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Abstract:This work presents an optimal tuning approach of power system stabilizers (PSSs) using multiobjective particle

swarm optimization. Two types of PSSs are investigated, the conventional speed-based PSS type and a dual-input PSS

type that uses the accelerating power as an additional input. The tuning problem of these PSSs is formulated as a

minimization problem of a vector objective function characterizing the damping and the transient performance of the

closed-loop system. A 3-machine 9-bus power system example is considered, and the speed-constrained multiobjective

particle swarm optimization algorithm is used to solve the optimization problem. The results show that trade-offs exist

between the 2 objective functions of the problem, and that the best trade-off is obtained with the dual-input PSS. The

performance of the resulting PSSs is illustrated through numerical simulations considering different scenarios.

Key words: Power system stabilizer, optimal design, multiobjective optimization, speed-constrained multiobjective

particle swarm optimization, multimachine power system

1. Introduction

Power systems are constantly subjected to different types of disturbances and uncertainties, such as small and

large variations of the system parameters and 3-phase faults. In this regard, the use of power system stabilizers

(PSSs) can greatly enhance the system stability in addition to the automatic voltage regulator (AVR) [1]. Fixed-

structure and fixed-parameter PSSs such as PID (proportional integral derivative) and lead-lag PSS have been

shown to be very effective in damping the power system oscillations, providing an excellent cost/performance

ratio. However, the tuning of such devices becomes complicated for multimachine power systems because of

the complexity and the nonlinearity of these systems. Therefore, an optimal and efficient tuning approach is

required to guarantee optimal performance.

The parameters of a fixed-structure and fixed-parameter PSS can be judicially tuned using metaheuristics

such as genetic algorithms (GAs), particle swarm optimization (PSO), and simulated annealing (SA). These

methods are known to be very efficient optimization techniques for solving difficult and nonlinear problems [2].

The tuning problem of PSSs can be regarded as an optimization problem that involves one or multiple objective

functions. Considerable works have been devoted to single-objective problems in which objective functions are

usually defined using time-based criteria [3–5], closed-loop eigenvalues [6–10], or some H2 and H∞ norm-based

functions [11,12].
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In a more explicit manner, multiobjective optimization problems are considered, where 2 or more perfor-

mance criteria can be considered and handled separately [5–9]. As a result, multiple noncompetitive solutions

are found instead of a unique and perfect solution. The PSS tuning problem that considers multiple objectives

has already been tackled in the literature [13–19]. To deal with this problem, metaheuristic-based multiobjective

optimization methods were used. For example, the authors in [13,14] proposed multiobjective design approaches

of a lead-lag PSS using the well-known nondominated sorting genetic algorithm-II (NSGA-II) and the strength

Pareto evolutionary algorithm 2 (SPEA2). The design objectives are based on the closed-loop system eigen-

values to characterize the system’s rapidity and damping. Another approach in [15] uses a micro-GA to solve

a multiobjective problem considering an eigenvalued and an H∞ -based objective function. In [16–18], a set of

optimal controllers was generated using NSGA-II considering multiple objective functions, such as the minimiza-

tion of the speed deviation and the terminal voltage variation. In [19], the PSS tuning is formulated as a mixed

H2/H∞ design problem where the H2 and H∞ norms are used to characterize the transient performance and

the robustness of the closed-loop system, respectively. To solve this problem, a PSO-based algorithm called the

speed-constrained multiobjective optimization algorithm (SMPSO) is used, and it is shown to be more efficient

than NSGA-II. Nevertheless, all these works considered only classical types of PSSs, such as PID and lead-lag

PSSs, whereas other types can be considered, such as the dual-input PSS.

In this paper, the tuning problem of the classical speed-based type and a dual-input PSS type is addressed

using SMPSO and applied to a 3-machine, 9-bus system. The design problem is formulated as a minimization

problem of 2 objective functions that separately characterize the damping and the transient performance of the

overall closed-loop system. The optimization results show that the problem has multiple optimal solutions, and

also that the best trade-off is obtained when using the dual-input PSS.

The rest of the paper is organized as follows. Section 2 presents the system under study, the types of PSSs

to be used, and the formulation of the multiobjective optimal tuning problem of PSSs. Section 3 reviews the

basic concepts of multiobjective optimization and presents the SMPSO algorithm. In Section 4, the optimization

results and some illustrative simulations are given. Finally, Section 5 concludes the work.

2. Problem statement

2.1. System under study

The power system example considered in this work is the 9-bus, 3-machine system shown in Figure 1, which

consists of 3 generators and 3 loads. The optimal locations for installing PSSs to damp out the electromechanical

modes of oscillations are known to be at generators 2 and 3 [6]. The differential equations governing the dynamics

of each generator are given in the Appendix, and the parameters of this system can be found in [1].

2.2. Types of PSS under study

Two types of PSS are investigated in this work. The first type is the classical speed-based PSS, whose transfer

function is given in Eq. (1). This PSS consists of 2 phase compensation stages, a washout stage and a constant

gain stage. In this study, we consider Tw = 10 s and T2 = T4 = 0.01 s. Therefore, the parameters to be found

are the time constants T1 and T3 , and the gain K .

UPSS =

[
K · Tw

1 + TwS
· 1 + T1S

1 + T2S
· 1 + T3S

1 + T4S

]
·∆ω (1)
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Figure 1. Three-machine, 9-bus system.

The second type of PSS is the dual-input PSS given by Eq. (2). The input signals of this PSS are

the speed deviation and the accelerating power, which is equal to the difference between the mechanical and

electrical power of the generator. This PSS is composed of 2 classical PSS systems for each input. In this study,

we consider for simplicity Tw1 = Tw2 = 10 s, T2 = T4 = T6 = T8 = 0.01 s, T1 = T3 , and T5 = T7 . Therefore,

the remaining unknown parameters are T1 , T5 , K1 , and K2 .

UPSS =

[
K1 ·

Tw1

1 + Tw1S
· 1 + T1S

1 + T2S
· 1 + T3S

1 + T4S

]
·∆ω +

[
K2 ·

Tw2

1 + Tw2S
· 1 + T5S

1 + T6S
· 1 + T7S

1 + T8S

]
·∆Pe (2)

2.3. Multiobjective tuning of PSS

The tuning problem of PSSs for the 3-machine, 9-bus power system can be mathematically formulated as a

minimization problem of a vector objective function that separately measures the damping and the transient

performance of the closed-loop system. In this study, the following objective functions are considered:

f1 = max
i

(σi), (3)

f2 = −min
i
(ξi), (4)

where ξi and σi represent, respectively, the damping ratio and the real part of the ith eigenvalue of the closed-

loop system. For simplicity, only the linearized model of the system based on nominal conditions is used. In fact,

the 2 objective functions represent conflicting performance criteria, since f1 measures the attenuation speed

of the electromechanical oscillations, while f2 measures the maximum overshoots. Note that the difference

between this formulation and the one proposed in [14] is that the objective function f1 here concerns only

the complex closed-loop eigenvalues, which are related to the electromechanical modes. The evaluation of the

proposed objective functions is simple and time-saving, since no numerical simulations are required and only

one linearized model is used.
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3. Multiobjective particle swarm optimization

3.1. Multiobjective optimization

A multiobjective optimization problem is the problem of optimizing (minimizing or maximizing) a vector

function. In this work, we consider a minimization problem that can be mathematically expressed as follows:

min
x∈X

F (x) = (f1(x), f2(x), . . . , fm(x)), (5)

subject to gi(x) ≤ 0, i = 1, . . . , k,

where m is the number of objective functions; x is the vector of the design parameters, also called the decision

variables; and gi, i = 1, . . . , k are k constraints related to the problem.

Usually the problem does not have a unique and perfect solution but rather a set of optimal solutions

known as the Pareto-optimal set. The set of the corresponding objective vectors is called the Pareto front.

Additionally, a solution x is said to dominate y if and only if F (x) is partially less than F (y), i.e.:

∀ i, fi(x) ≤ fi(y) ∧ ∃ i, fi(x) < fi(y) (6)

Therefore, a solution is Pareto-optimal if it is nondominated by all the feasible solutions of the search space.

The set of the nondominated solutions found at any stage of the optimization process is called the nondominated

set, and the corresponding objective vectors constitute the nondominated front.

3.2. Particle swarm optimization

PSO is a metaheuristic and global optimization technique proposed by Kennedy and Eberhart [20]. It is inspired

by the social behavior of individual organisms living together in groups to look for food and avoid predators.

The PSO algorithm considers a set of potential solutions (swarm), which are considered as moving particles in

the decision space. The position of a particle is represented by all the decision variables of the problem, and

the movement of this particle regarding one decision variable, x , is governed by the following equations:

v(t+ 1) = wv(t) + r1c1(pbest − x(t)) + r2c2(gbest − x(t)), (7)

x(t+ 1) = x(t) + v(t+ 1), (8)

where x(t) and v(t) represent the position and the velocity of the particle at iteration t , respectively; pbest is

the best position of the particle up to t and gbest is the best position in the swarm; r1 and r2 are random

numbers in the range [0, 1]; and w , c1 , and c2 are the confidence coefficients that control the behavior of the

particle.

In comparison with GAs and other global metaheuristics, PSO is easy to implement and can produce

better solutions in less computation time. In the case of multiobjective optimization, many PSO-based methods

have been proposed in the literature. The choice of a method depends mainly on the problem to solve. In this

work, the so-called SMPSO algorithm is used. This algorithm is known to be one of the most powerful methods

for multiobjective optimization.
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3.3. Speed-constrained multiobjective particle swarm optimization

SMPSO was proposed by Nebro et al. [21] and is based on another algorithm called OMOPSO (optimized

multiobjective particle swarm optimization). The difference between the 2 algorithms is that SMPSO uses a

constriction operator to control the velocities of the particles in order to enhance the exploration of the search

space and produce more efficient solutions. The constriction operator is given by:

χ =
2

2− ϕ−
√
ϕ2 − 4ϕ

, (9)

where:

ϕ =

{
c1 + c2 if c1 + c2 > 4

0 if c1 + c2 ≤ 4
. (10)

The velocities resulting from Eq. (7) are then multiplied by the constriction operator and bounded using the

following equation:

v(t) =


δ if v(t) > δ

−δ if v(t) ≤ −δ
v(t) otherwise

, (11)

where:

δ =
U − L

2
, (12)

in which U and L represent the upper and lower bounds of the variable x , respectively.

The procedure of SMPSO can be described by Figure 2. The algorithm starts by initializing the positions

and the velocities of the swarm particles. Another set of particles, called the archive, is also initialized with

the nondominated solutions of the swarm. The algorithm is then run for a predefined number of iterations. At

each iteration, the velocities and the positions of the swarm particles are updated according to Eqs. (7) and

(8), and then a mutation operator is applied to 15%of them. The archive and the memory of the best positions

are updated according to Pareto-dominance, taking into account the newly generated particles. On the other

hand, if the size of the archive exceeds a predefined limit, the solutions that are less crowded in the objective

space are kept in the archive. The final solutions of the algorithm are represented by the archive particles of

the last iteration.

4. Results and discussion

This section presents the optimization results of the proposed multiobjective design approach for the 3-machine,

9-bus system considering both the classical speed-based PSS and the dual-input PSS. Additionally, some

simulation results are presented in order to illustrate the performance of the resulting PSSs and to demonstrate

the effectiveness of the proposed tuning approach.

The multiobjective design of power system stabilizers for the 3-machine, 9-bus power system presented

above is formulated as a follows:

Minimize F (x) =

(
max

i
(σi)

−min
i
(ξi)

)
, (13)
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Figure 2. Flowchart of SMPSO.

subject to: {
min
i
(ξi) ≥ ξc

max
i

(σi) ≤ σc
, (14)

where x = (K2
1 ,K

2
2 , T

2
1 , T

2
3 ,K

3
1 ,K

3
2 , T

3
1 , T

3
3 ) is the vector of decision variables, which represent the unknown

parameters of the dual-input PSSs. Here, the first 4 variables correspond to the parameters of the PSS related

to generator 2, and the other variables concern generator 3. In the case of a single-input PSS, the variables K1

and K2 are replaced by one variable, K . Furthermore, it was found that the most efficient way to represent

these variables is the pole-zero representation. Therefore, this representation is adopted in this work. The

bounds of the decision variables are given in Table 1. Note that gains K , K1 , and K2 hereafter correspond to

the gains of the pole-zero form and not to those initially used in Eqs. (1) and (2).

Table 1. Bounds of the decision variables.

Variables Lower Upper
Zeros –100 0
K 1 5000
K1 1 5000
K2 –15 15

The previous problem is a constrained problem, which means that any feasible solution must satisfy all

the constraints of the problem. The constraints considered in this work impose a minimal value on each objective

function. These constraints, which are formulated in Eq. (14), can be handled in the optimization process by

assigning a large number to the objective values of the infeasible solutions. In this way, any infeasible solution

is dominated by all the feasible solutions regardless of their objective values, and if 2 infeasible solutions are

to be compared, the one with the lowest degree of constraint violation is selected. In this study, we consider

ξc = 0.5 and σc = −4 in order to guarantee satisfactory damping and good attenuation speed.
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The algorithm SMPSO is implemented using the same parameters as in [21] except for the swarm size

and the number of iterations, which are set here to 500 and 10,000, respectively. On the other hand, in order to

evaluate the objective functions of a particle, the corresponding PSSs are first used to compute the closed-loop

model, and then the resulting eigenvalues are used to evaluate the objective functions.

At the end of the optimization process, only 50 uniformly distributed solutions are selected to represent

the approximation set. Furthermore, in order to improve the distribution of the nondominated solutions, the

rejection of extra solutions of the archive is performed using the truncation method, which is employed by the

algorithm SPEA2 [22]. Note that the archive has the same size as the swarm.

4.1. Optimization results

The final nondominated fronts using the 2 considered types of PSS are illustrated in Figure 3. It is shown

that trade-offs exist between the 2 objective functions of the problem, which means that these functions are

conflicting performance criteria and cannot be improved simultaneously. As a result, multiple optimal solutions

are found at the end of the optimization process, so that no solution can be said to be better than another

one. Additionally, it is shown that the dual-input PSS outperforms the single-input PSS according to Pareto-

dominance.

−7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4
−0.8
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−0.65
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−0.55
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Figure 3. Nondominated fronts produced by SMPSO.

4.2. Simulation results

To illustrate the performance of the resulting dual-input PSSs, different simulations have been carried out using

the nonlinear model of the 3-machine, 9-bus system considering nominal, heavy, and light loading conditions.

Three scenarios are chosen for simulation. The first scenario is a 0.05 p.u. step decrease in the terminal voltage

reference of generators 2 and 3. The second scenario is a 0.01 step increase in the mechanical power of generators

2 and 3, and the third scenario is a short-circuit occurring at bus 7 at the end of the line 5-7 during 0.15 s,

followed by line tripping.

For simplicity, only 2 optimal PSSs are used in the simulations. These PSSs are those that provide

the best performance according to each objective function of the nondominated front shown in Figure 3. The

parameters of such PSSs are given in Table 2. Additionally, the PSSs proposed in [6] are used for comparison

purposes. These PSSs are designed using GAs for the same 3-machine, 9-bus system considered in this work.
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Table 2. Parameters of the selected dual-input PSSs.

Minimized
function

Generator # PSS parameters

f1
2 T1 = 0.12 s T5 =0.035 s K1 =21.8 K2 =–0.32

3 T1 = 0.073 s T5 =0.087 s K1 =32.1 K2 =0.02

f2
2 T1 = 0.093 s T5 =0.022 s K1 =26.1 K2 =–0.08

3 T1 = 0.022 s T5 =0.019 s K1 =85.7 K2 =2.80

To assess the performance of the selected PSSs, 3 performance indices are used: the integral time-weighted

absolute error (ITAE), the settling time to measure the transient performance of the controlled system, and the

peak value for measuring the damping performance. Note that the ITAE index is computed considering the

system response from the peak time. The settling time is evaluated considering a speed deviation range of 10−3

rad/s, and the peak value for scenario 3 is defined as the minimum value of the system response. These indices

are evaluated for each machine of the power system considering nominal, heavy, and light loading conditions [6].

The average performances of the 3 machines are then evaluated. Note that the output variables of the system

are the speed deviations in the COI (center of inertia) referenced system of the 3 generators of the system.

The results of these tests are summarized in Tables 3–5, where GAPSS stands for the PSSs designed using

the GA -approach proposed in [6], and DIPSS1 and DIPSS2 stand for the designed PSSs using the proposed

approach minimizing f1 and f2 , respectively. It is shown that the 2 dual-input PSSs outperform the GA-based

PSSs, which means that the proposed PSSs are more robust with regard to perturbations and changes in loading

conditions. On the other hand, it is shown that the selected PSSs do present a trade-off between damping and

transient performance, since none of these PSSs can provide the best results for all considered performance

indices and scenarios.

Table 3. Comparison results for scenario 1.

Loading PSS type ITAE (×10−1) Peak (×10−1) Settling time (s)

Nominal

GAPSS 4.17 3.00 11.57
DIPSS1 1.10 2.60 3.55
DIPSS2 1.78 1.46 3.73

Heavy

GAPSS 3.42 4.49 9.25
DIPSS1 0.72 2.45 2.19
DIPSS2 1.20 1.32 3.30

Light

GAPSS 3.80 2.12 12.54
DIPSS1 1.36 2.05 4.81
DIPSS2 2.22 1.29 4.93

To illustrate the previous results, the speed-deviation responses of the 3 generators of the system are

given in Figures 4−12. These simulations are carried out considering heavy loading conditions. It is shown that

despite the perturbations, the system stability is enhanced and the electromechanical oscillations are damped

out quickly, especially when using the dual-input PSSs. It is also shown that the performances of the selected

dual-input PSSs are traded-off against each other, according to which the objective function is minimized.

In this regard, when minimizing f1 the overall transient performance of the system is improved, while the

minimization of f2 improves the damping of the electromechanical oscillations. Nevertheless, a compromise

solution among all the provided nondominated solutions can be selected according to the preferences of the

decision maker.

3905



LABDELAOUI et al./Turk J Elec Eng & Comp Sci

Table 4. Comparison results for scenario 2.

Loading PSS type ITAE (×10−2) Peak (×10−2) Settling time (s)

Nominal

GAPSS 3.39 2.48 2.97
DIPSS1 0.95 1.48 1.87
DIPSS2 1.88 0.77 2.34

Heavy

GAPSS 1.78 2.50 2.36
DIPSS1 0.38 1.48 1.17
DIPSS2 0.64 0.77 1.43

Light

GAPSS 6.02 2.65 4.00
DIPSS1 2.61 1.69 3.20
DIPSS2 4.91 0.97 3.57

Table 5. Comparison results for scenario 3.

Loading PSS type ITAE Peak Settling time (s)

Nominal

GAPSS 7.63 2.34 12.56
DIPSS1 2.21 2.57 4.87
DIPSS2 2.30 2.21 5.78

Heavy

GAPSS 11.37 3.22 15.03
DIPSS1 5.16 3.88 5.70
DIPSS2 5.87 3.09 8.63

Light

GAPSS 1.03 0.71 6.82
DIPSS1 0.42 0.85 4.79
DIPSS2 0.47 0.69 5.45
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Figure 4. System response for scenario 1 using DIPSS1. Figure 5. System response for scenario 1 using DIPSS2.

5. Conclusion

This work presents an optimal multiobjective design approach of PSSs for multimachine power systems using

multiobjective particle swarm optimization. The design problem is formulated as a minimization problem of 2

objective functions, which characterize the damping and the transient performance of the closed-loop system.

The proposed objective functions are simple to evaluate and consider only one operating point. Two types

of PSSs are investigated, the classical single-input PSS type and a dual-input PSS that uses the accelerating

power as an additional input. The results show that trade-offs exist between the 2 objective functions of the
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Figure 6. System response for scenario 1 using GAPSS. Figure 7. System response for scenario 2 using DIPSS1.
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Figure 8. System response for scenario 2 using DIPSS2. Figure 9. System response for scenario 2 using GAPSS.
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Figure 10. System response for scenario 3 using DIPSS1. Figure 11. System response for scenario 3 using DIPSS2.
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Figure 12. System response for scenario 3 using GAPSS.

problem, and also that the dual-input PSS can provide better results than the single-input PSS according to

Pareto-dominance. A future work may investigate other types of PSS and consider a higher number of objective

functions.
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[21] Nebro AJ, Durillo JJ, Garćıa-Nieto J, Coello Coello CA, Luna F, Alba E. SMPSO: A new PSO-based metaheuristic

for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision-

Making; 30 March–2 April 2009; Nashville, TN, USA. Piscataway, NJ, USA: IEEE.

[22] Giannakoglou K, Tsahalis D, Periaux J, Papailiou K, Fogarty T, editors. Evolutionary Methods for Design, Opti-

mization and Control. Barcelona, Spain: CIMNE, 2002.

3909

http://dx.doi.org/10.1109/PES.2007.385721
http://dx.doi.org/10.1109/PES.2007.385721
http://dx.doi.org/10.1109/PES.2007.385721
http://dx.doi.org/10.1109/ICIEA.2009.5138450
http://dx.doi.org/10.1109/ICIEA.2009.5138450
http://dx.doi.org/10.1109/ICIEA.2009.5138450
http://dx.doi.org/10.1109/PSCE.2004.1397522
http://dx.doi.org/10.1109/PSCE.2004.1397522
http://dx.doi.org/10.1016/j.ijepes.2012.06.034
http://dx.doi.org/10.1016/j.ijepes.2012.06.034
http://dx.doi.org/10.1016/j.ijepes.2013.04.003
http://dx.doi.org/10.1016/j.ijepes.2013.04.003
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/MCDM.2009.4938830
http://dx.doi.org/10.1109/MCDM.2009.4938830
http://dx.doi.org/10.1109/MCDM.2009.4938830


LABDELAOUI et al./Turk J Elec Eng & Comp Sci

Appendix

The dynamic model of a generator with an AVR is given by the following equations:

δ̇ = ω − ω0, (A.1)

ω̇ = −D

M
(ω − ω0) +

ω0

M
(Pm − Pe), (A.2)

Ė′
q =

1

T ′
d0

(Ef − E′
q − (Xd −X ′

d)Id), (A.3)

Ė′
d =

1

T ′
q0

(−E′
d + (Xq −X ′

q)Iq), (A.4)

Ė′
f =

1

TA
(KA(Uref − Ut + UPSS)− Ef ) (A.5)

Pe = E′
qIq + E′

dId + (X ′
q −X ′

d)IqId, (A.6)

Ut =
√
(E′

d +X ′
qIq)

2 + (E′
q −X ′

dId)
2 (A.7)

Nomenclature

δ Power angle
ω Shaft speed
ω0 Synchronous speed
Pm Mechanical input power
Pe Real electrical power
Qe Reactive electrical power
D Damping constant
M Inertia coefficient
E′

d Transient EMF in the d-axis
E′

q Transient EMF in the q-axis
Ef Equivalent EMF in the excitation coil

T ′
d0 d-axis transient short-circuit time constant

T ′
q0 q-axis transient short-circuit time constant

Id d-axis current
Iq q-axis current
Xd d-axis reactance
Xq q-axis reactance
X ′

d d-axis transient reactance
X ′

q q-axis transient reactance
Ut Generator terminal voltage
Uref Terminal voltage reference
KA Gain of the AVR
TA Time constant of the AVR
UPSS PSS output voltage

1


	Introduction
	Problem statement
	System under study
	Types of PSS under study
	Multiobjective tuning of PSS

	Multiobjective particle swarm optimization
	Multiobjective optimization
	Particle swarm optimization
	Speed-constrained multiobjective particle swarm optimization

	Results and discussion
	Optimization results
	Simulation results

	Conclusion

