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Abstract: The unit commitment problem (UCP) is a nonlinear, mixed-integer, constraint optimization problem and

is considered a complex problem in electrical power systems. It is the combination of two interlinked subproblems,

namely the generator scheduling problem and the generation allocation problem. In large systems, the UCP turns out

to be increasingly complicated due to the large number of possible ON and OFF combinations of units in the power

system over a scheduling time horizon. Due to the insufficiency of conventional approaches in handling large systems,

numerous metaheuristic techniques are being developed for solving this problem. The genetic algorithm (GA) is one of

these metaheuristic methods. In this study, an attempt is made to solve the unit commitment problem using the GA

with ring crossover and swap mutation operators. One half of the initial population is intelligently generated by focusing

on load curve to obtain better convergence. Lambda iteration is used to solve the generation allocation subproblem.

Tests are carried out on systems with up to 100 generators over a time horizon of 24 h. Test outcomes demonstrate the

proficiency of the presented scheme when compared with previously used techniques.
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1. Introduction

The unit commitment problem (UCP) in the power industry is very crucial, because a good unit commitment

schedule can save millions of dollars annually in fuel and other costs. Unit commitment (UC) is related to the

economic use of generation resources in the power industry. In brief, the UCP is how to prepare the ON/OFF

schedule for generators, along with optimal dispatch of ON units, in such a way so as to minimize the total cost

of the system over a specified time period, while simultaneously satisfying various plant and system constraints.

An exact UC schedule can be achieved by complete enumeration, which is not practical because it re-

quires excessive computational time. Thus, various approaches, including dynamic programming, Lagrangian

relaxation, tabu search, ant colony optimization, particle swarm optimization, and the genetic algorithm (GA),

have been developed to solve this problem. A literature review of the UCP and its solution approaches was given

in [1]. The techniques used to solve the UCP can be divided into three categories: deterministic approaches,

metaheuristic approaches, and hybridized techniques. Extensively used conventional/deterministic techniques

are the priority list approach [2], mixed integer programming [3], Lagrangian relaxation [4], dynamic program-

ming [5], and branch-and-bound [6]. The priority list method is nimble and simple, but produces solutions that

are far away from the optimum point. Dynamic programming has a problem of high dimensionality, i.e. as the

problem size increases, the computational time increases drastically with the number of committed generators.
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Lagrangian relaxation produces a fast solution but has a problem of local convergence. Branch-and-bound

methods fail on large-scale power systems because the CPU time increases enormously.

Deterministic approaches cannot handle large systems and nonlinear minimum up time (MUT) and

minimum down time (MDT) constraints; therefore, many metaheuristics are examined, including expert systems

[7,8], evolutionary programming (EP) [9,10], artificial neural networks (ANNs) [11], the GA [12–18], tabu search

[19,20], particle swarm optimization (PSO) [21], simulated annealing (SA) [22,23], fuzzy logic [24], differential

evolution (DE) [25,26], and ant colony optimization (ACO) [27,28]. These are population-based approaches

and can produce global optimum or near-optimum solutions for systems having large generating units while

handling all types of complex constraints with ease. SA is based on the principle of slow heating and cooling

of metals. It is a powerful stochastic method used in optimization problems, but requires large computational

time. The tabu search method iteratively searches for the best solution and uses a flexible memory system to

prevent entrapment at the local best minimum solution. GA, PSO, ACO, and EP are nature-inspired techniques

and can find global optimal solutions. Recently, the metaheuristic approaches have been hybridized with other

metaheuristics or classical techniques to solve this problem more efficiently [20,29–32]. Various approaches have

been used to solve the UCP, but none of them have been accepted as the best one so far.

The GA is widely used for solving optimization problems because it is simple and function-independent.

Various GA-based techniques have been used to solve the UCP. A literature survey of various GA-based

techniques for the UCP was given in [17]. In this paper, a ring crossover GA along with lambda iteration

is used to solve the problem. Various developed operators within the proposed scheme are employed to obtain

better results and more economy with reduced computational time. The proposed scheme is implemented in

systems with up to 100 generators. Finally, a comparison is made with previously developed techniques under

similar operating conditions.

2. UCP formulation

The UCP is a mixed-integer problem, i.e. it involves both binary and real variables. For scheduling total

generation, it is imperative to find the optimal allocation of power levels among the committed generators.

Various constraints in the UCP must also be considered to obtain feasible solution. The objective function and

UCP constraints are defined below.

2.1. Objective function

Minimization of the total production cost of the system over the scheduling time horizon, subject to various

unit and system constraints, is the main objective of the UCP. It is mathematically formulated as:

Min(TPC) =

T∑
i=1

N∑
i=1

[Fi(P
t
i )u

t
i + Cs.up(i,t)

(
1− ut−1

i

)
ut
i + Cs.down(i,t)

(
1− ut

i

)
ut−1
i ] (1)

Here, TPC represents the total production cost of the system andFi (P
t
i ) is the fuel cost. Cs.up(i,t) andCs.down(i,t)

represent the start-up and shut-down costs of unit iat timet .

The fuel cost of a thermal unit is given as:

Fi(P
t
i ) = αi + βiP

t
i + γi

(
P t
i

)2
(2)

Here α, β andγ are the cost coefficients.
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The unit start-up cost depends on how long the unit remains off prior to start-up. In this study, start-up

cost Cs.up(i,t) is computed as follows:

Cs,up(i,t) =

{
∂, if Xt

i,off ≤ τi
σ, if Xt

i,off ≥ τi
(3)

Here, ∂andσ are the hot-start and cold-start costs, respectively, and τi represents the cold-start hours of uniti .

Xt
i,on and Xt

i,off represent the duration of on- and off-time for uniti at timetrespectively.

2.2. Constraints

2.2.1. Spinning reserve requirement

Some extra power, known as spinning reserve, should be available in the system to maintain system reliability.

The summation of maximum power of all committed units must be at least equal to the sum of load demand

and spinning reserve.

N∑
i=1

Pmax
i ut

i = Dt +Rt (4)

2.2.2. System power balance

The sum of the power generated from all committed units must meet the load demand at time t:

N∑
i=1

P t
i .u

t
i = Dt (5)

where Dt is the load demand inMW .

2.2.3. MUT and MDT

Once a unit is committed, it should not be turned off before a specific time, called MUT.

Forut
i = 1;Xt

i,on ≥ MUTi (6)

Similarly, if a unit is turned off, it should not be recommitted before a specific time, known as MDT.

Forut
i = 0;Xt

i,off ≥ MDTi (7)

2.2.4. Unit power generation range

Power generated by each unit must be within its minimum and maximum power generation limits.

∀i, t : Pmin
i ≤ P t

i ≤ Pmax
i (8)

Here Pmin
i is the minimum and Pmax

i is the maximum power of uniti .
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2.2.5. Ramp rate limits

Due to the restrictions of thermal units, the rate of power changes between adjacent hours must be within

certain limits:

P t
i − P

(t−1)
i ≤ URi (9)

P t−1
i − P t

i ≤ DRi (10)

where P t
i and P t−1

i are the power outputs of unit i at time t and t− 1 respectively. URi and DRi are the

ramp-up and ramp-down rates, respectively.

3. Overview of the GA

GAs [12–16,33,34] are robust search methods inspired by natural genetics and the natural selection process in

similar competitive environments. Individuals having the best adjustment to the environment tend to transfer

their genetic information to the next generations. GAs are widely used to solve different optimization problems

in engineering as well as in other fields.

GAs have an advantage over other optimization techniques, in that they only need an objective function

for the problem. By using a GA, the solutions’ search process is separated from the objective function

characteristics and its associated constraints.

A GA begins with the random generation of chromosomes, or solutions, which gives the initial population.

The quality of each chromosome is determined by evaluating the fitness of each individual for a given objective

function. After the fitness evaluation, individuals are subjected to a process of selection in which best-fit

individuals have more chances of being selected as parents. Once the parents are selected, genetic information

is exchanged between these parents. This information exchange in genetics is called crossover and newly created

individuals are called offspring. After crossover, some of these offspring are subjected to a random change called

mutation. The mutation process introduces diversity among the chromosomes in the population. After crossover

and mutation, a new population is created that replaces the old population. This process is repeated until the

convergence criterion is met. Each such cycle is called a generation.

4. Proposed GA approach to solve the UCP

The proposed GA for a UCP solution consists of the following.

4.1. Solution encoding

Binary elements are adopted for UCP solution encoding; therefore, a set of bits is used to represent each UCP

solution. A “1” at a certain position shows that the unit is ON at that specific hour, whereas a “0” represents

that the unit is OFF at that specific hour. Hence, a chromosome to represent the status of N generators over a

time horizon of T hours is an array of dimensions T × N, as shown in Figure 1.

U1 U2 U3….Un U1 U2 U3….UnU1 U2 U3….Un

1 0 1…...11 1 0….11 0 1….0 …

…

Hour 1 Hour 2 Hour T

 

Figure 1. Solution encoding.
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4.2. Creation of initial population

It is challenging to create a feasible solution when individuals in initial populations are created at random.

Randomly generated solutions are usually far away from the optimum solution; as a result, convergence is slow

and there is a greater chance of getting stuck in a local minimum. Therefore, the generation of individuals in

the initial population is accomplished intelligently by focusing on the system load curve. Usually, more units

are committed at peak load hours, whereas a small number of units are started up at light load. A full-load

average production cost (FLAPC)-based priority order is used to commit the units. The FLAPCs of units are

obtained by using the following expression:

∅i = αi/P
max
i + βi + γiP

max
i (11)

Here ∅i represents the FLAPC for unit i.

To maintain diversity in the population, half of the individuals are still generated at random.

4.3. Fitness evaluation

Fitness evaluation plays a vital role in how a GA obtains an optimal solution within a large search space. An

individual with a good fitness value will help the GA explore the search space more efficiently and effectively.

The fitness value of each individual is evaluated by using some type of function. For the UCP, the fitness of

each chromosome in the population is computed by using Eq. (1).

4.4. Tournament selection

The objective of selection in a GA is to provide higher reproductive chances to those individuals with better

fitness. A selection operator is used to select individuals for mating pools. It makes a genetic copy of good

chromosomes, but does not produce new individuals. This work uses tournament selection, in which two or

more individuals are randomly compared and the individual with the best fitness function is copied to form a

temporary population, called mating pools. This procedure is repeated until the size of the mating pool equals

the dimensions of the initial population.

4.5. Ring crossover

Crossover is used to interchange genetic information between two selected parents from mating pools.

The crossover operator is implemented on mating pools to produce better offspring. In this study, ring

crossover is used for exchanging genetic information. Steps to implement this operator are:

Step 1: Two parents from the mating pools population are randomly chosen for crossover, as shown in

Figure 2a.

Step 2: The parents are first combined in a ring form, then a cutting point is randomly decided around

the ring, as illustrated in Figure 2b.

Step 3: A point is selected in the ring in such a way that the length of the string between the randomly

chosen cutting point and this point is the same as that of the parent chromosomes, as shown in Figure 2c.

One offspring is produced in a counterclockwise direction and the other is created in a clockwise direction, as

demonstrated in Figure 2d.

Since ring length is equal to the total length of both of the mating parents, and the offspring are created

by deciding a random point in the ring, more diversity in the offspring can be obtained.
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Starting

Point

Cutting Point

1 1 00011100 1 0

0 1 11001101 1 1

1 01010101 1 1

0 01111101 0 0

0

1

(a)

(b)
(c)

(d)

Child 1
Child 2

Figure 2. Ring crossover.

4.6. Swap mutation

Mutation randomly disturbs genetic information and plays a vital role in recovering lost genetic information.

Mutation helps the exploration of the entire search space and provides assurance against the trapping of the

algorithm at a local minimum. A probability Pm is determined for mutation. In swap mutation, two points

are randomly selected in a chromosome and the order of the string between these points is reversed, as shown

in Figure 3.

1 0 10010101 0 1

1 0 10001011 0 1

Point 1 Point 2

 

Figure 3. Swap mutation.

4.7. Elitism

To avoid genetic information loss, individuals in the parent population having the best fitness are copied in a

group and transferred to the next generation. This elitist scheme increases the speed of convergence.

5. Repair mechanism

The exponential increase in the UCP search space with the increasing number of generating units to be scheduled

makes the UCP a complicated combinatorial optimization problem. The algorithm search may introduce

infeasibility in solutions, so a repair strategy is required that forcibly satisfies the associated constraints of

the problem. While using these repair mechanisms, a penalty-less fitness function is used.

5.1. Repair mechanism for spinning reserve

The population produced using a GA may not satisfy the spinning reserve in Eq. (4) at some time instants.

Thus, system spinning reserve violations must be repaired using some heuristic method [35].

The procedure for repairing spinning reserve involves the following steps:

Step 1. Set t = 1.
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Step 2. Calculate the FLAPC for all uncommitted units using Eq. (11), where ∅i represents the FLAPC
for unit i.

Step 3. Calculate the extra reserve at each hour by using expression given below:

Rextra =
N∑
i=1

Pmax
i ut

i −Dt −Rt (12)

If Rextra ≥ 0, go to step 5;

Step 4. Else commit the uncommitted unit with the lowest∅i and return to Step 3.

Step 5. If t < T , set t = t+ 1and return to Step 2. Else, stop.

5.2. Repairing the MUT and MDT

As the GA is a stochastic search process, it creates populations that may have MUT/MDT violations. At peak

load, the MUT of units is violated because peak load hours are usually less than the MUT of units. Similarly,

MDT violation usually occurs at off-peak load, during which the off-peak load hours are less than the MDT

of units. The minimum up/down time will be repaired by using a heuristic search algorithm [35]. To check

violations, first the durations of on and off time for all units are calculated by using following expressions:

Xt
i,on =

{
Xt

i,on + 1, if ut
i = 1

0, if ut
i = 0

, Xt
i,off =

{
Xt

i,off + 1, if ut
i = 0

0, if ut
i = 1

(13)

Steps used for minimum up/down time repairing are given as follows:

Calculate the duration of on and off time for all units using Eq. (13).

Step 1. Set t = 1

Step 2. Set i = 1.

Step 3. If ut
i = 0, ut−1

i = 1, andXt
i,on < MUT i , then set ut

i = 1.

Step 4. If ut
i = 1, ut−1

i = 1 andXt
i,off < MDT i .

4a. If t+ T down
i ≤ T then set ut

i = 1.

4b. If t+ T down
i > T and

T∑
n=t

un
i > 0 then set ut

i = 1.

Step 5. Modify the on/off times duration of units using Eq. (13).

Step 6. If i < N , set i = i+ 1 and go back to Step 4.

Step 7. If t < T , set t = t+ 1 and return to Step 3. Else, stop.

5.3. Decommitment of excess units

Repairing MUT and MDT constraints can lead to excessive spinning reserves, which is not desirable due to the

high operation cost. A heuristic method is used to turn off the excessive units one by one based on decreasing

order of FLAPCs, as calculated by Eq. (11), until the system spinning reserve of Eq. (4) is just satisfied at any

time. However, unit decommitment is subject to MUT/MDT satisfaction; i.e. the unit is turned off only if this

decommitment does not violate the up/down time of that unit.
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5.4. Lambda iteration method for economic load dispatch calculation

For each feasible unit commitment schedule, the lambda iteration method is used to solve the economic dispatch

subproblem [35].

Once optimal allocation of powers is found, the total operating cost at any time T is obtained by

calculating the sum of operating costs of all online units. Total startup cost at any hour T is computed by

taking the sum of the startup costs of those generating units that update their states from 0 to 1.

6. Implementation of the improved GA model

To find the optimal UC schedule for a given time horizon, the proposed GA is implemented. The implementation

of this model involves various steps, which are given below:

Step 1. Call unit and load-related data.

Step 2. Initialize the chromosomes in the population for the first generation, as described in Section 4.2.

Step 3. After the chromosomes initialize, the population may violate different constraints. The status of

units obtained after the first generation are updated, as described in Sections 5.1 and 5.2.

Step 4. Decommit excessive generating units for all chromosomes in the population to diminish extra

reserve, as in Section 5.3.

Step 5. Solve the economic dispatch problem using the lambda iteration method, as described in Section

5.4.

Step 6. Evaluate the fitness of each individual by means of the objective function given in Eq. (1). Compare

the fitness values of each individual; the individual that possesses the best fitness value is considered

the global best.

Step 7. Apply selection, elitism, crossover, and mutation respectively on individuals of the population to

create the population for the next generation.

Step 8. If the maximum number of generations has been reached, then the optimal UC schedule is the

schedule in the final population that gives the minimum total production cost. Else, increase

generation number and return to Step 2.

7. Numerical results and discussions

To verify the effectiveness and feasibility of the proposed model, the proposed ring crossover GA was tested on

five IEEE test systems and a practical Taipower system. The scheduling time horizon was selected as 1 day

with 24 intervals of 1 h each. The C programming language was used to code the proposed algorithm. The

code was executed on a personal computer with 1.8 GHz CPU, Windows 7, and 2 GB RAM.

Better convergence can be achieved by properly selecting the control parameters, namely crossover rate,

mutation rate, and population size. The optimal setting of these GA parameters not only gives a better solution

but also reduces computational time. In this work, crossover and mutation probabilities were selected using

a self-adaptive scheme. These probabilities were evaluated by focusing on the best fitness values of current

and previous generation, and 0.6 and 0.09 were selected as initial values for crossover and mutation rates,

respectively. The population size varied between 40 and 150.

3869



BUKHARI et al./Turk J Elec Eng & Comp Sci

8. IEEE test cases

IEEE 10-, 20-, 40-, 60-, 80-, and 100-unit standard test cases were considered for UC scheduling. In all test

cases, a ring crossover GA was used to obtain the ON/OFF schedule of units. The unit data and load-related

profile for a 10-unit test system were taken from [12]. The scheduling time horizon was selected as 1 day with

24 time intervals of 1 h each. The spinning reserve at any hour was taken as 10% of the forecasted load demand

at that hour. The data for the remaining systems were obtained by suitably scaling data from the 10-unit

system. The GA is a stochastic search technique; therefore, for every test system, the solution was calculated

25 different times with a different initial population and 500 generations.

Under the selected parameters, the ring crossover GA was first implemented for the 10-unit test system

and 25 independent runs were made with different initial populations, in which the best schedule had a

production cost of $563,937. The detailed schedule of the 10-unit test, along with the optimal dispatch of

each unit, is given in Table 1. As the data for other systems were produced by suitably scaling the 10-unit

system data, the obtained schedule for the 10-unit system was also scaled properly and considered as one of the

primary solutions during each run of the other five systems. Table 2 shows different results for all test systems,

which were obtained from 25 independent runs for each system. From Table 2, it is clear that the variation

in average production costs is small and the standard deviations are small and tolerable. The convergence

processes of the best solution in the 25 runs for different systems are shown in Figures 4–9. These figures show

that the ring crossover GA has satisfactory convergence characteristics and the algorithm does not trap at any

local minima.

Table 1. UC schedule along with power dispatch of each unit for the 10-unit test system.

Hour Unit status Power generated in MW Total cost Startup cost
1 2 3 4 5 6 7 8 9 10 ($) ($)

1 1100000000 455 245 0 0 0 0 0 0 0 0 13,683 0
2 1100000000 455 295 0 0 0 0 0 0 0 0 14,554 0
3 1100100000 455 370 0 0 25 0 0 0 0 0 16,809 900
4 1100100000 455 455 0 0 40 0 0 0 0 0 18,598 0
5 1101100000 455 390 0 130 25 0 0 0 0 0 20,020 560
6 1111100000 455 360 130 130 25 0 0 0 0 0 22,387 1100
7 1111100000 455 410 130 130 25 0 0 0 0 0 23,262 0
8 1111100000 455 455 130 130 30 0 0 0 0 0 24,150 0
9 1111111000 455 455 130 130 85 20 25 0 0 0 27,251 860
10 1111111100 455 455 130 130 162 33 25 10 0 0 30,058 60
11 1111111110 455 455 130 130 162 73 25 10 10 0 31,916 60
12 1111111111 455 455 130 130 162 80 25 43 10 10 33,890 60
13 1111111100 455 455 130 130 162 33 25 10 0 0 30,058 0
14 1111111000 455 455 130 130 85 20 25 0 0 0 27,251 0
15 1111100000 455 455 130 130 30 0 0 0 0 0 24,150 0
16 1111100000 455 310 130 130 25 0 0 0 0 0 21,514 0
17 1111100000 455 260 130 130 25 0 0 0 0 0 20,642 0
18 1111100000 455 360 130 130 25 0 0 0 0 0 22,387 0
19 1111100000 455 455 130 130 30 0 0 0 0 0 24,150 0
20 1111111100 455 455 130 130 162 33 25 10 0 0 30,058 490
21 1111111000 455 455 130 130 85 20 25 0 0 0 27,251 0
22 1111111000 455 455 0 0 145 20 25 0 0 0 22,736 0
23 1100010000 455 425 0 0 0 20 0 0 0 0 17,645 0
24 1100000000 455 345 0 0 0 0 0 0 0 0 15,427 0
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Table 2. Statistical analysis of results obtained from 25 independent runs for each system.

Number of units Best cost ($) Worst cost ($) Average cost ($) Standard deviation ($)
10 563,937 564,219 564,019 17
20 1,123,297 1,124,537 1,123,851 48
40 2,242,887 2,244,117 2,243,569 75
60 3,365,337 3,366,873 3,366,052 84
80 4,486,991 4,487,949 4,487,476 98
100 5,606,663 5,607,850 5,607,088 113
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Figure 4. Convergence characteristics for a 10-unit sys-

tem.

Figure 5. Convergence characteristics for a 20-unit sys-

tem.
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Figure 6. Convergence characteristics for a 40-unit sys-
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Figure 7. Convergence characteristics for a 60-unit sys-

tem.
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Figure 8. Convergence characteristics for an 80-unit sys-
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Figure 9. Convergence characteristics for a 100-unit sys-

tem.
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To validate the performance of the improved GA, the best solution of each system is compared with other

metaheuristic approaches. The best results obtained from the proposed algorithm were compared with UCGA

[36], DE [25], FPGA [33], IPSO [37], GA [38], ICA [39], and BRGA [12]. The comparisons are given in Table 3.

From this table, it is clear that the proposed ring crossover GA produces better results in terms of production

cost for small as well as large systems.

Table 3. Comparison of the best solutions with other metaheuristic approaches.

Method 10-unit 20-unit 40-unit 60-unit 80-unit 100-unit
UCGA [40] 563,977 1,125,516 - - - -
DE [25] 563,938 1,124,291 2,246,274 3,365,784 4,488,450 5,607,900
FPGA [33] 564,094 1,124,998 2,248,235 3,368375 4,491,169 5,614357
IPSO [41] 563,954 1,125,279 2,248,163 3,370,979 4,495,032 5,619,284
GA [42] 564,368 1,124,893 2,245,827 3,368,537 4,497,871 5,622,746
ICA [39] 563,938 1,124,274 2,247,078 3,371,722 4,497,919 5,617,913
BRGA [43] 563,937 1,124,290 2,246,165 3,365,431 4,487,766 5,606,811
Proposed GA 563,937 1,123,297 2,242,887 3,365,337 4,486,991 5,606,663

9. The 38-unit Taipower system

The generator data and load profile for this system were taken from [14]. The system was executed under same

conditions taken by [14]; i.e. the spinning reserve at any hour was taken as 11% of the forecasted load demand

at that hour. Ramp rate limits were also taken into account for this system. The program was executed 25

times independently, with different initial populations, for 500 generations. Out of 25 independent runs, the

best operating cost achieved for this system over 24 h was $197,065,470. The detailed schedule, along with total

operating cost, is shown in Table 4. To verify the performance of the proposed algorithm for this system, the

best cost obtained from the ring crossover GA was compared with other techniques. This comparison is shown

in Table 5. It is evident that the proposed algorithm produces better results than the other techniques. The

convergence process of the best solution in 25 runs is shown in Figure 10.
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Figure 10. Convergence characteristics of a 38-unit Taipower system.
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Table 4. UC schedule along with cost for the 38-unit system.

Hour Unit status 1 . . . 38 Total operating cost ($)
1 11111111010010000001111011000000000010 6,452,322.2
2 11111111010010000001111011000000000010 6,091,785.8
3 11111111010010000001111011000000000010 5,818,991
4 11111111010010000001111011000000000010 5,494,396.9
5 11111111010010000001111011000000000010 5,602,777.5
6 11111111010010000001111011000000000010 5,445,769.1
7 11111111010010000001111011000000000010 5,495,104.4
8 11111111010010100001111011000000000010 6,775,942
9 11111111111111110001111011000000000010 10,754,824
10 11111111111111111001111011000000000010 10,036,950
11 11111111111111111001111011000000000010 10,190,996
12 11111111111111111001111011000000000010 10,337,713
13 11111111111111111001111011000000000010 8,667,803.6
14 11111111111111111011111011000000000010 10,722,450
15 11111111111111111001111011000000000010 10,569,153
16 11111111111111111001111011000000000010 10,193,487
17 11111111111111111001111011000000000010 9,885,858.5
18 11111111110111111001111011000000000010 8,812,379.7
19 11111111110111101001111011000000000010 8,325,098.5
20 11111111110111101001111011000000000010 9,019,449.3
21 11111111110110101001111011000000000010 8,679,161.1
22 11111111110110001001111011000000000010 8,217,181.7
23 11111111110110001001111011000000000010 7,859,428.2
24 11111111010110001001111011000000000010 7,633,658.3

Total Cost($) 197,081,350

Table 5. Cost comparison of results with the 38-unit system.

Technique Operating cost (M$)
MRCGA [14] 206.70
MACO [44] 203.32
FAPSO [45] 199.07
ASSA [46] 198.84
HSSA [47] 197.41
Proposed GA 197.081

10. Conclusions

The UCP is critical in the operational planning of a power system. A good UC schedule has the ability to save

millions of dollars in fuel and other related costs. Due to the high dimensionality and combinatorial nature

of the UCP, it is challenging to develop any rigorous optimization method that has the ability to solve the

whole problem for any real-sized system. Various solution techniques are being examined in order to solve this

problem. In this study, a GA with ring crossover and swap mutation was presented. The chromosomes in the

initial population were produced based on the system load curve to attain better convergence. Ring crossover

and swap mutation introduce more diversity among chromosomes of a population and therefore prevent the

trapping of the algorithm at local optima. The proposed algorithm was implemented on six test cases (up to
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100 generators) and on a practical 38-unit system over a scheduling horizon of 24 h, and it produced noteworthy

results as compared to other approaches.
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