
Turk J Elec Eng & Comp Sci

(2016) 24: 3759 – 3768

c⃝ TÜBİTAK
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Abstract: The relationship among the slow-wave and echo pulse broadening effects in reflected acoustic waves and the

width of the interface layer of phononic crystal has been theoretically investigated. It has been observed that not only

the slow time for the reflected acoustic wave but also the echo pulse broadening reaches a saturation point as the size of

the phononic crystal increases. From the viewpoint of the acoustic wave, there is an interface layer in the crystal that

determines the slow-wave and the echo pulse broadening effects. The longest slow time, which is the time needed for

transmitting 0.08 periods of the phononic crystal, occurs when the width of the interface layer is 1.89λ . The width of

the echo pulse is broadened no more than 0.13 periods when the interface layer width is about 2.69λ .

Key words: Phononic crystal interface layer, slow-wave effect, echo pulse broadening, finite-difference time-domain

simulation

1. Introduction

The propagation of acoustic waves can be guided, controlled, and manipulated by using phononic crystals [1].

Phononic crystals are artificially formed of periodic composite materials or from the periodical distribution of

scatterers of acoustic waves (they are mutually disconnected materials in the substrate materials) in a matrix

[2]. In recent years, the study of the transmission coefficient, the dispersion relations, and the dynamics of

the wave fields by analyzing the transmission spectra in phononic crystals has attracted considerable attention.

More researchers have focused on the slow acoustic wave modes with the aim of designing delay lines, filters, and

resonators [3,4]. The slow-wave effects in phononic crystals can be studied through analyzing the characteristics

of the echo pulse [5]. It can be noted that researchers have paid more attention to the ability to slow the velocity

of sound with phononic crystals, which is called the slow-wave effect.

Wave propagation in media obeys a known dispersion relation. The group velocity vg = dω (k) /dk is

the speed of a pulse or signal [6]. When an acoustic wave propagates in a phononic crystal, the resonance of

acoustic waves caused by scatterers can lead to considerable frequency dispersion and thus substantially reduce

the group velocity. The scatterers have a large impact on the transmitted acoustic wave, but the transmitted

wave maintains temporal and spatial coherence with the incident pulse [7]. Usually, most works focus on the

sound velocity travelling through the phononic crystals for the transmitted wave [8,9]. Therefore, this paper

devotes its efforts to discussing the slow-wave effect from a new aspect by analyzing the reflected wave. An

interface is defined as a surface that can be treated as the common boundary between 2 different materials

[10,11]. The properties of the interface depend on the type of the system. The interface layer in the phononic
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crystal may lead to various phenomena in the propagation of acoustic waves [12]. On the other hand, the width

of the interface layer is an important factor in determining the performance of the interface layer. Therefore,

this paper focuses on how the interface layer in the phononic crystal influences the slow-wave effect and the

echo pulse broadening phenomenon by analyzing the echo signal in the time domain.

To achieve the goal of the paper, we calculate the propagation of the acoustic wave traveling in the

phononic crystals by using finite-difference time-domain (FDTD) simulation software. The FDTD method solves

the elastic wave equations via discretizing time and space and replacing derivatives by finite differences in the

equations of motion. The FDTD method has been used extensively to study the propagation of electromagnetic

waves [13,14] and has also been extended to study phononic crystals [15–18].

2. Theory

The transmission characteristics of acoustic waves in different media are distinct according to the elastody-

namic theory. The elastodynamic equations for an isotropic solid medium can be written as:

(λ+2µ)∇∇u− µ∇×∇× u = ρ
∂2u

∂t2
(1)

where u is the particle displacement, ρ is the mass density, E is Young’s modulus, G is the shear modulus,

and λand µ are Lame constants (λ = G(E−2G)
3G−E and µ = G). The elastodynamic equation for a fluid medium

can be written as:

1

c

∂2p

∂t2
−∇2p = 0 (2)

where c is the compressional velocity, and p is the sound pressure.

In this paper, the simulation of ultrasound propagation in the phononic crystal is performed using Sim-

Sonic2D, which is based on the FDTD method for solving the elastodynamic equations [19]. The computations

in SimSonic2D are based on the following elastodynamic equations:

ρ (X)
∂vi
∂t

(X, t) =
d∑

j=1

∂Tij

∂xij
(X, t) + fi(X, t) (3)

∂Tij

∂xt
(X, t) =

d∑
j=1

d∑
i=1

cijkl(X)
∂vk
∂xl

(X, t) + θij(X, t) (4)

where ρ (X) is the mass density, c(X) is the fourth-order rigidity tensor, andX and t are the space and time

variables, respectively. The material properties and geometry of the considered media can be defined by using

these parameters. Eqs. (3) and (4) describe the acoustic waves’ propagation in the continuous media, which

obeys Hooke’s law.

The development of phononic crystals for the purpose of controlling acoustic waves has followed the

analogous concept of photonic crystals for electromagnetic waves [20–22]. Slow light effect is also one of the

greatest properties of photonic crystals [23]. The group velocity can be determined by inversing the first-order

dispersion [24]:

vg =

(
dk

dω

)−1

(5)
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where ω and k are frequency and wave vector, respectively. The phase velocity is:

vp =
ω

k
=

c

n
(6)

where c is the speed of light in vacuum, and n is the refractive index, which is correlated with ω , n = n(ω).

Thus, the group velocity is:

vg =
c

n (ω) + ω dn(ω)
dω

(7)

If dn(ω)/dω > 0, then vg < vp , which represents the light, is slowed in photonic crystals. Compared to the

light, the phase velocity and the group velocity of the acoustic wave are defined as follows:

vp =
dx

dt
=

ω

k
= fλ (8)

vg =
dω

dk
=

d (vpk)

dk
= vp + k

dvp
dk

= vp +
2π

λ

dvp

d 2π
λ

= vp − λ
dvp
dλ

(9)

It comes to the conclusion that the speed of the acoustic wave can be slowed down in phononic crystals

ifdvp/dλ > 0.

3. Numerical results and discussion

The calculations in this paper are based on a 2-dimensional phononic crystal. Aluminum is the most abundant

metal in the earth’s crust and it is the third most abundant element on earth. Structures made from aluminum
and its alloys are vital to the aerospace industry [25]. The simulation structure in this paper is set as a thin

aluminum plate, inside which are some holes arranged as a square array. These holes are filled with water.

Thus, the simulation material consists of aluminum and water.

Perfectly matched layers (PMLs) [26,27] are defined in the simulation frontiers. A PML in SimSonic2D

can be expressed as a coefficient of reflection. In practice, the maximum efficiency of a PML depends on the

thickness of the PML relative to the wavelength of the incident wave. As a rule of thumb, a PML should have

a thickness of at least 1 wavelength in order to get an efficiency of several tens of dB for normal incidence [28].

Here the thickness of the PML is 2 wavelengths.

The simulation system block diagram is illustrated in Figure 1. The side length of the square aluminum

plate is 50 mm. During the FDTD simulation, the spatial grid step in x and y dimensions are both 0.02 mm

and the time step is 2.22 ns to ensure computational accuracy. The geometry of the source object is a line array.

The length of the source array is 8 mm. The incident wave is in the form of normal incidence. The source signal

is the continuous sinusoidal ultrasonic signal in the form of:

s(t) = sin(2πf0t) (10)

where f0 is the frequency of the ultrasonic signal. The frequency is set as 1 MHz in the simulation. The signal

duration is 500 ns, so it can be considered as a pulse signal. The speed of ultrasound depends strongly on

the temperature. With the increase of the temperature, the speed grows accordingly. In water, the velocity

obtained at 25 ◦ C is about 1497 m/s and for 74 ◦ C it is 1555 m/s [29]. The velocity in aluminum is 6350

± 230 m/s when the temperature is 25 ◦ C [30]. In theoretical computation, the simulation is conducted at
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room temperature (25 ◦ C). In this paper, the speed of ultrasound in aluminum and water is set as 6325 m/s

and 1500 m/s, respectively. Thus, the wavelength of the ultrasound in aluminum is 6.325 mm. The receiver for

detecting signals occupies 1 grid. The receiver is located at 1.6 mm from the left side of the plate, as shown in

Figure 1.

Figure 1. Simulation system block diagram.

In order to explore how the width of the phononic crystal interface layer affects the slow-wave effect

and the echo pulse broadening effect, the holes are arranged as a n× n matrix, and n (the matrix index) is

increased to obtain different structures. For different ns, the first columns of holes from the left are all placed

along the center line of the plate as shown in Figure 2. The 1 × 1, 2 × 2, 3 × 3, and 6 × 6 structures are

depicted in Figures 2a–2d, respectively. The diameter of the holes d and the lattice constant a are illustrated

in Figure 2e. In the calculations, 2 different lattice constants are considered:a = 0.7 mm and a = 1.875 mm.

The diameters of holes are d = 0.625 mm and d = 1.5625 mm accordingly. For a = 0.7 mm, the matrix index

n increases to 28 at most. For a = 1.875 mm, n increases to 14 at most in order to guarantee that the holes

still stay inside the aluminum plate. Meanwhile, the side length (Length) of the interface shown in Figure 2d

can be simply calculated as follows:

Figure 2. Diagrammatic sketch of the structure of the aluminum plate (a is the lattice constant andd is the diameter

of the hole (the scatterer)).
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Length = d+ (n− 1) ∗ a (11)

In this case, the same width of the interface layer consists of 2 different lattice constants. Under both

circumstances, the effect of the interface layer can be observed contrastively.

First the simulation is conducted with a = 0.7 mm, d = 0.625 mm. In this condition, the diameter of

the holes is about one-tenth of the acoustic wavelength. Figure 3 shows the time-domain transmitted ultrasonic

signal for different structures of the aluminum plate detected by the receiver. The simulation time is set as 50

mu s. Figure 3a represents the time-domain waveform for the whole simulation time. Because the receiver is

set between the signal and the holes, the first positive pulse is the incident wave and the second negative pulse

is the reflected echo according to the comparison of the red curve and the blue one. Between these 2 pulses,

the receiver does not get any signal because the receiver has detected the incident signal and has not received

the echo signal reflected back from the holes. The red curve is the reference curve, indicating that the signal

transmits through the plate without meeting any holes. In order to examine the echo in detail, the echo curve

is amplified and results for different structures are depicted together for comparison as shown in Figure 3b.
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Figure 3. Time-domain transmitted ultrasonic signal for different structures of the aluminum plate, where Ref represents

the plate without the hole.

Figure 4 demonstrates the arrival time of the amplitude of the negative pulse with different structures

when a = 0.7 mm. It is obvious that the arrival time increases as matrix index n rises. However, from n = 17,

the arrival time tends to saturate. Notice that when n = 17, the side length of the matrix (Length = 11.825

mm) is equivalent to 1.87λ (λ = 6.325 mm). Therefore, the conclusion can be drawn that the largest width of

the interface layer is 1.87λ for the slow wave.

In order to observe the slow-wave effect in different structures, 2 parameters, “number of periods” and

“relative change”, are defined. Number of periods is computed by the following formula:

N = (Tn − T1)/T, n = 1, 2, 3, ... (12)

Relative change is calculated as:

R = (Tn − T1)/T1 ∗ 100%, n = 1, 2, 3, ... (13)
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where N is the number of periods, R is the relative change, T is the period of incident acoustic wave, and Tn

is the arrival time of the lowest amplitude of the echo signal for holes array index n . For example, T1 is the

echo arrival time for n = 1.
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Figure 4. The arrival time of the lowest amplitude of the echo signal for different structures (a = 0.7 mm and

d = 0.625 mm).

The intersection time is defined as the point where the rising part of the echo signal intersects with

the reference curve. Figure 5 shows the intersection time of the echo signal for different structures when the

diameter of the holes is 0.625 mm. The curve generally rises as n increases. The side length of the structure for

n = 25 (Length = 17.425 mm) is equivalent to 2.75λ (λ = 6.325 mm), where the intersection time reaches the

maximum. As n continues to increase, the curve tends to saturate. The width of the echo pulse is broadened

when Length increases. When Length is larger than 17.425 mm, the broadening effect becomes steady and so

the width of the interface layer is 1.87λ for echo pulse broadening. The number of periods and relative change

are calculated by Eqs. (12) and (13), respectively.

In this paper, the simulation is conducted for 2 different sizes: (i) a = 0.7 mm,d = 0.625 mm, and (ii)

a = 1.875 mm, d = 1.5625 mm. The arrival times of the lowest amplitude of the echo signal for the 2 cases

are shown in Figures 6a and 6b, respectively. Some similarities can be drawn from the 2 curves. First, the time

rises as Length increases. Second, when Length reaches about 12 mm, which is equivalent to 1.89λ (λ = 6.325

mm), both curves tend to saturate. It is indicated that the echo pulse is slowed for about 0.08 periods (1.05%)

at most for size (i) and about 0.07 periods (0.93%) for size (ii). It is worth noticing that when Length reaches

a certain value (1.89λ in this frequency), the change trend of the slow-wave effect is the same for these 2 sizes.

That is to say, when the frequency in the simulation does not change, no matter what sizes the lattice constants

and the diameters are, the width of the phononic crystal interface layer is determined, here as 1.89λ . When

Length is equal to the width of the interface layer, the slow-wave effect will be the best, and even if Length

continues to increase, the effect will not change as long as Length is larger than the width of the interface layer.
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Figure 5. The intersection time of the echo signal for different structures (a = 0.7 mm andd = 0.625 mm).
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Figure 6. The arrival time of the lowest amplitude of the echo signal for different structures: (a) a = 0.7 mm and

d = 0.625 mm, (b) a = 1.875 mm and d = 1.5625 mm.

Figures 7a and 7b demonstrates the intersection time of the echo signal for the 2 structures ((i) a = 0.7

mm,d = 0.625 mm, (ii) a = 1.875 mm, d = 1.5625 mm). The arrival time of the lowest amplitude of the echo

signal rises as Length increases. When Length is about 17 mm, which is equivalent to 2.69λ (λ = 6.325 mm),

the 2 curves tend to saturate. It is obvious that the width of the echo pulse is broadened for about 0.13 periods

(1.67%) at most for the former condition and about 0.1 (1.3%) periods for the latter. Accordingly, when the

length of the interface is about 2.69λ , the pulse broadening effect caused by the phononic crystal will stay the

same. In other words, under a certain frequency, no matter what sizes the lattice constants and the diameters

are, there is always an interface layer that keeps the broadening effect confined to a certain level.
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Figure 7. The intersection time of the echo signal for different structures: (a) a = 0.7 mm andd = 0.625 mm,

(b) a = 1.875 mm andd = 1.5625 mm.

4. Conclusions

In this paper, the impacts of the interface layer in the phononic crystal on the slow-wave effect and the echo

pulse broadening have been theoretically investigated using FDTD simulations. By studying the time-domain

waveform while Length is not larger than the width of the interface layer it can be seen that, for the 2 different

crystal structures, the arrival time of the echo signal is slowed and the width of the echo pulse is broadened

when the size of the structure increases. However, when the diameters and lattice constants are smaller, the

slow-wave effect and the echo pulse broadening phenomenon will be obvious. For the smaller size, the echo pulse

is slowed down for about the time that is needed for transmitting 0.08 periods (1.05%) of phononic structure

at most. Similarly, the width of the echo pulse is broadened for about 0.13 periods (1.67%) at most. If the

size of the structure continues to increase, these 2 parameters tend to saturate. It can be concluded that the

change in both parameters will be limited to a certain range if the frequency of the incident acoustic pulse is

fixed. That is to say, there is an interface layer in the crystal from the viewpoint of the acoustic wave and

this interface layer determines the slow-wave effect and the echo pulse broadening effect. Thus, the degrees

of the slow-wave effect and the echo pulse broadening effect are influenced by changing the sizes of the lattice

constants and the diameters. The interface layer in the phononic crystal is a crucial factor in deciding whether

there are these effects or not. This work is helpful in understanding the control of acoustic-wave propagation

in phononic crystals. Specifically, if the sound velocity is slowed down or the echo pulse width is broadened by

adding a phononic crystal into the structure, then more attention must be paid to the interface layer in the

phononic crystal. When the crystal size increases the interface layer size, the slow-wave effect and the pulse

broadening effect will saturate. That is, if better slow-wave or echo pulse broadening effects are wanted, it will

make no sense to increase the phononic crystal size continuously. The theoretical results in this paper can lay

a good foundation for understanding the slowing effects of the interface layer in engineering applications. They

can provide many potential applications in acoustic waveform regulation, velocity control, and the design of

new acoustic devices.
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