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Abstract:Feature extraction is one of the most crucial stages in the field of brain computer interface (BCI). Because of

its ability to directly influence the performance of BCI systems, recent studies have generally investigated how to modify

existing methods or develop novel techniques. One of the most successful and well-known methods in BCI applications

is the common spatial pattern (CSP). In existing CSP-based methods, the spatial filters were extracted either by using

the whole data trial or by dividing the trials into a number of overlapping/nonoverlapping time segments. In this paper,

we developed a CSP-based moving window technique to obtain the most distinguishable CSP features and increase

the classifier performance by finding the best time segment of electroencephalogram trials. The extracted features

were tested by using support vector machines (SVMs). The performance of the classifier was measured in terms of

classification accuracy and kappa coefficient (κ) . The proposed method was successfully applied to the two-dimensional

cursor movement imagery data sets, which were acquired from three healthy human subjects in two sessions on different

days. The experiments proved that instead of using the whole data length of EEG trials, extracting CSP features from

the best time segment provides higher classification accuracy and κ rates.

Key words: Common spatial pattern, moving window, cursor movement imagery, feature extraction, support vector

machines

1. Introduction

Developments in the field of brain computer interface (BCI) research not only allow paralyzed people to use

electronic devices, such as computers, neuroprostheses, and robotic arms [1], but also make other functions

possible, including motor restoration, communication, environmental control, and even entertainment [2–4].

Electroencephalogram (EEG) is the most used signal acquisition method for BCI designs, mainly due to its

fine temporal resolution, noninvasiveness, easy implementation, and low set-up costs [5]. In order to make BCI

systems practical in use, researchers have attempted to improve the speed and accuracy of all components of

BCI systems [6].

Current EEG-based brain computer interfaces are generally performed in five main components, which

are signal acquisition, preprocessing, feature extraction, classification, and device control interface. Among

these steps, feature extraction, which is necessary for representing input signals in a reduced feature space and

for identifying discriminative information for different types of imagery EEG signals, has received the most

attention from the BCI research community. Importantly, its capability directly influences the performance
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of the BCI. However, it requires a lot of research to extract informative features among the existing feature

extraction techniques or from a newly developed technique.

Various feature extraction techniques have been used in the BCI literature such as common spatial pattern

(CSP) [7,8], Fourier transform [9], wavelet transform [10], power spectral density analysis [11], filtering methods

[12,13], polynomial coefficients [6], and autoregressive model [14,15]. Amid these techniques, CSP is one of the

very widely used feature extraction techniques in motor imagery-based BCI applications. In such CSP-based

studies, researchers have designed different approaches to construct spatial filters whose variances contained

the most discriminative information, and which also help to increase the classification accuracy (CA) of BCIs.

Ramoser et al. applied their CSP-based method to the single-trial EEG, recorded from three subjects with 56

electrodes during left- and right-hand movement imagery. They investigated alternative optimal spatial filters

design according to the importance of the electrodes [7]. In another CSP-based study, Kang et al. proposed

two methods to obtain a composite spatial filter, which was a weighted sum of covariance matrices involving

all five participating subjects. They used the BCI competition III dataset IVa, which was recorded with 118

electrodes during the imagination of the right hand and foot. Their results showed that it was useful for

cases where pretrained CSP features need to be adapted to a subject with a low number of training samples

[8]. In another approach, Novi et al. applied their method to the dataset IVa from BCI competition III,

which recorded five subjects during the imagination of the left hand, right hand, and right foot movements.

In order to achieve optimal spatial filters, they firstly decomposed the EEG signals into subbands and then

extracted CSP features from those of subbands. Then they decided the most optimal subband(s) that provided

more information for classifying the EEG trials [16]. In a time segmentation-based CSP study, Ghaheri and

Ahmadyfard used dataset IIa from BCI competition IV, and instead of extracting CSP features from the whole

data (one time segment), they divided the data into several time segments (the length of the time segments

varied from 0.5 to 3 s with a step size of 0.5 s) and extracted CSP features from each time segment, separately.

They used all the extracted features for classification [17]. Similarly, in another time segmentation-based CSP

study, Asensio-Cubero et al. used dataset IIa from BCI competition IV. They made a comparison by applying

CSP to three different segmentation types: 1) no segmentation, by applying CSP directly to the whole data

trial, 2) uniform segmentation without overlapping, and 3) segmentation with overlapping [18]. [17] and [18]

required a whole data trial to extract features at the test stage. Although many CSP-based methods have been

reported that are relatively successful and accurate, they are not satisfactory in terms of speed and classification

accuracy. In this work, instead of using the whole data length of EEG trials, we proposed a CSP-based moving

window technique to obtain the most distinguishable CSP features by finding the best time segment of the

electroencephalogram trials. Therefore, the main contribution of this time segmentation technique is that it

provides the most informative segment of trial, increases classifier performance, and does not require a whole

data trial at the test stage.

We applied the proposed algorithm to the EEG signals recorded from three healthy subjects during the

motor imagery of two-dimensional cursor movements. The extracted features were tested with support vector

machines (SVMs). We measured the effectiveness of the classifier in terms of CA and kappa coefficient (κ).

With overall achieved CA and κ results, our method proves to have significant potential for designing alternative

optimal spatial filters and classifying cursor movement imagery BCI signals.
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2. Data set description

In this study, the Brain Quick EEG system (Micromed, Italy) was used to acquire EEG signals. The brain

activity was sampled at 256 Hz and filtered between 0.1 and 120 Hz. Additionally, a 50-Hz notch filter was used

to eliminate line noise. Eighteen EEG electrodes (Table 1) were located according to the international 10–20

system and were referenced to the electrode Cz. Because EOG and EMG artifacts were strong on the Fp1, Fp2,

O1, and O2 electrodes, they were not selected for analysis [19,20]. The data acquisition equipment is given in

Figure 1.

Table 1. List of electrodes.

Channel number Channel name
1 Fp2
2 Fp1
3 F4
4 F3
5 F8
6 F7
7 Fz
8 T4
9 T3
10 C4
11 C3
12 T6
13 T5
14 P4
15 P3
16 Pz
17 O1
18 O2

Figure 1. EEG data acquisition system: (a) full equipment, (b) amplifier, (c) isolation barrier, (d) electrode gel, (e) gel

injection syringe, (f) electrode cap.
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EEG signals were collected from three healthy male adults (subjects A, B, and C, aged 24, 24, and 29

years old, respectively) on two different offline sessions with a 1-week interval. The subjects who expressed

willingness to participate in the experiment were well-rested, had normal blood pressure, and had slept more

than seven hours the night before. Each trial began with a 2-s delay and then played a starting beep sound for

1 s. At 4 s, a target appeared in one of four possible positions (up, left, down, or right) on the middle edge,

and after the target entered on the screen, a cursor appeared at its center and the subject had to perform a

motor imagery task corresponding to the target for 8 s. Each trial ended with a beep sound. The timing scheme

and stimulus interface are shown in Figure 2. It is worthwhile mentioning that this experimental protocol was

approved by the Ethics Committee of Trabzon Clinical Researchers.

Figure 2. Timing scheme (left) and stimulus interface (right).

The first session trials were used as a training set, and the second session trials were used as the testing

set. Table 2 shows the total number of considered trials for each subject. Both the training and testing sets

consisted of an equal number of trials for each class.

Table 2. Total number of the considered trials.

Subject Number of training set trials Number of test set trials
A 140 152
B 148 152
C 148 152

The trial signals in both training and testing sets were assigned as follows: T1 = cursor up, T2 = cursor

right, T3 = cursor down, and T4 = cursor left.

3. Methodology

3.1. Common spatial pattern

We extracted the features by applying CSP, which is one of the most popular and well-known feature extraction

methods in motor imagery BCI studies [21,22]. The CSP method gives spatial filters, which maximize the

variance of one class while minimizing the variance of the other class at the same time [7]. It is worthwhile to

mention that to compute optimal CSP, all channels (except Fp1, Fp2, O1, and O2) were considered, and 10-fold

3979
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cross validation (10-FCV) was used. The normalized spatial covariance matrix of an EEG trial is calculated as

follows:

M =
DDT

trace(DDT )
, (1)

where D denotes a trial that is CxS matrix (C is the number of channels and S is the number of samples).

trace is the sum of the diagonal elements of (DD T ). The spatial covariance matrix was calculated by averaging

over the trials of each class. Then two resultant matrices (one is for first class, the other is for second class)

were summed and a composite covariance matrix MC was obtained as

MC = M̄1 + M̄2 (2)

MC can be factored into its eigenvectors as

MC = ECλCE
T
C , (3)

where EC is the matrix of eigenvectors and λC is the diagonal matrix of eigenvalues. Then a whitening

transformation (W ), which equalizes the variances in eigenspace, was calculated as follows:

W =
√
λ−1
C ET

C (4)

W was used to transforms the average covariance matrices as

K1 = WM̄1W
T and K2 = WM̄2W

T (5)

Then K1 and K2 share common eigenvectors, and the sum of the corresponding eigenvalues for the two matrices

is always equal to 1, such that

K1 = Uλ1U
T , K2 = Uλ2U

T ,

λ1 + λ2 = I, (6)

where I is the identity matrix. Finally, a projection matrix P = (UTW )T , where the columns P−1 are the

common spatial patterns and can be seen as time-invariant EEG source distribution vectors. With the projection

matrix, the decomposition of a trial D was calculated as follows:

Z = PD (7)

Since the sum of the corresponding eigenvalues is always one, the variances of the first and last rows of Z are

suitable features for classification. In this study, we used the variances of the first and last rows as features.

The variance was calculated as follows:

V =

∑(
ZR − ZR

)2
L− 1

, (8)

where ZR is a row of Z and L is the length of this row.
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3.2. Classification algorithm and kappa coefficient

In this study, we tested the proposed algorithm with SVM. Due to the fact that it is a well-known classifier

algorithm, we only gave its considered properties. We utilized the most commonly used radial basis function

kernel. This kernel function was specified by the scaling factor σ . The most suitable σ value was searched in

the interval between 0.1 and 2.0 (step size of 0.1). The 10-FCV technique was used to determine the best value

of σ so as to maximize the classification performance. To implement the SVM algorithm, the svmclassify (with

svmtrain) function of the MATLAB R2014a Bioinformatics Toolbox was used [10].

In order to evaluate the performance of the classifier, we calculated the CA and κ . CA was defined as

the percentage of the number of trials classified correctly over the size of the data set, and κ was defined as the

proportion of correctly classified samples after accounting for the probability of chance agreement [23]. It was

calculated as follows:

Kappa =
Pr(A)− Pr(E)

1− Pr(E)
, (9)

where Pr(A) represents the actual observed agreement and Pr(E) represents the probability of expected

agreement by chance.

A κ value might range between 1 and −1, which corresponds to a perfect and a completely incorrect

classification, respectively. On the other hand, a κ with value 0 indicates that the performance is equal to a

random guess.

3.3. Feature extraction

Instead of using the whole data length (T = 8 s), in order to improve the classification accuracy rate, the

best informative CSP-based features were sought in the whole EEG trials by a moving window. This window,

which is illustrated with a bold frame in Figure 3, has two kinds of parameters: 1) a shifting parameter, which

indicates how far the window is from the beginning point (T = 0 s), and 2) a length parameter, indicating the

extension of the window, which has a start time (ST) and an end time (ET) point. ST is also equal to the

shifting parameter, and ET > ST.

In order to implement more experiments and approve their efficiency, the proposed method was performed

on each combination of two-task pairs. In a two-task pair, the best window parameters are determined by the

training set as follows:

Step 1: The algorithm starts at ST = 0 (no shifting) and ET = 0.2 s. Under these circumstances, the

considered classifier is trained with the 10-FCV technique. This is called a window step (WS).

Step 2: For the next WSs, the ET parameter is set to a value between 0.4 and 8 with a step size of 0.2.

In each WS, all 10-FCV classification accuracy results are stored with the considered WS parameters. The first

two steps are called a loop. In each loop, the overlapped segmentation technique was used.

Step 3: For the next loop, the window is shifted by 0.2 s and the first two steps are repeated under the

circumstance of ET > ST.

Step 4: The algorithm is ended until ST and ET are set to 7.8 and 8, respectively. In total there are 40

loops and 820 WSs.

Step 5: Finally, the best window parameters, which provide the highest 10-FCV classification accuracy

result, are determined among these 820 WSs. Figure 4 summarizes these five steps.
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Figure 3. Seeking the best CSP features of the training set.

Figure 4. Summary of the proposed algorithm.

4. Results

In the following subsections, the training, the test accuracy results of the classification algorithms, and the

performance comparison are presented.

4.1. Training results

To obtain the best window and classifier parameters, 10-FCV technique was applied to each individual training

data set. The cross-validation classification accuracy results and the best window parameters are presented in

Table 3.

The best window parameters, ST and ET, are given under the results of cross-validation classification

accuracy. As seen in the table, the optimum time segment might be selected from the beginning, the middle, or

the last part of the trials. The cross-validation classification accuracies of Subject A fell in the range of 68.95%

and 96.64%, whereas they were between 64.69% and 71.50% for Subject B, and between 68.89% and 73.77%

for Subject C. On the other hand, the shortest and longest time segments were determined as 0.8 s and 6.8 s,

respectively.
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Table 3. Training accuracy results.

Task Pair A B C
T1–T2 96.64

(ST = 0.2, ET = 1.2)
67.32
(ST = 0, ET = 6.0)

69.47
(ST = 2.2, ET = 4.8)

T1–T3 70.20
(ST = 2.8, ET = 7.0)

64.69
(ST = 0.6, ET = 6.0)

73.77
(ST = 5.4, ET = 6.4)

T1–T4 91.43
(ST = 0, ET = 1.8)

70.24
(ST = 0.4, ET = 4.6)

70.36
(ST = 1.2, ET = 8.0)

T2–T3 83.68
(ST = 0, ET = 1.0)

69.91
ST = 3.0, ET = 4.0)

68.89
(ST = 0, ET = 6.0)

T2–T4 68.95
(ST = 1.4, ET = 2.4)

70.48
(ST = 1.6, ET = 6.4)

71.30
(ST = 6.6, ET = 7.6)

T3–T4 69.40
(ST = 1.4, ET = 4.0)

71.50
(ST = 2.0, ET = 6.4)

70.75
(ST = 4.8, ET = 6.0)

4.2. Test results

Based on the obtained window and classifier parameters, the calculated CA and κ results for the SVM algorithm

are given in Table 4. On the other hand, the CA and κ results, obtained by using the whole data length, are

given in Table 5. It is worthwhile to mention that the same validation procedure was used in the training stage

when the whole data length results were calculated. The average classification accuracy (ACA) and average κ

(Aκ) results are also provided and given in the last two columns of these two tables. The achieved best CA

and κ results for each task pair are written in bold font.

Table 4. Test accuracy results of the proposed method.

Task pair
A B C Average
CA κ CA κ CA K CA κ

T1–T2 98.68 0.97 65.79 0.32 67.11 0.34 77.19 0.54
T1–T3 71.05 0.42 65.79 0.32 76.32 0.53 71.05 0.42
T1–T4 93.42 0.87 68.42 0.37 71.05 0.42 77.63 0.55
T2–T3 81.58 0.63 65.79 0.32 68.42 0.37 71.93 0.44
T2–T4 64.47 0.29 71.05 0.42 72.37 0.45 69.30 0.39
T3–T4 68.42 0.37 69.74 0.40 71.05 0.42 69.74 0.40

As seen in Table 4, the highest CA and κ were achieved for the T1–T2 task pair of Subject A as 98.68%

and 0.97, respectively. In this case, the determined best time segment parameters were ST = 0.2 s and ET

= 1.2 s. On the other hand, the worst CA and κ were calculated for the T2–T4 task pair of Subject A as

64.47% and 0.29, respectively. In this case, the best time segment parameters were ST = 1.4 s and ET = 2.4 s.

Nevertheless, according to the average values, the achieved highest CA and κ were also obtained for the T1–T4

task pair as 77.63% and 0.55, respectively. In contrast, the worst ACA and Aκ were obtained for the T2–T4

task pair with 69.30% and 0.39, respectively.

As can be seen in Table 5, the best CA and κ were obtained for the T1–T4 task pair of Subject A as

64.47% and 0.29, respectively. Additionally, the worst CA and κ performance were calculated for the T1–T3

task pair of Subject B as 48.68% and –0.03, respectively. Based on average values, while the best ACA and

Aκ performances were achieved for the T1–T4 task pair as 61.40% and 0.23, respectively, the worst case was

obtained for the T1–T3 task pair as an ACA of 52.63% and an Aκ of 0.05.
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AYDEMİR/Turk J Elec Eng & Comp Sci

Table 5. Test accuracy results for the whole data length.

Task pair
A B C Average
CA K CA κ CA κ CA κ

T1–T2 57.89 0.16 50.00 0.00 56.58 0.13 54.82 0.10
T1–T3 52.63 0.05 48.68 –0.03 56.58 0.13 52.63 0.05
T1–T4 64.47 0.29 60.53 0.21 59.21 0.18 61.40 0.23
T2–T3 53.95 0.08 55.26 0.11 55.26 0.11 54.82 0.10
T2–T4 51.32 0.03 59.21 0.18 60.53 0.21 57.02 0.14
T3–T4 52.63 0.05 63.16 0.26 59.21 0.18 58.33 0.16

4.3. Performance comparison

In order to approve its effectiveness, we compare the performance of the proposed moving window method with

the test CA results obtained by using the whole data length. A close observation of the results in Tables 4 and

5 reveals that the CA values of the proposed method are greater than those of the whole data length results for

all subjects and task pairs. Although the best CA performance of the proposed method was achieved as 98.68%

for the T1–T2 task pair of Subject A, for the same task pair the highest CA was only obtained as 57.89% for

the whole data length. In contrast, while the best CA performance of the whole data length was obtained as

64.47% for the T1–T4 task pair of Subject A, in the same case, the proposed method yielded better performance

as 93.42% CA. Based on the values of ACA, whereas the highest ACA of the proposed method was calculated

as 77.63% for the T1–T4 task pair, the highest ACA was calculated as 61.40% by using the whole data length

for the same task pair.

The results of the proposed method also outperformed the whole data length results in terms of κ .

Similar to the CA results, whereas the best κ performance of the proposed method was obtained as 0.97 for

the T1–T2 task pair of Subject A, for the same task pair the highest κ was obtained only as 0.16 for the whole

data length. On the other hand, while the best κ performance of the whole data length was calculated as 0.29

for the T1–T4 task pair of Subject A, the proposed method achieved a better κ performance of 0.87 for the

same task pair.

5. Discussion and conclusion

In this paper we proposed a moving window technique for increasing the classification accuracy and κ rates

of cursor movement imagery EEG signals by selecting the best time segment of the EEG trials. Our approach

was successfully applied to the 6 different task pairs of each three subjects. Experiments proved that instead

of using whole data length, extracting CSP features from the best time segment of EEG trials provides higher

CA and κ rates for all 18 task pairs (6 task pairs from each three subjects). The proposed moving window

technique improved the ACA and Aκ rates for all binary task pairs.

It is worthwhile to mention that it was crucial to prove the robustness and applicability of the proposed

method due to the fact that it provided discriminative features both in the training and in the testing sets,

which were collected during two different sessions with about a 1-week interval.

Another positive attribute of the proposed method was that it was not necessary to use the whole length

of the EEG trials, which, importantly, helped to reduce the computational time of the test trials. For example,

for the T1–T2, T2–T3, and T2–T4 task pairs of Subject A, the length of the best time segment was only 1 s.

Moreover, the length of the longest time segment, which was obtained for the T1–T4 task pair of Subject C,

was also 1.2 s shorter than the whole data length.
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In our previous study [10], the most suitable time segment was determined by the ET parameter, which

provided the highest classification accuracy, whereas the ST parameter was kept constant at 0. However, the

best obtained window parameters (ST and ET) in this study showed that instead of keeping the ST parameter

constant at 0, using the proposed moving window technique provided the most appropriate time segment.

The main disadvantage of the proposed method was its time-consuming length in the training section.

However, it is worth mentioning that it provided a fast and accurate EEG-based BCI system at the testing

stage.

Based on these results, we think that the proposed moving window-based method has great alternative

potential to extract informative CSP features in increasing the classification accuracy and κ rates and reducing

the testing time in designing BCI applications.
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