
Turk J Elec Eng & Comp Sci

(2016) 24: 4042 – 4062

c⃝ TÜBİTAK
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Abstract: In this paper, a population-based robust enhanced teaching–learning-based optimization (ETLBO) algorithm

with reduced computational effort and high consistency is applied to design stable digital infinite-impulse response

(IIR) filters in a multiobjective framework. Furthermore, a decision-making methodology based on fuzzy set theory is

applied to handle nonlinear and multimodal design problems of the IIR digital filter. The original teaching–learning-based

optimization (TLBO) algorithm has been remodeled by merging the concepts of opposition-based learning and migration

for the selection of good candidates and to maintain diversity, respectively. A multiobjective IIR digital filter design

problem takes into consideration magnitude and phase response of the filter simultaneously, while satisfying stability

constraints on the coefficients of the filter. The order of the filter is controlled by a control gene whose value is also along

with filter coefficients, to obtain the optimum order of the designed IIR filter. Results illustrate that ETLBO is more

capable and efficient in comparison to other optimization methods for the design of all types of filter, i.e. high-pass,

low-pass, band-stop, and band-pass IIR digital filters.

Key words: Digital infinite impulse response filters, teaching–learning-based optimization, magnitude response, phase

response, filter order

1. Introduction

The digital filter is a basic component of all signal processing and communication systems. In digital signal

processing, the role of a filter is to extract the informative component of the signal, such as the segments lying

in between a particular frequency range, or to remove undesirable parts of the signal, such as random noise.

Digital filters are widely categorized as infinite impulse response (IIR) and finite impulse response (FIR) filters.

Digital IIR filters are mostly preferred in comparison to FIR filters, as IIR digital filters achieve high selectivity

with a significantly lower filter order [1].

In recent decades, the design of digital IIR filters has attracted considerable attention from researchers.

There are no conventional design methods for designing optimal digital filters [2]. The performance of the IIR

filter designed with transformation techniques is not up to the mark and involves too much prior knowledge.

The main problems in IIR filter design are [3]: 1) the nonlinear and multimodal error surface of the filter; 2)

the filter becoming unstable; 3) achieving linear-phase response; 4) the magnitude response and phase linearity

are conflicting in nature when considered simultaneously; 5) locating the lowest filter order; 6) satisfying the

pass-band and stop-band ripple tolerances. Filter stability can be controlled by constraining the variable values
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in the required range so that all the poles are inside the unit circle in the z -plane. The relevance of phase

approximation error is much greater than that of the group delay error in digital IIR filters, because, compared

to group delay error, magnitude and phase errors are used to control the amplitude of undesired echoes in the

output of the filter [4]; in addition, various frequency components of the signal are altered due to nonlinear

phase response.

The intent of IIR filter design problem is to optimize the filter order, magnitude response, and phase

response so that the designed filter meets the desired design specifications. Digital filter design primarily consists

of the following steps [3]: 1) conversion of the desired design constraints into precise specifications or criteria; 2)

approximation of the filter coefficients of the IIR filter such that the magnitude response, phase response error,

and order are minimized, by employing some error criterion.

The multimodal and nonlinear error surface of digital IIR filters may lead to the trapping of conventional

design algorithms at a local minimum [1,5]. To find a solution to this problem and to reach the global

optimum, the various global optimization-based algorithms for designing IIR digital filters proposed in the

literature include genetic algorithms (GAs) [6–8], simulated annealing [9], ant colony optimization [10], tabu

search [11], immune algorithms [12], particle swarm optimization [13], seeker-optimization algorithms [14], real

structured genetic algorithms [15], multiobjective optimization evolutionary algorithms [16], two-stage ensemble

evolutionary algorithms [17], and gravitational search algorithms [18].

The ability to find the optimum solution in almost all evolutionary and swarm intelligence-based methods

is dependent upon the tuning of controlling parameters such as the size of the population, number of iterations,

group size, etc. For example, a genetic algorithm requires determining the optimum value of algorithm-specific

parameters such as mutation operator, crossover operators, etc. An artificial bee colony requires researchers to

estimate the number of bees engaged, scout bees, onlooker bees, and limits. Particle swarm optimization requires

researchers to determine swarm size, maximum velocity, and acceleration constants. Recently, Rao et al. [19,20]

proposed a teaching–learning-based optimization (TLBO) algorithm influenced by the social phenomenon of

teaching–learning. The implementation of TLBO does not require specific controlling parameters, thus resulting

in an increase of the robustness of the algorithm. The main controlling parameter in TLBO is population size.

Hence, TLBO can be treated as a parameterless algorithm. The performance of the TLBO algorithm for various

constrained benchmark problems was investigated by Rao and Patel [21] for different sizes of populations, elite

sizes, and number of iterations to study their effect on the exploration and exploitation capability of the TLBO.

In IIR digital filter design, simultaneous consideration of magnitude response, phase response, filter

stability, and filter order with less computation burden is a challenging task. Recently, researchers have

designed an IIR filter that meets all the above requirements with the hierarchal genetic algorithm (HGA)

[6], cooperative coevolutionary genetic algorithm (CCGA) [8], and a new local search operator enhanced

multiobjective evolutionary algorithm (LS-MOEA) [16]. The aim of this paper is to further satisfy the solution

methodology of multiobjective IIR filter design by considering magnitude response, phase response, filter

stability, and order of the filter simultaneously by applying an efficient heuristic optimization algorithm, namely

ETLBO. The exploration and exploitation capabilities of the original TLBO are improved by initializing with

good candidates by employing the theory of opposition-based learning, and maintaining diversity by applying

migration. Furthermore, fuzzy set theory has been employed in finding a solution for decision-making problems

involving the numerous and imprecise nature of objectives and selection criteria for the best compromise solution.

The effectiveness of the proposed method is tested for high-pass (HP), low-pass (LP), band-stop (BS), and band-

pass (BP) IIR digital filters and compared to the previous research reported in [6,8,16].
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The paper is structured as follows. The digital IIR filter design is formulated in Section 2. Section

3 describes the implementation of the ETLBO algorithm for the design of optimal digital IIR filters. The

performance of ETLBO is evaluated and compared with the design obtained by other researchers [6,8,16] in

Section 4. Finally, Section 5 concludes the outcomes of the work.

2. Description of the problem

The stable IIR filter becomes unstable if an appropriate realization structure is not chosen. In this paper, the

cascade form of implementation for realization of the IIR filter is considered because the locations of the poles

and zeros will not change when coefficients are quantized. The fundamental cascaded structure regardless of

the filter type is [6]:

H(z) = x1 ×

((
u∏

k=1

1 + x2kz
−1

1 + x2k+1z−1

)
×

(
v∏

i=1

1 + x4i+2u−2z
−1 + x4i+2u−1z

−2

1 + x4i+2uz−1 + x4i+2u+1z−2

))
. (1)

X = [x1, x2, ..., x2u+4v+1]
T
S×1 is a vector decision variable of dimension S × 1, with S = 2u + 4v + 1. x1

represents the gain and [x2 ,x3 ,...x2u+4v+1 ] denotes the filter coefficients of the first- and second-order sections.

2.1. Magnitude response error

The magnitude response conditions considered for the design of a digital IIR filter are as follows:

•The pass-band ripples should be less than or equal to δP .

•The stop-band ripples should not exceed δs .

The pass-band and stop-band edge discrete frequencies for digital IIR filters are represented by ωj and

ωk , respectively. The aim is to minimize the magnitude response of the defined frequency band in which either

frequency is allowed to pass or restrict.

The fuzzy set theory is employed for the purpose of decision-making involving multiple objectives, namely

magnitude response in the pass-band and stop-band. Equations called membership functions are used to

define fuzzy sets, which denote the target of each objective function. The degree of accomplishment of the

original objective function is represented by the membership function, whose value ranges between 0 and 1.

Membership function value 1 gives a completely satisfactory objective, and 0 value of membership function

gives an unsatisfactory objective. The membership function µi is determined considering the lower and upper

values of the individual objective function, along with the pace of enhancement of membership satisfaction [22].

The membership function for the pass band magnitude response, µp
1j for the j th frequency sampling point,

is realized by the trapezoidal membership function and membership function for the stop-band magnitude

response; µs
2k for the k th frequency sampling point is realized by the monotonic decreasing function. Graphic

representations are given in Figure 1, and membership functions are defined mathematically as follows:
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Figure 1. Membership function for magnitude performance of pass-band and stop-band.

µp
1j =



0;Hd(ωj) ≤ δLT
p

Hd(ωj)−δLT
p

δLp −δLT
p

; δLT
p ≤ Hd(ωj) ≤ δLp

1; δLp ≤ Hd(ωj) ≤ δUp

δUT
p −Hd(ωj)

δUT
p −δUp

; δUp ≤ Hd(ωj) ≤ δUT
p

0;Hd(ωj) ≥ δUT
p

(j = 1, 2..., An), (2)

µs
2k =



1;Hd(ωk) ≤ δUs

δUT
s −Hd(ωk)
δUT
s −δUs

; δUs ≤ Hd(ωk) ≤ δUT
s

0;Hd(ωk) ≥ δUT
s

(k = 1, 2..., Bn), (3)

where An and Bn are the sampling frequency points in the pass-band and stop-band, respectively.

Hd(ωj) and Hd(ωk) are the magnitude response of the designed digital IIR filter in the pass-band and

stop-band, respectively.

δLp and δUp are lower and upper allowable range values of ripples in the pass-band.

δLT
p and δUT

p are lower and upper range transition values of ripples in the pass-band, giving the degree

of acceptance of magnitude error.

δUs is the upper allowable range value of ripples in the stop-band.

δUT
s is the upper range transition values of ripples in the stop-band, giving the degree of acceptance of

magnitude error.
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The objective functions µ1and µ2 for the pass-band and stop-band magnitude performance can be

formulated by considering the cumulative effect of the pass-band and stop-band of the frequency band:

µ1 = 1
An

An∑
j=1

µp
1j

µ2 = 1
Bn

Bn∑
k=1

µs
1k

. (4)

The overall objective function O1 for magnitude response error is redefined by considering the intersection of

the membership function of µ1and µ2 to obtain the greater satisfaction level of the objective function, and it is

stated below:
O1 = Min {µ1, µ2} . (5)

In the design of the IIR digital filter, a fixed grid approach is used [23]. The frequency range from 0 to π

is divided into a fixed number of evenly divided sample points. The best fitness function value is achieved

when the magnitude response of the designed digital IIR filter lies within the prescribed tolerance range in the

pass-band and stop-band.

2.2. Phase response error

The linear phase response is optimized for both the pass-band and the transition band [9,10], because sometimes

nonlinearity in the phase response of the transition band may cause distortion. The phase response of the IIR

filter is defined as:

phase = arg
∣∣H(ejω)

∣∣ . (6)

The phase response is calculated at different frequency sampling points {α1, α2, ..., αl} . The first-order difference
in the phase response can be calculated as:

β(ω) = arg
∣∣H(ejω)

∣∣ , (7)

f2 = ∆phase = {∆α1,∆α2, ........,∆αl−1} , (8)

where ∆αl = αl+1 − αl ; l is the total number of sampling points in the pass-band and transition band. The

phase response is linear if all the elements of ∆phase have the same value. The second objective function in

terms of linear phase response error is represented as the variance of phase differences.

O2 = 1
1+var{∆αl}

where αl ∈ pass-band ∪ transition band
(9)

2.3. Multiobjective IIR filter problem formulation

The design of an IIR filter involves obtaining the optimum structure of the filter having optimal order, minimum

tmagnitude, and minimum phase response error. Mathematically, the multiobjective optimization problem of

digital IIR filter design is stated below:

Maximize membership function of magnitude error performance O1(X); (10a)
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Maximize fitness function of phase response O2(X); (10b)

Subject to: stability constraints [24]:

1 + x2k+1 ≥ 0(k = 1, 2, ...., u), (10c)

1− x2k+1 ≥ 0(k = 1, 2, ...., u), (10d)

1− x4i+2u+1 ≥ 0(i = 1, 2, ...., v), (10e)

1 + x4i+2u + x4i+2u+1 ≥ 0(i = 1, 2, ...., v), (10f)

1− x4i+2u + x4i+2u+1 ≥ 0(i = 1, 2, ...., v), (10g)

where O1(X), given by Eq. (5), is the membership function of the magnitude response error, and O2(X),

given by Eq. (9), is the fitness function of the variance of phase difference. X is a vector decision variable of

dimensions S ×1 with S = 2u+ 4v + 1.

The aim is to find the value of filter coefficients being decision variables, X , that optimizes all the objective

functions simultaneously. The multiobjective constrained optimization problem of IIR digital filter design is

converted into a scalar constrained optimization problem by the selection of min–max of the membership

function as defined below [25]:

F (X) = Max [Min {Oi(X)(i = 1, 2)}] , (11)

subject to fulfillment of the stability constraints given in Eqs. (10c) to (10g).

2.4. Order

The order of an IIR digital filter is defined as the largest number of previous input values or output values

needed to calculate the current value of output. The higher the filter order, the greater the complexity will be.

Mathematically, the order of the IIR filter is determined as follows:

Order =
u∑

j=1

pj + 2
v∑

k=1

qk, (12)

where pj and qk are the j th and k th control genes respectively for corresponding first-order and second-order

blocks; u and v are the number of first- and second-order blocks, respectively. The maximum order of the filter

is u+ 2v .

The structure of the digital IIR filter is represented by the control gene (Figure 2). The coding method

followed was that used in [6,8,16]. The control genes determine activation/deactivation of corresponding blocks

of filter coefficients by setting 1/0, respectively. The value of binary bits used to generate control genes is

evaluated based on the integer value of the variable x2u+4v+2 of decision vector X . The integer value of

variable x2u+4v+2 is optimized along with the filter coefficients to obtain the optimum order of the designed

IIR filter.
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Figure 2. Activation/deactivation of filter coefficients with control gene.

X = [x1, x2, ..., x2u+4v+1, x2u+4v+2]
T
S×1 is the final decision variable where S = 2u + 4v + 2.

2.5. Constraint handling

The digital IIR filter design requires the satisfaction of stability constraints. The stability constraints on the

coefficients of the digital IIR filter in Eq. (1) are obtained by using the Jury method [24].

The values of filter coefficients are updated with a random variation as given below in order to satisfy

the stability constraints given by Eq. (10c) to Eq. (10g). Care is taken that the amount of variation is small

enough that it should not change the characteristics of the population.

x2k+1 =


x2k+1(1− r)2; (1 + x2k+1) < 0or(1− x2k+1) < 0

x2k+1; Otherwise
, (13a)

x4i+2u+1 =


x4i+2u+1(1− r)2; (1− x4i+2u+1) < 0

x4i+2u+1; Otherwise
, (13b)

x4i+2u =


x4i+2u(1− r)2; (1 + x4i+2u + x4i+2u+1) < 0or(1− x4i+2u + x4i+2u+1) < 0

x4i+2u; Otherwise
, (13c)

where r is a uniform random number whose value varies within [0, 1]. The square term ensures that the value

of increment is small.
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3. ETLBO algorithm

ETLBO inherits and works on a noble process, namely the concept of teaching–learning. It falls into the

category of nature-inspired, population-based algorithms. In ETLBO, the population consists of the students in

a class, and subjects offered to students represent different design variables. A set of good scores for the subject

offered to students is initialized by applying opposition-based learning; further migration has been employed to

maintain the diversity of the students. The candidate solution refers to the value of design variables, and the

know-how of a particular student is analogous to the objective function [26].

A teacher is a role model and greatly influences the growth of society. ETLBO efficiently utilizes the

knowledge base of a teacher to increase and improve the know-how of learners/students. The learners also

further improve their knowledge base by interacting and sharing information with each other. The methodology

of ETLBO consists of 2 main phases, the Teacher phase and the Learner phase.

3.1. Implementation of ETLBO

ETLBO is implemented by searching for the value of filter coefficients being decision variables, X , that optimizes

all the objective functions. The stepwise procedure to implement the proposed algorithm is elaborated in the

following subsections.

3.2. Class representation

Assume that NL is the number of students/learners in a class (population) and each learner has been assigned

S subjects. The ith learner is represented by Xi = [xi1, xi2, .....xiS ] .

The decision variables of the digital IIR filter design problem are coefficients of the filter; hence, they are

used to form the class. The set of filter coefficients (xi) is represented as the subjects assigned to learners in a

class. For a filter with S coefficients, the learner is represented by a vector of length S . Assuming there are

NL learners in a class, the class is represented in the form of a matrix:

class =


x11 x12 .. .. x1S

x21 x22 .. .. x2S

. . xij .. .

. . .. .. .
xNL1 xNL2 .. .. xNLS


NL×S

,

where xij is the j th subject score of the ith learner.

3.3. Initialization of the class

Each learner of the class is initialized with the help of a random search for marks of all the subjects. The

starting point is recorded by employing a global search, and then the starting point is further refined by giving

small movements in the neighboring locality to find the best starting point. The variables are initialized using

Eq. (14) to start the search process:

xt
ij = xmin

j +R()(xmax
j − xmin

j )(i = 1, 2, ..., NL; j = 1, 2, ..., S), (14)

where:

R is a uniform random generated number within {0, 1};
S is the number of subjects allotted to each learner;
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NL is number of learners in a class;

t is the iteration counter;

xmax
j and xmin

j are the upper and lower range values of the j th decision variable (filter coefficient) of

vector X.

3.4. Opposition-based learning

The convergence rate of ETLBO has been further enhanced with the help of opposition-based learning (OBL)

[27]. The theory of opposition-based learning has already been applied to expedite the process of reinforcement

learning and backpropagation learning in neural networks [28]. The concept behind opposition-based learning is

to select a better current candidate solution by comparing the current population and its opposite population.

Opposition-based learning is applied using Eq. (15) to record the alternative starting point, and the starting

point xt
ij is further explored using:

xt
i+NL,j = xmax

j −R()(xmax
j − xmin

j )(i = 1, 2, ..., NL; j = 1, 2, ..., S). (15)

Out of 2 × NL learners, the best NL learners constitute a class to initiate the process. For the global search,

the best learner is selected out of the class of learners.

Furthermore, opposition-based learning is also employed for generating new learners after completion of

the learner phase, using Eq. (16):

xt
i+NL,j = xU

j + xL
j − xij(i = 1, 2, ..., NL; j = 1, 2, ..., S), (16)

where:

xU
j = max { xij ; ( i = 1, 2, ..., NL)} (j = 1, 2, ..., S),

xL
j = min { xij ; ( i = 1, 2, ..., NL)} (j = 1, 2, ..., S).

3.5. Function evaluation

The function f is evaluated from the maximum satisfaction level of all objective functions. The membership

function of the ith learner of the class in the tth iteration used to solve the design of the IIR filter is given

below:

f t
i = Maximize {F t

i (x); (i = 1, 2..., NL)}. (17)

F t
i (X) is obtained using Eq. (11) for the ith learner of class in the tth iteration.

3.6. Teacher phase

Out of 2 × NL learners generated in the initialization phase, the best NL learners are selected and evaluated

based on the values of the fitness function. The best learner thus selected is designated as the teacher for the

class. A teacher puts forth his/her best effort in order to increase/improve the mean score of all learners in each

allotted subject towards its own mean score. Thus, the mean fitness of the class is increased by the teacher

according to his/her own capability.

The best learner is selected from all the learners in a class based on the fitness function value calculated

using Eq. (17) and acts as teacher xttj for current iteration t . The mean (mj) for S subjects allotted to the
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students is evaluated, and a randomly weighted differential vector (Dj) from the current mean and various

desired mean vectors [29] is calculated as given below:

mt
j =

1

NL

NL∑
i=1

(
xt
i,j

)
(j = 1, 2, ..., S), (18)

Dt
j = R()× (xttj − (Tf ×mt

j)(j = 1, 2, ..., S), (19)

where:

mt
j is the mean of the j th subject for all learners of a class;

xttj is the score of the teacher of the j th subject;

Tf is the teaching factor;

R is a uniform generated random number within {0, 1}.
The convergence of ETLBO is facilitated by one important parameter, namely teaching factor (Tf ). The

value of Tf determines the volume of effect a teacher has on the output of a learner. High Tf leads the learners

to drift away from good solutions, whereas too low a Tf restricts the learner’s movement in a limited range and

leads to slow convergence. In this paper, the value of Tf is selected as either 1 or 2 and is heuristically decided

as follows:

Tf = ROUND(1.0 +R()). (20)

The weighted differential vector (Dj) generated using Eq. (19) is added to the current score of learners in

different subjects to generate new learners:

xnewt
ij = xt

ij +Dt
j(j = 1, 2, ..., S). (21)

The newly generated learner with a better fitness value replaces the existing learner in the class.

3.7. Learner phase

The knowledge acquired by the learners from the teacher is further disseminated by learners among themselves

by interacting on a regular basis through the sharing of notes, discussions, and presentations. The second phase

of ETLBO emulates this sharing of knowledge by learners among themselves. Two target learners, namely

iandk , are selected randomly such that i ̸= k . After sharing/exchange of know-how, the resultant new learners

are generated as follows:

xnewt
ij =

{
xt
ij +R()× (xt

ij − xt
kj) ; f t

i < f t
k

xt
ij +R()× (xt

kj − xt
ij) ; Otherwise (j = 1, 2, ..., S)

. (22)

3.8. Migration

It is observed that sometimes the algorithm attains premature convergence due to a decrease in the ability of

learners to explore the search space. In order to increase the diversity of the learners, random individuals are

introduced into each generation from the global search space. In order to increase the exploration of the search
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space, 0.3NL learners are randomly selected to start the migration operation. The j th subject score of the ith

learner is randomly regenerated as:

xt
ij =

{
Gj +R()× (xmin

j −Gj) ; β <
(Gj−xmin

j )

(xmax
j −xmin

j )
(j = 1, 2, ..., S)

Gj +R()× (xmax
j −Gj) ; Otherwise

, (23)

where Gj is the global best marks and R and β are uniform random numbers.

The selection of random individual xt
ij is dependent on 2 uniform random numbers, R and β. The

selection of a random individual near the lower limit or towards the upper limit of the variable range is

determined by the value of β . Furthermore, the amount of variable value to be perturbed is decided by

the value of R .

3.9. Best function values

Initially, at the end of the first iteration, the function value of the fittest learner is set as the global best (f best),

and corresponding marks scored by him in various subjects are set as global best marks (Gj). At the end of

each iteration, if the function value obtained by the best learner is better than the global best (f best), it then

replaces the global best, and corresponding marks obtained by the best learner are stored as the global best

marks (Gj).

3.10. Stopping criteria

A heuristic optimization algorithm can be stopped by employing various stopping criteria. Common examples

are maximum number of iterations, tolerance, and number of function evaluations. ETLBO employs a maximum

number of iterations as the criterion to stop. The above procedure is repeated with an incremented t value

until the value of t reaches the maximum value of iterations specified. Otherwise, Gj is the best value of filter

coefficients and f best is the best/minimum value of the objective function.

3.11. Flowchart of ETLBO

The stepwise methodology of the ETLBO algorithm for the IIR filter design is presented in the form of a

flowchart (Figure 3).

4. Design results and comparison

The validity of ETLBO for the design of IIR digital filters is established by comparing the obtained results

with classical methods, TLBO, and techniques used by various researchers. The wide area of applicability of

the proposed ETLBO method is demonstrated by designing digital IIR filters following different design criteria

specified below:

• Minimum magnitude and phase response error while achieving the lowest filter order.

• Minimum magnitude and phase response error for higher orders of the digital IIR filter.

4.1. Minimum magnitude and phase response error while achieving the lowest filter order

The proposed ETLBO is successfully applied for the design of stable digital IIR HP, LP, BS, and BP filters

by considering magnitude error and phase response while achieving the lowest order and stability constraints

4052



SINGH and DHILLON/Turk J Elec Eng & Comp Sci

Figure 3. Flowchart of ETLBO.

Table 1. Prescribed design conditions for LP, HP, BP, and BS filters.

Filter type Pass-band (δP = 0.1088) Stop-band (δs = 0.17783) Order
Low-pass (LP) 0 ≤ ω ≤ 0.2π 0.3π ≤ ω ≤ π 11
High-pass (HP) 0.8π ≤ ω ≤ π 0 ≤ ω ≤ 0.7π 11
Band-pass (BP) 0.4π ≤ ω ≤ 0.6π 0 ≤ ω ≤ 0.25π 0.75 ≤ ω ≤ π 11
Band-stop (BS) 0 ≤ ω ≤ 0.25π 0.75 ≤ ω ≤ π 0.4π ≤ ω ≤ 0.6π 11
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stated by Eqs. (10a)–(10g). The design parameters followed for the design of IIR digital filters are presented in

Table 1. For the design of the IIR digital filter, 200 evenly distributed points are chosen in the frequency span

[0, π] . The order is selected as 11 as described in Section 2.4.

The examples of the IIR digital filters considered in [6,8,16] were used to test and compare the digital

IIR filter designed with the proposed ETLBO algorithm. The designed LP, HP, BP, and BS digital IIR filters

obtained employing the ETLBO approach representing the value of filter coefficients are shown in Eqs. (24)–

(27):

HLP (z) = 0.20462× (z + 0.258974)(z2−0.95054z + 0.962161)

(z−0.39299)(z2−1.21061z + 0.631761)
, (24)

HHP (z) = 0.222616× (z − 0.30596)(z2 + 0.938134z + 0.945373)

(z + 0.32509)(z2 + 1.180231z + 0.613116)
, (25)

HBP (z) = 0.224529× (z2−1.69079z + 1.066826)(z2 + 1.678418z + 1.057463)

(z2 − 0.632174z + 0.511494)(z2−0.63074z + 0.509961)
, (26)

HBS(z) = 0.467226× (z2 + 0.279695z + 0.874784)(z2−0.28008z + 0.871495)

(z2 + 0.746293z + 0.470755)(z2−0.74687z + 0.471200)
. (27)

The magnitude and phase response diagrams of HP, LP, BS, and BP digital IIR filters designed with the

proposed ETLBO are presented in Figures 4 and 5.

The designed LP, HP, BP, and BS digital IIR filters with ETLBO were tested for stability by drawing

pole-zero diagrams, shown in Figure 6. It is observed from Figure 6 that all the poles lie within the unit circle,

which clearly signifies that the designed filters follow the stability constraints imposed in the design procedure.
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Figure 4. Magnitude and phase response of LP and HP filters.
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Figure 5. Magnitude and phase response of BP and BS filters.
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Figure 6. Pole-zero plots for LP, HP, BP, and BS filters, respectively.
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The validity of the results obtained with the proposed ETLBO method has been established by comparing

it with classical methods and other previously applied techniques.

• Comparison with classical methods: The data related to classical methods, namely Butterworth (BWTH),

Chebyshev Type 1 (CHBY1), Chebyshev Type 2 (CHBY2), and Elliptic (ELTC) Function Considered for

LS-MOEA [16], are referenced and a comparison is presented in Table 2. It can be observed from Table

2 that ETLBO and LS-MOEA provide the lowest orders in comparison to the classical methods.

Table 2. Comparison of lowest filter order with classical methods.

Filter BWTH CHBY1 CHBY2 ELTC LS-MOEA ETLBO
LP 6 4 4 3 3 3
HP 6 4 4 3 3 3
BP 12 8 8 6 4 4
BS 12 8 8 6 4 4

• Comparison with previously applied techniques: The comparison of ETLBO is done with TLBO, HGA

[6], CCGA [8], and LS-MOEA [16] in terms of function evaluation size, lowest filter order, magnitude

performance in pass-band and stop-band, phase response error, and ripples in pass-band and stop-band.

The compiled results are shown in Table 3. From the evaluated results in Table 3, it is concluded that

the proposed ETLBO algorithm enhances the performance of TLBO. The performance of the proposed

ETLBO approach in comparison to HGA [6], CCGA [8], and LS-MOEA [16] is as given below:

• In comparison to [6], [8], and [16], the proposed ETLBO approach gives the best results in terms of

pass-band and stop-band magnitude performance for the LP digital IIR filter.

• The HP digital IIR filter designed with the ETLBO approach gives a lower number of ripples in the

stop-band in comparison to [6], [8], and [16].

• The performance of the designed BP digital IIR filter with the ETLBO approach is best and surpasses

[6], [8], and [16] in terms of ripples in the pass-band. Ripples obtained with ETLBO in the stop-band are

fewer in comparison to [6] and [16], and comparable with [8].

• For the designed BS filter with ETLBO, pass-band magnitude performance is better in comparison to [8]

and [16], and comparable with [6]. The stop-band magnitude performance of the designed BS filter with

ETLBO is best in comparison to [6], [8], and [16].

• Phase response error of the designed HP, LP, BS, and BP filters with the ETLBO approach is lowest and

best in comparison to [6], [8], and [16].

• In terms of lowest order, ETLBO, LS-MOEA, and CCGA are equivalent and are better than HGA.

• The number of function evaluations of ETLBO are minimum in the case of the BS filter and second-best
in the cases of HP, LP, and BP filters. The marginally higher computational cost in the cases of HP, LP,

and BP filters incurred by employing ETLBO is compensated for by better obtained results. The number

of the function evaluation (FES) of ETLBO is calculated as follows:
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Table 3. Comparison of design results for LP, HP, BP, and BS filters.

Fitness
evaluation
size

Lowest
filter
order

Pass-band magnitude
performance
(ripple magnitude)

Stop-band magnitude
performance
(ripple magnitude)

Phase response
error

LP filter

HGA [6] - 3 0.8862 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1138)

∣∣H(ejw)
∣∣ ≤ 0.1800

(0.1800)
1.6485 × 10−4

CCGA [8] 1.4248 × 105 3 0.9034 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0966)

∣∣H(ejw)
∣∣ ≤ 0.1669

(0.1669)
1.4749 × 10−4

LS-MOEA [16] 4.9 × 103 3 0.9083 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0917)

∣∣H(ejw)
∣∣ ≤ 0.1586

(0.1586)
1.0959 × 10−4

TLBO 6.01 × 104 3 0.9096 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0904)

∣∣H(ejw)
∣∣ ≤ 0.1507

(0.1507)
1.0706 × 10−4

ETLBO 4.52 × 104 3 0.9099 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0901)

∣∣H(ejw)
∣∣ ≤ 0.1514

(0.1514)
1.06712 × 10−4

HP filter

HGA [6] - 3 0.9221 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0779)

∣∣H(ejw)
∣∣ ≤ 0.1819

(0.1819)
1.1212 × 10−4

CCGA [8] 3.4164 × 105 3 0.9044 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0956)

∣∣H(ejw)
∣∣ ≤ 0.1749

(0.1749)
9.7746 × 10−4

LS-MOEA [16] 4.2385 × 104 3 0.9004 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0996)

∣∣H(ejw)
∣∣ ≤ 0.1746

(0.1746)
9.6150 × 10−5

TLBO 7.01 × 104 3 0.9004 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0996)

∣∣H(ejw)
∣∣ ≤ 0.1745

(0.1745)
9.4708 × 10−5

ETLBO 6.02 × 104 3 0.9043 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0957)

∣∣H(ejw)
∣∣ ≤ 0.1700

(0.1700)
9.4327 × 10−5

BP filter

HGA [6] - 6 0.8956 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1044)

∣∣H(ejw)
∣∣ ≤ 0.1772

(0.1772)
1.1222 × 10−4

CCGA [8] 7.7896 × 105 4 0.8920 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1080)

∣∣H(ejw)
∣∣ ≤ 0.1654

(0.1654)
8.1751 × 10−5

LS-MOEA [16] 9.995 × 103 4 0.9285 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0715)

∣∣H(ejw)
∣∣ ≤ 0.1734

(0.1734)
6.0371 × 10−5

TLBO 5.01 × 104 4 0.9286 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0714)

∣∣H(ejw)
∣∣ ≤ 0.1704

(0.1704)
4.8980 × 10−5

ETLBO 4.22 × 104 4 0.9290 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.0710)

∣∣H(ejw)
∣∣ ≤ 0.1701

(0.1701)
4.5162 × 10−5

BS filter

HGA [6] - 4 0.8920 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1080)

∣∣H(ejw)
∣∣ ≤ 0.1726

(0.1726)
2.7074 × 10−4

CCGA [8] 7.7532 × 105 4 0.8966 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1034)

∣∣H(ejw)
∣∣ ≤ 0.1733

(0.1733)
1.6119 × 10−4

LS-MOEA [16] 1.23505 × 105 4 0.8967 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1033)

∣∣H(ejw)
∣∣ ≤ 0.1725

(0.1725)
1.5084 × 10−4

TLBO 7.01 × 104 4 0.8937 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1063)

∣∣H(ejw)
∣∣ ≤ 0.1721

(0.1721)
1.5011 × 10−4

ETLBO 6.62 × 104 4 0.8945 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
(0.1055)

∣∣H(ejw)
∣∣ ≤ 0.1724

(0.1724)
1.4586 × 10−4

FESETLBO = 2×NL+ ((3×NL)× ITmax) , (28)

where NL is the number of learners and IT max is the maximum number of iterations.

Moreover, the results of the trend of magnitude response error versus phase response error depicted in

Figure 7 clearly justify the Pareto optimal front.
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Figure 7. Variation of magnitude response error vs. phase response error applying ETLBO.

4.2. Minimum magnitude and phase response error for higher orders of the digital IIR filter

The versatility of the proposed ETLBO method for the design of IIR digital filters is further established by

approximating the digital IIR filter in terms of magnitude and phase response simultaneously for higher orders

of the filter by varying u and v in the first and second-order blocks, respectively. The magnitude response errors

in terms of ripples in the pass-band, stop-band, and phase response error obtained for HP, LP, BS, and BP

filters with ETLBO by varying first- and second-order blocks are summarized in Tables 4–6.

Table 4. Design results for higher-order LP digital IIR filter applying ETLBO.

Order Minimum
magnitude in
pass-band
(maximum
magnitude = 1)

Stop-
band
ripples

Phase
response
error

Order Minimum
magnitude in
pass-band
(maximum
magnitude = 1)

Stop-
band
ripples

Phase
response
error

3 0.90999 0.15148 1.0 × 10−4 17 0.93226 0.14900 2.80 × 10−5

4 0.91358 0.14000 1.1 × 10−4 18 0.91089 0.13782 1.34 × 10−5

5 0.91711 0.13990 9.51 × 10−5 19 0.93941 0.12480 6.11 × 10−5

6 0.91427 0.13739 9.63 × 10−5 20 0.93751 0.13780 4.77 × 10−5

7 0.91662 0.14125 8.91 × 10−5 21 0.91392 0.11246 6.09 × 10−5

8 0.91493 0.13948 9.16 × 10−5 22 0.92178 0.12192 5.11 × 10−5

9 0.92504 0.12074 3.81 × 10−5 23 0.92950 0.13509 8.16 × 10−5

10 0.91527 0.13672 9.58 × 10−5 24 0.90917 0.14295 7.57 × 10−5

11 0.92458 0.12867 8.83 × 10−5 25 0.90836 0.11680 9.48 × 10−4

12 0.92206 0.13488 9.88 × 10−5 26 0.89615 0.11816 7.53 × 10−5

13 0.91267 0.14311 1.75 × 10−5 27 0.93521 0.16698 9.09 × 10−5

14 0.91026 0.12245 3.08 × 10−5 28 0.91873 0.13305 3.80 × 10−5

15 0.92032 0.14853 1.73 × 10−5 29 0.91130 0.14223 6.59 × 10−5

16 0.91738 0.14625 2.68 × 10−5 30 0.91273 0.14684 8.37 × 10−5

The results depicted in Tables 4–6 clearly demonstrate the consistency of the proposed ETLBO algorithm

for the design of digital IIR filters of higher orders. The best results in terms of magnitude and phase response

for digital IIR filters obtained with ETLBO by varying first- and second-order blocks are shown in Table 7.

The results obtained for best stable digital IIR filters obtained using ETLBO, presented in Table 7,

undoubtedly validate that the best stable digital IIR filter results obtained using ETLBO outperform the

results obtained by [6,8,16] depicted in Table 3. Although the order of the filter obtained is higher, it can be

used for applications like image processing, communication systems, and audio processing, where linear phase

response is highly required.
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Table 5. Design results for higher order HP digital IIR filter applying ETLBO.

Order Minimum
magnitude in
pass-band
(maximum
magnitude = 1)

Stop-
band
ripples

Phase
response
error

Order Minimum
magnitude in
pass-band
(maximum
magnitude = 1)

Stop-
band
ripples

Phase
response
error

3 0.90430 0.17006 9.43 × 10−5 17 0.93464 0.16390 1.90 × 10−4

4 0.90383 0.16981 9.42 × 10−5 18 0.91537 0.14869 1.11 × 10−4

5 0.90971 0.16843 8.40 × 10−5 19 0.92657 0.16274 1.14 × 10−4

6 0.90456 0.16995 5.70 × 10−5 20 0.91155 0.16941 9.94 × 10−5

7 0.91142 0.16701 7.68 × 10−5 21 0.91113 0.18114 9.93 × 10−5

8 0.90563 0.16857 7.45 × 10−5 22 0.90650 0.17088 1.71 × 10−4

9 0.91136 0.16716 8.63 × 10−5 23 0.91311 0.16531 1.70 × 10−4

10 0.92108 0.16992 9.45 × 10−5 24 0.95563 0.17152 2.02 × 10−4

11 0.90468 0.16926 7.10 × 10−5 25 0.92498 0.15432 2.35 × 10−4

12 0.90668 0.16608 7.84 × 10−5 26 0.88311 0.20022 2.06 × 10−4

13 0.90939 0.16169 7.81 × 10−5 27 0.61058 0.19365 5.89 × 10−4

14 0.90403 0.16123 1.00 × 10−4 28 0.85029 0.21569 1.16 × 10−4

15 0.91051 0.16871 9.35 × 10−5 29 0.79982 0.18429 8.26 × 10−4

16 0.93452 0.16682 1.51 × 10−4 30 0.87075 0.25893 5.95 × 10−5

Table 6. Design results for higher-order BP and BS digital IIR filter applying ETLBO.

BP filter BS filter
Order Minimum

magnitude in
pass-band
(maximum
magnitude = 1)

Stop-
band
ripples

Phase
response
error

Order Minimum
magnitude in
pass-band
(maximum
magnitude = 1)

Stop-
band
ripples

Phase
response
error

4 0.92904 0.17018 4.51 × 10−5 4 0.89455 0.17244 1.45 × 10−4

6 0.92670 0.14134 4.84 × 10−4 6 0.89373 0.16322 2.03 × 10−4

8 0.92037 0.19160 2.72 × 10−5 8 0.89873 0.15281 2.55 × 10−4

10 0.92063 0.16150 9.61 × 10−4 10 0.89397 0.11156 4.52 × 10−4

12 0.92170 0.17581 3.86 × 10−4 12 0.89899 0.17234 2.40 × 10−4

14 0.96624 0.17988 5.96 × 10−4 14 0.90739 0.17243 1.40 × 10−4

16 0.92423 0.16128 3.10 × 10−3 16 0.87001 0.18528 7.13 × 10−5

18 0.92776 0.16022 6.02 × 10−4 18 0.89868 0.17150 2.46 × 10−4

20 0.92573 0.19435 1.79 × 10−5 20 0.88411 0.18440 6.90 × 10−5

22 0.91556 0.20551 2.63 × 10−5 22 0.89302 0.17143 2.54 × 10−4

24 0.91619 0.19553 4.24 × 10−5 24 0.88213 0.16006 2.04 × 10−4

26 0.92418 0.21103 3.60 × 10−5 26 0.87979 0.18627 9.72 × 10−5

28 0.91382 0.19642 5.74 × 10−5 28 0.93227 0.10409 7.76 × 10−4

30 0.91131 0.21907 4.74 × 10−5 30 0.86324 0.19154 7.77 × 10−5

Furthermore, the robustness of ETLBO was validated by performing 100 independent runs. The min-

imum, maximum, average, and standard deviation values of the fitness function obtained are summarized in

Table 8, which clearly depicts that ETLBO is a robust algorithm with a small value of standard deviation.

The trend of the fitness function obtained with ETLBO with respect to iterations for all types of IIR digital

filters shown in Figure 8 clearly emphasizes that ETLBO attains a global solution in a fixed number of itera-

tions. Furthermore, the trend obtained for the fitness function by varying the number of learners/population
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presented in Figure 9 establishes that ETLBO is insensitive to its only controlling parameter, i.e. the number

of learners/population. The increase in learners gives better fitness at the cost of function evaluations.

Table 7. Best performance of IIR filter designed with ETLBO.

Filter Magnitude response Magnitude response Phase response Lowest
type in pass-band in stop-band error order
LP 0.9250 ≤

∣∣H(ejw)
∣∣ ≤ 1.0

∣∣H(ejw)
∣∣ ≤ 0.1207 3.8174 × 10−5 9

HP 0.9045 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
∣∣H(ejw)

∣∣ ≤ 0.1699 5.7010 × 10−5 6
BP 0.9203 ≤

∣∣H(ejw)
∣∣ ≤ 1.0

∣∣H(ejw)
∣∣ ≤ 0.1916 2.7223 × 10−5 8

BS 0.9073 ≤
∣∣H(ejw)

∣∣ ≤ 1.0
∣∣H(ejw)

∣∣ ≤ 0.1724 1.4013 × 10−4 14

Table 8. Variation of fitness function for IIR filter designed with ETLBO*.

Type of filter Minimum Maximum Average Standard deviation
LP 0.9998547 0.9999981 0.999922895 4.28697× 10−5

HP 0.9998368 0.9999880 0.99988083 4.0086× 10−5

BP 0.9999879 0.9996773 0.999869104 5.25238× 10−5

BS 0.9997436 0.99997749 0.99987791 4.4558× 10−5

*The values have been recorded with 100 random runs.

Figure 8. Variation of fitness function with iterations for designed digital IIR filter applying ETLBO.
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Figure 9. Variation of fitness function with learners/population for designed digital IIR filter applying ETLBO.
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5. Conclusion

In this paper, the ETLBO algorithm is successfully implemented to design the LP, HP, BP, and BS digital

IIR filters in a multiobjective framework. A fuzzy set theory approach has been exploited to establish the

best compromise solution involving a multiplicity of objectives. The performance of ETLBO is enhanced by

initializing the population by applying opposition-based learning. Furthermore, migration has been applied to

maintain the diversity and search space exploration, and avoid premature convergence. The effectiveness of

the proposed ETLBO has been also examined for the higher-order filter, and robustness was verified through

100 independent runs. The comparisons of the obtained results reveal the efficiency of the developed ETLBO

approach over other existing methods for digital IIR filter design. The results show that the proposed ETLBO

approach is efficient and generates multiple Pareto-optimal solutions in a single run. The ETLBO algorithm is

effectively applied to design digital IIR filters of all types and has given considerable improvement in terms of

results and convergence.
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