF value is low.

According to this information, we can specify that the suggested threshold-based approach can be preferred for

mission-critical systems because we have higher PD and PF does not increase so much. Although our purpose

was not to find a better prediction approach than the naive Bayes-based technique, the suggested approach

works better for mission-critical systems. We did not perform statistical significance tests because the purpose

of this study was not to find a better model for cross-project fault prediction. Instead, the purpose was to

understand whether or not the cross-project fault prediction works in the context of missing fault labels.

In Table 2, the average AUC is 68.5% when the threshold-based approach is applied, and in Table 3, it

is 68.3% when the naive Bayes-based technique is used. In Table 2, PD is 78.4% for the KC2 dataset and in

Table 3, PD is 76.4% for the same dataset. An AUC value close to 1.0 means that the classifier is perfect, and

an AUC value close to 0.50 means that the classifier has random prediction performance.

Table 2. Results for the proposed approach.

Dataset AUC PD PF
KC2 0.784 0.790 0.215
KC3 0.695 0.604 0.212
CM1 0.674 0.766 0.421
MW1 0.654 0.645 0.336
MC2 0.620 0.634 0.398
PC1 0.685 0.723 0.352
Average 0.685 0.693 0.322

Table 3. Results for naive Bayes with logNum.

Dataset AUC PD PF
KC2 0.791 0.764 0.181
KC3 0.690 0.581 0.200
CM1 0.668 0.708 0.372
MW1 0.675 0.645 0.295
MC2 0.633 0.596 0.330
PC1 0.645 0.618 0.328
Average 0.683 0.652 0.284

5.5. Threats to validity

Six NASA projects were used as CC datasets in this study. Although these projects were implemented by

different companies in different regions of the United States for NASA, they are mostly from the aerospace

domain. The impact of other domains on this problem might be different and, therefore, we must emphasize

that these CC fault prediction models were evaluated within this domain. Another threat to generalization

might be the use of NASA datasets for the software engineering industry. However, it was reported that NASA

data are relevant for this industry [5]. Another possible threat is the selection of metrics in our threshold

calculation approach. Different researchers might use different metrics and, therefore, the performance might

be different than the results we calculated.

6. Conclusions and future work

Most fault prediction models use prior fault data. However, companies do not always have fault data for fault

prediction. In this study, we focused on the use of CC data because we observed that, in many cases, previous

models do not work well.

Turhan et al. [5] used naive Bayes on CC data, which motivated us to use CC data in the absence of
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fault data. Instead of machine learning-based CC data usage, we aimed to develop a technique considering the

idea of software metrics threshold values.

The proposed threshold-based fault prediction technique achieved a larger PD value than the naive Bayes-

based approach. For mission-critical applications, PD values are more important than PF values because all

of the faults should be removed before deployment. Therefore, we suggest that companies use the proposed

threshold-based approach for mission-critical applications, in addition to the naive Bayes-based approach.

The findings in this study support the findings of Turhan et al. [5] that suggest using CC data. In this

study, we provided new evidence that CC data are useful for building fault prediction models. We also proposed

a new fault prediction approach.

For future work, we will try to improve the proposed threshold-based approach to achieve smaller PF

values and higher PD values. In addition, we will investigate the effect of projects from different domains. In

this study, all of the projects were from the aerospace domain, but finding project data from a similar domain

is not an easy task. Using projects from different domains and different processes may not lead to acceptable

performance and we will evaluate these factors in order to generalize the proposed model.
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