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Abstract:The support vector machine (SVM) is one of the highly powerful classifiers that have been shown to be capable

of dealing with high-dimensional data. However, its complexity increases requirements of computational power. Recent

technologies including the postgenome data of high-dimensional nature add further complexity to the construction of

SVM classifiers. In order to overcome this problem, hardware implementations of the SVM classifier have been proposed

to benefit from parallelism to accelerate the SVM. On the other hand, those implementations offer limited flexibility in

terms of changing parameters and require the reconfiguration of the whole device. The latter interrupts the operation of

other tasks placed on the hardware device. In this work, two flexible hardware implementations of the SVM classifier are

proposed, namely A1 and A2 classifiers with successful applications in a microarray dataset. In addition, two dynamically

and partially reconfigurable (DPR) architectures of the SVM classifier are presented. The A1 and A2 architectures have

achieved up to 61× and 49× speed-up, respectively, over the equivalent general purpose processor. Furthermore, the

DPR implementations achieved at least ∼8× reduction in reconfiguration time compared to non-DPR implementation.

This is a significant achievement that can be easily adapted in other application domains of a similar nature.

Key words: Bioinformatics, data mining, field programmable gate arrays, supervised learning, support vector machine

1. Introduction

The support vector machine (SVM) is one of the most recent classes of supervised classifiers and one that

has been gaining wide acceptance in recent years [1]. Since its emergence in the early 1990s, the SVM has

been used extensively in a vast number of applications such as text categorization, image recognition, and

bioinformatics [2]. Bioinformatics applications use SVM in protein homology detection and gene expression.

In the latter, SVM is used for molecular classification, such as assigning functions to genes, or in automating

the diagnosis and prediction of cancer tissues [3,4]. In many microarray studies, the SVM has shown superior

classification performance when compared with other supervised classifiers, mainly due to its amenability to

high dimensionality, flexibility in choosing a similarity function, and ability to identify outliers [5,6].

On the other hand, the large dimensionality of microarray data imposes high computational demands

on training and classification tasks involved in SVM, which impedes the full exploitation of microarray data in
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formulating complex classification tasks, including in biological studies in the postgenome era. In an effort to

counteract the computational limitations of current general purpose processors (GPPs) applied to the analysis

of microarray data, two flexible hardware architectures of the SVM classification decision function are proposed

in this work using a medium end state-of-the-art FPGA. Additionally, the roles of dynamically and partially

reconfigurable (DPR) architectures applied to the proposed SVM are investigated. Accordingly, a collection of

five SVM architectures is constructed using combinations of non-DPR and DPR-based SVM cores.

The remainder of this paper will present a background on the SVM classification, followed by relevant

work on hardware implementations of the SVM classifier and a proposal of five FPGA implementations of the

SVM classifier. The results of these implementations will then be presented and analyzed. Finally, a summary

and conclusion will be given.

2. Background

SVMs are supervised machine learning methods that are used to assign a class label to a sample of unknown

labels based on a prediction model constructed using a set of data of known class labels; this is called learning

or training of data.

The SVM classification consists of two discrete phases; one is the training phase and the other is the

evaluation of the decision function, known as the classification phase. During the training phase, the SVM

estimates a function that classifies the data into two classes by forming a hyperplane that maximizes the

separation of the two classes [5]. The SVM deals mainly with problems of binary classes (class label = 1 or

class label = –1), and when multiclass problems are used, the SVM is applied to two classes at a time until

all classes are covered. During the training phase, data are mapped on to a large feature space where the

classifier tries to estimate a multivariate function from a given training set that can separate the two classes by

constructing a hyperplane that maximizes this separation [2,3].

Given a training set (x i ,y i), where i = 0 to N – 1 (N is the number of training samples), x i ⊆ ℜM are the

training features, M is the number of features or dimensions, and y i ∈ {–1,1}, being the known classifications

of the i training sample, the classification function of linearly separable training data is given by Eq. (1) [2]:

f(x) = ⟨w.x⟩+ b, (1)

where b is the bias or distance between the hyperplane and the origin, and w is a normal vector of the separating

hyperplane. The hyperplane seeks to maximize the distance between the two soft margins by minimizing the

norm w for linearly separable training. Solving an optimization function leads to a kernel notation shown in

Eq. (2):

L(α) =

N−1∑
i=0

αi −
1

2

N−1∑
i,j=0

αiαjyiyjK(xi, xj)

 , (2)

where K(x i , x j) is the kernel function, which can be linear, Gaussian, or polynomial, as formulated in Eqs.

(3a), (3b), and (3c) respectively:

k (xi, xj) = xi.xj , (3a)

k (xi, xj) = e(∥xi−xj∥2/2σ2), (3b)

k (xi, xj) = (1 + xi.xj)
p
. (3c)
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The linear SVM classifier is used in the hardware implementations proposed in this work; consequently, the

linear kernel function is used, leading to transforming Eq. (1) to Eq. (4).

f(x) =
N−1∑
i=0

yiαi(xi.xj) + b. (4)

For simplifying the hardware implementations, bias b can be set at zero assuming that the hyperplane is

passing through the origin, and the query x j will alternatively be labeled as Q j during the classification phase

to distinguish it from the support vectors x i obtained during the training phase. Note that the x i used in

the training phase represents the complete training samples, whereas x i used during the classification phase

represents the support vectors (SVs). The latter forms a subset of the training samples having nonzero αi s.

During the classification phase, when the SVM classifier is presented with a query vector Qj , it performs the

classification function defined in Eq. (5) based on the linear kernel to determine in what side of the hyperplane

the query lies [5].

Query Class (Q) = sgn

(
N−1∑
i=0

yiαix
T
i Q

)
(5)

In this work, the FPGA implementation tries to determine Eq. (5) given that the training phase is done offline

and that the core is supplied readily with the SVs.

3. Relevant work

The SVM has established itself as a superior supervised classification method in a wide range of applications [2–

6]. As a result of its popularity, many efforts have been expended towards the acceleration of the SVM and the

enhancement of its real-time performance using FPGAs. FPGA implementations of SVM are directed toward

three main areas, namely accelerating the training phase, accelerating the classification phase, or accelerating

both in a single architecture. The following overview is a selection of relevant FPGA implementations of the

SVM classifier.

The earliest work reported in the literature on FPGA implementation of SVM training was in [7],

targeting nonlinear classification. The authors proposed and implemented a digital architecture of SVM in

FPGA targeting the learning or training phase only. The architecture consisted of two main parts, the first to

solve the constrained quadratic problem given an initial constant bias and the second to iteratively update this

bias. The authors tested the architecture on Xilinx Virtex-II for the case of 8 and 32 patterns, achieving an

acceptable rate of classification for both [7]. The work did not include acceleration results with respect to the

GPP and it was mainly focused on proving the suitability of the application to its hardware implementation.

The authors of [7] have various subsequent works in this area. One of their recent works was reported in

[8], where they presented an FPGA core generator tool aiming for automatically generating a Gaussian kernel

SVM architecture in VHDL. The user enters the desired parameters to the graphical user interface (GUI), the

number of support vectors, number of features, data rate, gamma variable required for the computation of the

Gaussian kernel, and precision of the input data. The core then customizes the hardware description accordingly

to solve the Gaussian classification function [8].

In [9], the authors reported architecture of the SVM classifier that performed the training phase based

on sequential minimal optimization (SMO). The main contribution of the work was to implement the SMO-
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SVM using DPR, whereby the modular blocks performing the tasks associated with SVM training were time-

multiplexed, leading to an area saving of 22.38% of the design implemented in the Xilinx Virtex-4 XC4VLX25

FPGA.

In [10], the authors reported a hardware implementation of the SVM classifier that performs both training

and classification on a FPGA based on three types of kernels, linear, Gaussian, and polynomial, using a recursive-

updating equation. The architectures targeted disease diagnosis based on using microarray data. The authors

tested their architecture on sonar and cancer data, achieving superior classification performance in terms of

classification and accuracy, especially with the linear kernel. The authors mentioned that the area footprint

was one of the limitations of the design; however, they did not report the total CLB slices consumed by

the architecture. In addition, the implementation attained a low clock speed of 25 MHz for the leukemia

implementation.

In [11], the authors presented FPGA implementation of the SVM classifier targeting a brain–computer

interface, which requires real-time decisions. The design depends on doing the training offline using the LibSVM

MATLAB extension based on linear kernels and the training coefficients along with the SVs are made available

to the architecture. The architecture realized the classification decision function based on parallelizing the

computation of the linear kernel. In addition, it was based on processing six dimensions in parallel using

embedded 18 × 18 multipliers on the Xilinx Virtex−II XC2V1000-4 FPGA. The architecture performed well

in terms of classification when compared with a floating point implementation. However, for one of the cases,

FPGA performed worse in terms of processing speed, consuming twice more time than the GPP. In addition,

the FPGA architecture was nonscalable, limiting the implementation to six dimensions only [11].

As a consequence of the widespread use of the SVM classifier in various applications, many published

works have been reported in the literature on several high-performance FPGA implementations. The reader is

advised to consult [12–18] for details about some of these additional works.

In addition to being a popular algorithm for hardware implementation, the SVM has been incorporated

in many data mining software suites such as the LibSVM tool [19], MATLAB, the R statistical package, SVM

Fu, SVM Torch, and many others.

The SVM architectures presented in this work build on existing ones and try to overcome their main

limitations in terms of scalability and flexibility. The main contribution of the work presented here is the

application of DPR to enhance the flexibility toward a more adaptive SVM core. This feature is intended to

cater to the variability in microarray studies. In addition to using DPR, our implementation is different from

most of the above in being parameterized, which means it can adapt to different data sizes.

4. Novel FPGA implementation of the SVM classifier

A total of five SVM architectures are presented. Two of the proposed architectures of the SVM classifier are

based on systolic array architectures, designed to target different dataset sizes; however, both of them work

toward determining Eq. (5). The first architecture targets problems where the dimension (M) is greater than

the number of SVs, while the other is designed to solve the opposite case. The architectures are labeled A1

and A2, respectively; architecture A1 was reported by the authors in a previous work [20]. Both architectures

consist of modular designs captured in Verilog HDL having four main blocks. However, the design of each block

and the interconnection between the internal elements in A1 architecture vary from those in A2. The first

block is the memory, which is responsible for storing the training data. The second block is responsible for the

computation of the linear kernel using the training data, class labels, and coefficients received from the memory
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block. The third block is responsible for accumulating the results coming from the kernel computation block

as they get computed. Finally, the decision-making block receives the result from the accumulation block when

all data in the training set have been processed to determine the final result, which represents the class label of

the query. The following subsections will provide more details on each block for the two proposed architectures.

4.1. Memory block

4.1.1. A1 architecture (M >>SVs)

This block stores four types of data describing the training set, thus comprising four memory subblocks as shown

in Figure 1a. The first memory subblock stores the complete training set in the form of a matrix of a number

of rows equal to the number of SVs and a number of columns equal to the number of features or dimensions

(M). These are implemented as a set of FIFOs of a number equal to the number of SVs having a depth of M

each, and a width of B (WL of each feature). The second memory subblock is a FIFO used to store the class

labels of the given SVs. When these SVs are small, the associated labels are stored inside the FPGA internal

registers instead of wasting a complete block RAM due to the fact that each class label requires one bit only
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Figure 1. The data path of the memory block of the SVM classifier: (a) the components constituting the memory

block, highlighting that there are four different storage subblocks to service the SVM classifier; (b) the components of

the memory responsible for storing the training set in SVM architecture A1.
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(to represent binary class labels). Since M is expected to be significantly large for this architecture, the third

memory subblock is used as a FIFO to store the features of the query. Note that multiple queries can be stored

in this memory if enough block RAMs are available. As for the fourth memory subblock, it is used to store the

training coefficients (αi s) computed offline during the training phase and has a depth equal in number to the

SVs.

The complete block is scalable in terms of the parameters B, M, and SVs. This block is connected to

the kernel computation block, the latter consisting of kernel processing elements (Kernel PEs). Each of the

SV-FIFOs instantiated by the core design to store the training set is allocated to one of the Kernel PEs, to

supply each Kernel PE with one feature every clock cycle in a pipelined manner. Additionally, one feature of

the query FIFO is read by the first Kernel PE every clock cycle and propagated through the pipeline, allowing

for parallel SV kernel computations. On the other hand, the class labels are read from the memory every clock

cycle after a latency of M clock cycles needed to fetch the first kernel result. Similarly to the training coefficients,

they are read after M clock cycles, as they are required at the same time that the class labels are needed for

the completion of the kernel computation (as will be illustrated in subsequent subsections).

The architecture of the memory storing the training set is the most sophisticated part within the memory

block as it involves adaptive techniques to instantiate multiple FIFOs, each responsible for storing the whole

dimensions of one SV (1 SV is a vector of M features). As such, the number of FIFOs is equal to the number of

SVs. Since these FIFOs are designed to feed the kernel computation systolic array, the read address from these

FIFOs is pipelined throughout the SV FIFOs to ensure that data are read by the corresponding kernel PEs in

a timely manner as illustrated in Figure 1b.

4.1.2. A2 architecture (SVs >>M)

The components and functions of the memory block are similar to those of the A1 architecture. However, the

specifications, arrangement, and number of FIFOs are different since they serve the case when the number of

SVs is much higher than M. In A2 architecture, the training coefficients are stored in FIFO, having a depth

equal to the number of SVs and width equal to the WL of each coefficient. As for the class labels and query

memory, the tool is left to decide whether to store the data inside registers or utilize block RAMs based on

the preset M and SVs. Memory handling of the training data consists of M-FIFOs, each having a depth of

SV, where each FIFO is associated with a specific kernel PE pipelined similar to A1 architecture to serve the

requirement of the kernel computation block.

In summary, the depth of the training set memory in each of the two architectures is different: in A1,

the depth is M, while in A2, it is SV. On the other hand, the number of FIFOs to store the training set for A1

and A2 is SV and M, respectively.

4.2. Kernel computation block

4.2.1. A1 architecture

The kernel computation block is partitioned into three subblocks operating in two stages as shown in Figure 2,

whereby each subblock is pipelined to perform a portion of the computation. During the first stage, the largest

and most time-consuming work is carried out by the subblock referred to as Multiplier A to compute the dot

product (linear kernel) in Eq. (6):
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Figure 2. Data path of the kernel computation block.

Multiplier A =

M−1∑
j=0

xjQj , (6)

where x j is a SV feature and Q j is the corresponding query feature. This subblock consists of a systolic array

of a number of SV kernel PEs, where each PE has the role of receiving one SV feature every clock cycle (x ij)

along with the corresponding query feature (Q j). While each PE has a local FIFO associated with it whose

sole responsibility is to provide that particular PE with one SV feature every clock cycle, only one Query FIFO

is commonly used by all PEs as explained previously. The architecture of the systolic array of this subblock is

shown in Figure 3a. The first PE in the array reads a query feature every clock cycle from the Query FIFO

and propagates that feature throughout the pipeline. Figure 3b illustrates the functionality of each PE, where

each PE processes all the features of one SV independent from each other, except for the pipelining of the query

features.
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Figure 3. (a) The systolic array of Multiplier A1 of the kernel computation block; (b) the functionality of a single PE.

The systolic array is fully parallelized such that the SV computations of Eq. (6) are carried out

simultaneously. This operation is facilitated by the capability to obtain the needed feedstock for each PE
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continuously from the local memory attached to each PE. The latency of the pipeline is M clock cycles, while

the throughput is one result per clock cycle corresponding to the multiplication shown in Eq. (6) for one SV.

Consequently, for processing one query vector, M + SV clock cycles are required by the pipeline to finish the

computation.

Additionally, while the above computations are being carried out by the first subblock, the second

subblock, referred to as Multiplier B, which is associated with the first stage of the kernel computation

block, starts operating just after a period of M – 1 clock cycles. This delay is required to ensure appropriate

synchronization with the previous and subsequent classifier operations, and to ensure efficient propagation of

the data throughout the pipeline. The function carried out by this subblock is to read the training coefficients

and the class labels associated with each SV simultaneously from the memory block and compute the scalar

product shown in Eq. (7):

Multiplier B = αiyi, (7)

where i is from 0 to N – 1. To complete the computation of the kernel for a single SV, the subblock in stage two

multiplies the two results of stage one (results of Multipliers A and B) to obtain the final kernel result given by

Eq. (8).

Kernel Computation =

M−1∑
j=0

XijQjαiyi (8)

It can be stated that the last multiplier is pipelined with the previous two such that it starts working after M

clock cycles (the latency of the first subblock), and thereafter it outputs one result per clock cycle. In this work,

the multiplication operation carried out in the three subblocks is performed using DSP48 blocks available from

the Xilinx Virtex-4 FPGAs and subsequent series.

4.2.2. A2 architecture

The components of the kernel computation block of the A2 architecture of the SVM classifier are similar to

the SVM A1 architecture. However, the difference lies in the arrangement and number of PEs constructing the

systolic array of Multiplier A. The systolic array now scales with M instead of SVs in A1 architecture, where

M PEs constitute the systolic array responsible for computing Eq. (6), each having a local memory attached

to it having a depth of SV as was explained in the memory subsection.

This architecture serves the case when SVs >>M, parallelizing the computation of the kernel partial

product by allowing M computations to be carried out simultaneously. On the other hand, the query M

features are stored in registers within the subblock as they are needed by the PEs every clock cycle. Each of the

M PEs has the role of receiving a feature from one SV every clock cycle and propagating the partial product

result to the next PE in the pipeline to complete the computation of Eq. (8) for the same SV. Unlike the A1

architecture, the computation of Eq. (8) for one SV is partially carried out by each PE, and the result of the

last PE of the systolic array will correspond to the final result of Eq. (8). The latency of this subblock is M

clock cycles, and the throughput is one result per clock cycle. Consequently, the time needed for this subblock

to complete the computation of the kernel’s partial product is the same as in A1 architecture, being M + SVs.

Figure 4 outlines the arrangement and functionality of A2 architecture.
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Figure 4. (a) Systolic array architecture of the first subblock in the kernel computation block for SVM A2 architecture;

(b) the functionality of each PE.

Lastly, the computation of the remaining parts of the kernel is activated in a similar way to A1 architec-

ture, whereby Multiplier B starts working after a period of M – 1, such that after M clock cycles the results from

both subblocks of stage one are ready and synchronized, allowing the subblock of stage two to start receiving

results.

4.3. Accumulation block

This block is a simple add-and-accumulate circuitry required to accumulate the results as they come in from

the kernel computation block, as shown in Figure 5. The final accumulation result is given by Eq. (9).

Accumulation result =
SV s−1∑
i=0

M−1∑
j=0

XijQj(αiyi)

 (9)

4.4. Decision-making block

This block is the simplest circuit in the whole SVM classifier common to both architectures A1 and A2, whose

role is to determine the class label of the query based on the sign of the accumulation result given in Eq. (9).

The SVM classifiers proposed in this work target binary class labels, e.g., class zero distinguishes a diseased

tissue and class one is healthy tissue. This block basically checks the most significant bit (MSB) of the final

accumulated results, whereby the query is assigned to class label of 1 when the MSB is 1, and to zero otherwise.

5. Novel DPR implementations of the SVM classifier on FPGA

This section presents two DPR implementations of the SVM classifier based on A1 and A2 architectures. DPR

is basically a feature in modern FPGAs that enables users to set portions of the tasks placed on the FPGA

as reconfigurable tasks while others are static. This feature allows users to alter the configuration of any of

the reconfigurable tasks while the device is running without affecting the operation of the static tasks. This

capability enables swapping existing tasks on the FPGA with completely different tasks or swapping the existing

tasks with variable copies of the same tasks having different parameters, as with the case in the subsequent

implementations. DPR follows a specific design flow and requires a specialized software tool.

5.1. Novel DPR implementations based on single-core SVM classifier

Two reconfigurable single-core implementations of the SVM classifier are presented here. The first reconfigurable

single-core SVM classifier is based on an A1 SVM classifier. The single core is used to construct a partial

reconfiguration (PR) design using the Xilinx PlanAhead tool. The complete SVM core is set as a reconfigurable
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Figure 5. The data path of the complete SVM classifier applicable to A1 and A2 architectures, including the functionality

of the accumulator and decision-making block.

partition (RP) following Xilinx PR design flow and hierarchical methodology [21], and is used to create multiple

reconfigurable modules (RMs). RMs are basically variant copies of a portion of the classifier or a complete

classifier that can be swapped in and out of the FPGA on the fly to alter the operation of that portion.

The second reconfigurable single core is based on setting one core within a multicore SVM architecture as a

reconfigurable core. As such, a quad-core SVM classifier is constructed using the normal design flow and then

is used in this implementation whereby one of the quad cores is made reconfigurable only while the others are

left static. The implementation is based on the following parameters for each core: B = 9, SV = 20, and M =

1024. Results of the two implementations will be presented in the subsequent sections to assess the advantages

of these implementations in terms of reconfiguration time, placement, and flexibility.

5.2. Novel DPR implementation based on multicore SVM classifier

To enhance the aforementioned multicore architecture and add more flexibility to it, a DPR implementation

based on setting all SVM classifiers within the quad-core as RPs is proposed. The flexibility added here is in

altering the contents of the memory, relocatability of the cores, and processing of multiple data in parallel using

different parameters to conduct multiple studies. The relocatability feature is crucial in server solutions where

users may request cores to be activated on demand; consequently, rearranging existing cores within the same

chip is necessary. In addition, this feature allows for relocating cores from defective FPGA fabric to healthy

locations.
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After constructing the quad-core SVM classifier, each of the quad cores is set as a RP at first. Second,

multiple variants of each core corresponding to different memory contents, SVs, M, and B are created, which

will be used in creating multiple configurations as illustrated in Figure 6.
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Figure 6. Block diagram illustrating the reconfigurable quad-core SVM classifier.

Third, the quad RPs are constrained within specific regions on the FPGA containing all the logic and

resources required to account for the maximum parameters chosen in any of the required RMs. The bit streams

of several configurations are then created corresponding to variable copies of the SVM classifier. This process

is associated with the generation of two bit streams per configuration; one is a full bit stream that can be used

to configure/reconfigure the whole FPGA device, while the other is a partial bit stream that is used to partially

reconfigure any of the quad cores during run-time as required.

6. Implementation results

This section presents the results of the aforementioned implementations, which include results from both

hardware and software implementations of the SVM classifier. In the hardware, used data are of different sizes

that can be stored within the block RAMs of the selected FPGA available onboard the Xilinx ML 403 platform

board. The software implementations on the GPP are based on using the MATLAB (R2009b) bioinformatics

toolbox running on a 2.60 GHz Pentium Dual-Core E5300, with 3 GB RAM workstation. The toolbox includes

an optimized SVM classification function that can be easily utilized in addition to using the fixed-point toolbox

to quantize the features according to the selected precision and required integer WL. The following subsections

summarize the implementation results.

6.1. Single-core SVM classifier based on A1 architecture

The proposed single-core A1 architecture of the SVM classifier was simulated first using synthetic data that

mimic a microarray dataset, then synthesized, mapped, placed, and routed using Xilinx ISE 12.2 to target the

XC4VFX12 FPGA available onboard the Xilinx ML 403 platform board. The implemented design was based

on these parameters: B = 8, M = 1024, and SVs = 20.

The hardware implementation was tested using the Xilinx ChipScope Pro Analyzer 12.2 and checked

against simulation results. The number of clock cycles to classify one query was found to be 1048, achieving an
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execution time of 10.62 µs based on the attained frequency of 98.7 MHz. On the other hand, the execution time

of the GPP implementation was 646 µs based on taking the average of 10,000 runs. Consequently, the FPGA

implementation of the A1 architecture outperformed the GPP implementation by approximately 61 times. The

resources used by the FPGA for this implementation are shown in the Table.

Table. The FPGA resources used by A1 and A2 architectures.

Device Xilinx XC4VFX12-12ff688
Parameters A1: B = 8, M = 1024, SVs = 20 A2: B = 8, M = 20, SVs = 1024

Used/available Utilization rate (%) Used/available Utilization rate (%)
Slices 1703/5472 31 1206/5472 27
Slice FF 2137/10,944 19 1810/10,944 17
4 input LUTs 1799/10,944 16 1705/10,944 15
Block RAMs 23/36 63 21/36 58
DSP48 22/32 68 21/32 65
Clock frequency 98.7 MHz 142.9 MHz

The same design was simulated using a higher end FPGA, namely Xilinx XC4VSX35, achieving a

frequency of 137.7 MHz, which led to hardware execution time of 7.64 µ s, consequently achieving a speed-up of

∼85 times over an equivalent GPP implementation. This finding was based on simulation results only; actual

implementation onboard was not feasible due to the unavailability of the large hardware device.

6.2. Single-core SVM classifier based on A2 architecture

Following the same procedure above with the A2 architecture of the SVM classifier, the design was implemented

with these parameters: B = 8, SVs = 1024, and M = 20. The number of clock cycles to classify one query

was found to be 1048, which was the same as the previous block, as was expected since the two architectures

require the same number of clock cycles to classify one query. However, the attained clock frequency of the

A2 architecture was 142.9 MHz, which was higher than A1, leading to an execution time of 7.34 µ s. On the

other hand, the execution time of the GPP implementation was 359 µ s based on taking the average of 10,000

runs. Consequently, the FPGA implementation of the A2 architecture outperformed the GPP implementation

by approximately 49 times. The resources used by the FPGA for this implementation are shown in the Table.

It is difficult to compare two different technologies with each having its own architecture and components.

However, the two technologies used in the aforementioned comparisons were bought at the same time and both

are considered to be medium end devices, which ensures a fair comparison. Current state-of-the-art Virtex-7

FPGAs have much larger logic resources ranging from 91,050 to 136,900 slices as compared to the 5472 slices

available in the device used in this work. However, such FPGAs are expensive and not widely available on

the market. As for the GPPs, current state-of-the-art multicore Intel processors have between 2 and 10 cores.

Therefore, using a dual core Intel processor seems to be fair choice when compared with the size and scale of

the FPGA used in this work.

6.3. Effect of data dimensionality: GPP vs. FPGA

The FPGA implementation of the A1 SVM classifier was compared with GPP implementation running on

the MATLAB (R2009b) bioinformatics toolbox to particularly investigate the effect of changing the number

of dimensions M on the timing performance of the two implementations. The number of SVs was fixed at

1024, B was fixed at 16, and M was varied from 1 to 16. Figure 7a shows that when M was increased, both
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implementations took longer times; however, the FPGA suffered less in classification time as compared with the

GPP implementation. For instance, changing M from 1 to 16 features increased the classification time by only

1.4% for the case of FPGA implementation as compared to 5.7% for GPP implementation. Figure 7b implies

that increasing the dimensions of the SVs yields a significant increase in the classification time of the GPP

implementation as compared to a smaller increase for the FPGA case as shown in Figure 7a. Thus, the GPP

implementation seems to scale linearly with increasing dimensions while the FPGA implementation seems to

be nearly constant. The possible reason for the GPP behavior is that increasing the dimensionality of the SVs

beyond those shown in Figure 7 causes the multiply-accumulate operations involved in the kernel computation

phase implementation to access the global memory to store the intermediate results since the cache will not be

able to hold these values. On the other hand, the FPGA implementation still maintains its performance due to

the abundant on-chip storage resources (block RAMs) and the use of fixed precisions.
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Figure 7. The effect of increasing the dimensions (M) on classification time for the FPGA and GPP implementations:

(a) GPP and FPGA, (b) Enlarged GPP.

In summary, it can be stated that the FPGA generally scales better than the GPP when the dimensions of

the SVs are large, mainly due to the extensive pipelining and parallelism employed in the FPGA implementation

as compared to pure sequential behavior in the GPP, and due to the abundant distributed memory in medium

and high end FPGAs.

6.4. DPR implementation of single-core SVM architecture based on A1 architecture

Based on the single-core implementation described in Subsection 4, a DPR implementation was constructed

using the Xilinx PlanAhead 12.2 tool based on RMs having the following parameters: SVs = 20, M = 1024,

and B = 8. Other RMs were also successfully created reflecting variable SVs and M. The configuration was run

and verified, and full and partial bit streams were generated. The targeted Xilinx device was the XC4VSX35

FPGA. The full and partial bit streams were 1673 kB and 199 kB in size, respectively. The full and partial

reconfiguration times were computed using Eq. (10):

Configuration Time =
Size of the bitstream file

Bandwidth of the Configuration Mode
(10)

The results reported here are based on the JTAG as configuration mode having a bandwidth of 66 Mbps.

Accordingly, the full reconfiguration time was found to be 202.78 ms while the partial reconfiguration time was

24.12 ms, leading to a speed-up in partial reconfiguration time of ∼8× compared to a full reconfiguration of

the FPGA.

This means that partially reconfiguring the FPGA not only leaves other tasks running on the FPGA

uninterrupted, but also provides quick reconfiguration.
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On the other hand, the SVM DPR implementation was inferior to the equivalent non-DPR implementa-

tion in terms of clock speed. The DPR implementation achieved 94.8 MHz while the non-DPR implementation

achieved 137 MHz, leading to a drop in clock frequency by 31% when using DPR. This drop in clock speed

could be attributed to the routing algorithm employed by the tool, particularly related to routing the DSP48

blocks with respect to other logical resources.

As for the effect of using DPR on the area footprint for the aforementioned SVM classifier, it can be stated

that DPR had negligible effects, where the DPR utilized 1908 CLB slices compared to 1941 for the non-DPR

implementation, leading to 12% utilization in CLB slices in both implementations for the specific used FPGA.

In addition, the second implementation, which was based on having a reconfigurable single-core within

the quad-core implementation of the SVM classifier, was configured with the same parameters used for the

aforementioned implementation. As such, the size of the RP was identical to the aforementioned single-

core DPR implementation, leading to a partial reconfiguration time of 24.12 ms and speed-up of ∼8× in

reconfiguration time. Figure 8 shows the floorplan of this DPR implementation compared with the non-DPR

quad core implementation. The two implementations are identical in partial reconfiguration speed-up since they

are both based on the same FPGA and the RPs are identical in size, having the same parameters of SVs = 20,

M = 1024, and B = 8. However, the second implementation illustrates an additional advantage of being able

to dynamically reconfigure a single SVM core while leaving the other three SVM cores uninterrupted as well as

any other tasks running on the same FPGA.

 

 (a)                               (b) 

Single-Core 

SVM

(RP)

Figure 8. The floorplan image of: (a) the non-DPR implementation of the quad-core SVM classifier, (b) a DPR

implementation based on a reconfigurable single-core.

The reconfiguration times obtained above using Eq. (10) are estimations of the reconfiguration times.

However, in a previous work reported in [22] on the DPR implementation of K-means clustering, it was

demonstrated that the difference between actual measurement and estimated measurement using Eq. (10)
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was small and thus can be negligible. As such, Eq. (10) provides valid estimations of the reconfiguration time

[22].

6.5. DPR implementation of multicore SVM architecture based on A1 architecture

When all four SVM cores within the quad-core classifier were made reconfigurable, the full bit stream was 1673

kB in size, while the partial bit stream was 199 KB for each of the four cores. Consequently, the full and partial

reconfiguration times were 202.78 ms and 24.12 ms, respectively, resulting in a speed-up in partial reconfiguration

time of ∼8× over full chip reconfiguration. Figure 9 illustrates the floorplan of the implementation, highlighting

the four RPs and the area footprint occupied by each core targeting the Xilinx XC4VSX35 FPGA.

Figure 9. The floorplan image of the DPR implementation of the quad-core SVM classifier illustrating the area footprint

of the quad core as well as the single core.

7. Summary and conclusion

In this work, five novel FPGA implementations of the SVM classifier were presented. At first the detailed

architectures of two FPGA implementations of the SVM classifier were given. These two architectures were

called A1 and A2, respectively, which were based on a linear systolic array of PEs to partially compute the

linear kernel of the classification decision function. The latter is the most computationally demanding part,

and one that is a candidate for hardware acceleration due to its inherent parallelism. The number of PEs in

each architecture are different, whereby the number of PEs in the first architecture is equivalent to the number

of SVs, and it is equivalent to the number of dimensions (M) in the second architecture. When comparing

the performance of the two FPGA implementations with equivalent implementations running on the GPP, A1

achieved speed-up of ∼61× while A2 achieved ∼49× .

Secondly, three novel DPR implementations of the SVM classifier were presented based on having single

or multicore SVM classifiers dynamically reconfigurable. All of these proposed DPR architectures attained

speed-up of ∼8× in reconfiguration time over full device reconfiguration.
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The multicore DPR implementation of the SVM classifier benefits from added flexibility in altering the

contents of each core during run-time without affecting the operation of other tasks, speed-up in reconfiguration

time, and being relocatable. This implementation caters to the requirements of server solutions where cores can

be added, modified, moved around the FPGA, or removed according to the user’s requests. In addition, this

multicore SVM classifier can form the basic block for ensemble applications of the SVM classifier.

FPGAs have an additional advantage of being lower power devices compared to GPPs; as a result, FPGAs

consume lower energy than GPPs. On the other hand, the cost of purchasing FPGAs is generally more expensive

than GPPs given that the two devices are from the same generation or have comparable resources [22].

In conclusion, the hardware implementation of the SVM classifier on FPGAs realizes high performance

customized solutions applied to microarray research and outperforms GPPs in terms of execution and energy

consumption.

Future work will include implementing partially reconfigurable SVM training on FPGAs and an ensemble

SVM classifier. Furthermore, future goals will include testing the SVM cores with benchmark datasets instead

of synthetic data and running the DPR implementations on boards housing state-of-the-art FPGAs such as

Virtex-7 that can accommodate data of high dimensions and more logic resources. Additionally, the possibility

of incorporating a time-multiplexed reconfigurable on-chip training core will be investigated.
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