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Abstract:The stochastic scheduling of precedence-constrained jobs on a heterogeneous processor is a challenging problem

that requires solutions with one or more optimized QoS parameters. In this work, an energy-aware stochastic algorithm

is proposed to schedule the batch of precedence-constrained jobs on heterogeneous DVFS-enabled processors with the

objective of optimizing turnaround time and energy consumption. The processing time of tasks in all jobs and their

precedence-constraint times are governed by independent probability distributions. The performance of the proposed

stochastic algorithm is compared with SHEFT and ECS based on randomly generated batches of different sizes. The

experimental study reveals that the proposed algorithm significantly outperforms the SHEFT and ECS algorithms in

terms of turnaround time and energy consumption.

Key words: Stochastic scheduling, batch of stochastic precedence-constrained jobs, slack sharing, DVFS-enabled

processors, turnaround time, energy consumption

1. Introduction

The fastest supercomputer, Tianhe-2, consists of 16,000 physical nodes, each node having 2 Intel Xeon Ivy

Bridge and 3 Xeon Phi processors with overall power consumption of 17.808 MW [1]. The production of 1 kW

of electricity power consumes approximately 0.4 kg of coal and 4 L of water, and produces 0.272 kg of solid

powder, 0.997 kg of CO2 , and 0.03 kg of SO2 . The data centers consist of thousands of supercomputers, which

results in very high power consumption; therefore, the power consumption of data centers is a considerable

issue due to the associated negative environmental effects, high monetary costs, and reduced reliability of the

systems [2]. To address this issue, various techniques, including resource hibernation, dynamic voltage-frequency

scaling (DVFS), resource consolidation, and memory optimization, have been proposed [2]. DVFS is a useful

technique that automatically adjusts the inputs of CMOS-enabled processors by scaling the frequency up and

down to reduce power consumption [2]. For DVFS-enabled processors, the scheduling algorithms must consider

the assignment of jobs to processors as well as the selection of frequency for execution in order to exploit

the idle slots that occur due to precedence constraints. In general, the scheduling of precedence-constrained

jobs has been proven to be NP-complete [3]. Furthermore, the scheduling on heterogeneous DVFS-enabled

processors to optimize turnaround time as well as energy consumption makes it an even more challenging

problem [4]. A plethora of energy-aware and nonenergy-aware algorithms have been proposed considering

deterministic processing and communication times [5–11]. For a deterministic scheduling problem, all the

parameters regarding the job and system are known beforehand and cannot deviate from the given parameters.
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For real environments, the parameters of the job as well as the system can deviate considerably due to unknown

operating system conditions, memory access time, and so on. The stochastic scheduling model considers the

parameters as a random variable with a given probability density function and makes an effort to optimize

the expected performance [12–15]. In realizing this, this work proposes an energy-aware stochastic algorithm

that schedules the batch of precedence-constrained jobs on many heterogeneous DVFS-enabled processors to

optimize the turnaround time and energy consumption. The processing times and precedence-constraint times

follow the independent normal probability distributions.

The organization of the remaining paper is given as follows. Section 2 discusses the related research for

energy-aware and stochastic scheduling. Section 3 formulates the energy-aware stochastic scheduling problem on

a heterogeneous DVFS-enabled computation system. Section 4 explains the ESHEFT algorithm, while Section

5 presents the experimental study for different batches. Section 6 presents the concluding remarks.

2. Related research

Scheduling algorithms with the objective of minimizing the turnaround time and energy consumption, an active

research area with various energy-aware algorithms, are proposed for a DVFS-enabled heterogeneous computing

system. Zhu et al. introduced the concept of slack sharing, which reclaims the time unused by a task to reduce

the frequency of processors for reducing the energy consumption on a homogeneous computing system (HCS).

The two algorithms using the slack sharing concept, GSSR and FLSSR, were proposed for independent and

dependent tasks, respectively [7]. Zhang et al. presented many energy-efficient algorithms for the HCS with

changeable continuous and discrete speeds for reducing energy consumption while meeting time deadlines.

Simulation studies indicate that for both continuous and discrete speeds computers, the hybrid algorithms have

superior performance and offer the best task schedules [8]. Lee and Zomaya presented 2 energy-aware algorithms,

ECS and ECS + idle, in order to schedule the dependent tasks on a DVFS-enabled HCS based on the relative

superiority metric (RS) and makespan-conservative energy reduction technique (MCER) [9]. Li explored 2

energy-aware models, i.e. a problem to optimize turnaround time with energy consumption as the constraint

and a problem to optimize the energy consumption with turnaround time as the constraint, in order to schedule

dependent tasks on DVFS-enabled processors. Li proposed 3 types of algorithms (prepower-determination,

postpower-determination, and hybrid algorithms) to solve each subproblem efficiently [10]. Zhuravlev et al.

presented a survey of energy-cognizant scheduling algorithms considering 3 types of hardware mechanisms:

DVFS-enabled processors, thermal management, and asymmetric multicore designs [11].

For stochastic scheduling, the well-known algorithms are SEPT, WSEPT, and LEPT, which take into

consideration the expectation of execution times for making scheduling decisions. Skutella and Uetz proposed

constant-factor approximation algorithms for precedence-constrained stochastic tasks to optimize the total

weighted completion time on the HCS. For precedence-constraint scheduling with and without release dates

on m processors, the CMNS [12] algorithm (with κ > 0) has been proven with a performance guarantee of (1

+ κ)(1 + (1/κ) + max {1, ((m – 1)/m)∆}) and (1 + κ)(1 + ((m – 1)/mκ) + max{1, ((m – 1)/m)∆}),
respectively [13]. Tang et al. proposed SHEFT to address the problem of scheduling precedence-constrained

stochastic tasks on the HCS employing the average execution time of tasks based on expectation and variance

[14]. Li et al. presented the SDLS algorithm to schedule precedence-constraint tasks using the stochastic

bottom level and stochastic dynamic level on the HCS for independently normally distributed processing and

communication times [15].

It is to be noted that either energy/nonenergy-aware algorithms are proposed for jobs with deterministic

processing times or nonenergy-aware approximation/heuristics algorithms have been reported in the literature.
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This work presents an energy-aware stochastic scheduling algorithm for a batch of precedence-constrained jobs

with stochastic processing times to schedule on per-chip DVFS-enabled heterogeneous processors.

3. Problem formulation

This section explains the computation system employed, batch model, and energy model, along with the problem

statement.

3.1. Computation system

The computation system C is a HCS of K different per-chip DVFS-enabled processors represented by C =

{px: 1 ≤ x ≤ K} . Each processor px∈ C can run on nx discrete voltage levels, and the set of nx voltage levels

is given by Vx = {vx,z : 1 ≤= x ≤= nx}, such that if y < z, vx,y > vx,z . For each voltage level vx,z , there

exists a corresponding frequency fx,z ∈ px , and the set of nx frequency levels for processor px is given by Fx

= {fx,z :1 ≤ z ≤ nx} . The total number of frequency/voltage levels (NC) in computation system C will be

equal to the sum of all the voltage/frequency levels of all processors, i.e. NC=
∑K

x=1 |Vx| . The DVFS-capability

allows processors to switch from one voltage level to another with a trade-off between the power consumption

and processing time. Therefore, the processing time of any task at the highest frequency (fmax
x ) of processor px

is minimum, whereas energy consumption is maximum. It is assumed that all processors are connected using a

fast interconnection network and the intracommunication cost between is zero, while intercommunication cost is

nonzero. The present computation system C can be extended to multicore DVFS-enabled or multicore per-core

DVFS enabled computation systems.

3.2. Batch model

Batch B consists of a collection of M independent jobs to be executed on computation system C and is represented

by B = {Ji: 1 ≤ i ≤ M} , with each job Ji∈ B consisting of multiple dependent tasks. Each job Ji∈ B is given

in the form of a directed acyclic graph (DAG) as Ji = (Ti, Ei), where Ti= {ti,j : 1 ≤ j ≤Mi} represents the

set of Mi dependent and atomic tasks, and Ei=
{
ei,(j,k): 1 ≤ j ≤ k ≤Mi

}
⊂ Ti × Ti the set of precedence-

constrained edges between tasks. The edge ei,(j,k)∈Ei represents the precedence constraint between tasks ti,j

and ti,k such that task ti,k starts its execution after completion of task ti,j . Task ti,k is the successor task of

task ti,j , and the set of all successor tasks of ti,j is given by Succi,j = {ti,k:ei,(j,k)∈Ei} . The predecessor task

of task ti,j is connected by the edge ei,(k,j)∈Ei , and the set of predecessors of task ti,j is given by Predi,j =

{ti,k :ei,(k,j)∈Ei} . A task ti,j having zero predecessor tasks, i.e. Predi,j= Φ, is called the entry task, and a

task ti,j having zero successor tasks, i.e. Succi,j= Φ, is called the exit task. The level of tasks ti,j is 1 if task

ti,j has zero predecessor tasks, i.e. Predi,j= Φ. On the next level, the successors of the first level’s tasks are

stretched out, and so on. The level of task ti,j is determined recursively as follows:

Li,j =

{
1, P redi,j = Φ

1 +max{Li,k : ∀ti,k ∈ Predi,j}, otherwise
. (1)

The level of the batch (LB) is the maximum level of any task ti,j∈ B and is computed as:

LB = max{Li,j : ∀ti,j , Succi,j = Φ} (2)

The tasks of all jobs are randomly distributed over different levels from 1 to LB .
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3.3. Scheduling design principles

Stochastic scheduling makes an effort to optimize the expected performance of the solutions under the assump-

tion that parameters are random variables with known probability distributions. In this work, the processing

times of each task ti,j∈Ti and precedence-constraints edge ei,(j,k)∈Ei in a job Ji follow the independent nor-

mal probability distributions [12–17]. If the processing time of task ti,j and precedence-constraint time of edge

ei,(j,k) follow the normal probability distribution with expectations and variances as µ, µ
′
;σ2, σ′2 , respectively,

then ti,j ∼ N(µ, σ2) and ei,(j,k) ∼ N(µ′, σ′2). The processors deployed in computation system C are heteroge-

neous DVFS-enabled; therefore, the processing time of each task ti,j ∈ Ti with respect to each frequency level

fx,z ∈ Fx will have different expectations and variances. For example, the processing time of task ti,j w.r.t.

vx,z will follow an independent normal probability distribution with expectation µi,j,x,z and variance σ2
i,j,x,z ,

i.e. ti,j ∼ N(µi,j,x,z, σ
2
i,j,x,z). In the theory of randomness, the performance of stochastic scheduling depends

on the function ∆ of expectation as well as variance for random processing time Y where Var(Y)/E[Y]2 ≤ ∆

[12, 14–17]. For ∆ > 1, the performance of stochastic scheduling increases as the variance of random variable

decreases. For others, the performance is affected by the sum of expectation and variance of the random vari-

able. Therefore, the processing times and precedence-constraint times are computed based on the expectation

and variance of the random variable. The approximate value (AV(Y)) of a random number Y using mean (E[Y])

and variance (Var[Y]) can be determined as:

AV (Y )=


E [Y ] +

√
V ar[Y ] if V ar[Y ]

E[Y ]2
≤ 1

E [Y ]

(
1 + 1√

V ar[Y ]

)
otherwise

. (3)

Let [wi,j,x,z ] be a matrix of orderM×Mmax×K×NC , where wi,j,x,z gives the approximate value (AV (ti,j) ) of

the processing time of task ti,j∈Ti with regard to frequency level fx,z∈Fx on processor px using Eq. (3), and

Mmax represents the maximum number of tasks in any job of the batch. Let wmax
z (ti,j) give the approximate

processing time of task ti,j∈Ti with regard to the fastest frequency (fmax
x ) of processor px . Let [wi,(j,k) ] be a

matrix of orderM×Mmax×Mmax ; wi,(j,k) gives the approximate precedence-constraint time of edge ei,(j,k)

between tasks ti,j and ti,k . The average processing time of task ti,j with respect to the DVFS-enabled

computation system C can be written as:

AP (ti,j) =
∑K

x=1

∑nx

z=1 wi,j,x,z

/∑K
x=1 nx

. (4)

The stochastic b-level (sbi,j) of task ti,j in the batch B with respect to the DVFS-enabled computation system

C can now be rewritten as [5,6]:

sbi,j =

{
AP (ti,j) Succi,j = Φ

AP (ti,j) + maxti,k∈Succi,j

{
sbi,k + wi,(j,k)

}
} Otherwise

. (5)

To compute the turnaround time of the whole batch, it is required to define the start time (ST i,j,x), the finish

time (FT i,j,x) for task ti,j∈ B scheduled on processor px∈ C , the allocation metric (Xx,z
i,j ), and the ready

time (RT x) of processor px . Let Xx,z
i,j = 1 if task ti,j is scheduled on processor px at frequency fx,z level
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and Xx,z
i,j = 0 otherwise. If Xx,z

i,j = 1, then the start time (ST i,j,x) and finish time (FT i,j,x) of task ti,j on

fx,z ∈ Fx can be computed using Eqs. (6) and (7) respectively, and the expected ready time of the processor

is given by Eq. (8).

ST i,j,x =

{
RT x Predi,j = Φ

max
{
PRT x,maxti,k∈Predi,j&&x̸=y

{
FT i,k,y + ei,(k,j)

}}
, otherwise

, (6)

FT i,j,x = ST i,j,x + wi,j,x,z, (7)

RT x =

{
FT i,j,x if Xx,z

i,j = 1

FT l,m,x otherwise
. (8)

Here, FT l,m,x represents the last scheduled tasks (tl,m) on processor px .

Due to the simultaneous execution of M precedence-constrained jobs on computation system C, the

turnaround time (TATB) of batch B will be the maximum of finish times of all the tasks and can be computed
as:

TATB = max {FT i,j,x : ∀ti,j ∈ B,Succi,j = Φ} . (9)

3.4. Energy consumption model

The energy consumption of computational system C depends on all involved resources, namely the processors,

cooling system, memory accesses, communication networks, and so on [2]. The processors consume the most

significant portion of the total power consumption. The power consumption (Powx,z) of the processor consists

of static power (PStatic) and dynamic power (PDynamic), and it is given at voltage vx,z ∈ Vx as [7,9–11]:

Powx,z = PStatic + PDynamic. (10)

If processor px is idle, the processor consumes the static power (leakage power) constantly, irrespective of

voltage and frequency, i.e. Powx = PStatic . With the busy mode, the dynamic power (PDynamic) depends on

frequency fx,z and voltage vx,z given as:

PDynamic = γx × V 2
x,z × fx,z, (11)

where γx is a constant representing the activity factor and the physical capacitance. The constant γx is a

manufacturing constant, whereas frequency fx,z and vx,z can be decided at the compile or run time.

If Xx,z
i,j = 1, then task ti,j is executed on processor px at frequency fx,z ; the energy consumed by task

ti,j can be computed using Eqs. (10) and (11) as:

Ei,j,x,z = Powx,z × wi,j,x,z. (12)

The total energy consumption (ENB) of batch B depends on the energy consumed by all tasks and idle slots

created due to precedence constraints. Let Nx represent the total number of idle slots on processor px and

ISx,i represent the length of the ith idle slot on processor px ; the energy consumed by the idle slot (ISi) is

computed as:

ENx,i = PStatic × ISx,i. (13)
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Therefore, the total energy consumption (ENB) of batch B on computation system C is computed as the sum

of the energy consumption during idle slots and the energy consumed by the allocated tasks, and it is given as

follows:

ENB =
∑M

i=1

∑Mi

j=1

∑K

x=1

∑nx

z=1
wi,j,x,z ×Xi,j,(x,z) +

∑K

x=1

∑Nx

i=1
ENx,i. (14)

3.5. Problem statement

The formulated scheduling problem can be represented in Graham et al.’s notation as QK |ti,j∼ pred, stoc|min

TATB minENB [4]. The first field, QK, represents the computation system C of K heterogeneous parallel

DVFS-enabled processors given in Section 3.1, whereas the second field represents the task ti,j∈ B following

the precedence constraints with stochastic time requirements as given in Section 3.2. The third field corresponds

to the objective, i.e. to optimize the energy consumption and turnaround time of the batch B. Let SB represent

the schedule generated by the scheduling algorithm. The statement of the problem can then be written as:

Minimize

{
TATB

ENB
, (15)

st.


∑K

x=1

∑nx

z=1 X
x,z
i,j = 1, ti,j

M∑
i=1

∑Mi

j=1

∑K
x=1

∑nx

z=1 X
x,z
i,j =

∑M
i=1 Mi

. (16)

4. The ESHEFT algorithm

The proposed ESHEFT algorithm executes the batch of precedence-constrained jobs (B) on the computation

system (C), based on HEFT [6] and SHEFT [14]. However, HEFT and SHEFT are single-job algorithms with

the aim of optimizing turnaround time, whereas the proposed algorithm ESHEFT is a batch- and energy-aware

algorithm to schedule the batch of jobs to optimize both turnaround time (TATB) and energy consumption

(ENB). Furthermore, the ESHEFT algorithm employs a modified stochastic b-level (Eq. (5)) of the tasks

in order to follow precedence constraints between tasks and idle slots to choose the execution frequency that

reduces energy consumption without sacrificing turnaround time.

The pseudocode of our energy-aware stochastic heterogeneous earliest finish time (ESHEFT) algorithm

is shown in Algorithm 1. The ESHEFT algorithm takes 2 inputs, batch B and computation system C, and

returns schedule SB with expected turnaround time (TATB) and energy consumption (ENB) as output. As

the algorithm proceeds, it computes the stochastic b-level (sbi,j) and level Li,j for each task ti,j∈ B using

Eqs. (5) and (1), respectively. For the k th level’s tasks, a queue Qk is formed in decreasing order of stochastic

b-level (sbi,j), and the algorithm selects the processor and the execution frequency for each task level-wise.

For the tasks of the k th level, it removes the first task (say ti,j) from queue Qk and computes the expected

earliest starting time (ST i,j,x) and expected earliest finish time(FT i,j,x) with respect to each processor px∈ C

at maximum frequency (fmax
x ) using Eqs. (6) and (7) respectively. For task ti,j , the algorithm selects the

processor that offers the minimum expected earliest finish time(FT i,j,x) and adds this task to the scheduling

queue (SCHQk) of the k th level. The algorithm updates schedule SB information as:

SB (Proci,j) = px. (17)
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Following this, the algorithm selects the frequency for each task of the same level and the frequency is chosen

using the idle slot before the task, resulting in no effect on turnaround time. For tasks in SCHQk , it removes the

first task (say ti,j) and determines its allocated processor px using ti,j and SB . Following this, the algorithm

determines the earliest start time (EST i,j,x) of task ti,j on processor px as:

EST i,j,x = max
{
FT l,m,z,maxti,k∈Predi,j&&z ̸=y

{
FT i,k,y + ei,(k,j)

}}
. (18)

Next, the algorithm computes the maximum possible total slot time that can be available to task ti,j without

violating the precedence constraints as:

SlackT i,j,x = FT i,j,x − EST i,j,x − wmax
x (ti,j) , ifEST i,j,x < ST i,j,x. (19)

The algorithm then determines the minimum possible continuous frequency (fnew(tij)) of the processor pxwhile

meeting the deadlines of the expected earliest finish time(FT i,j,x) as:

fnew(tij) =
wmax

x (ti,j)

wmax
x (ti,j) + SlackT i,j,x

× fmax
x . (20)

Algorithm 1. ESHEFT algorithm.

Algorithm 1: ESHEFT

Input: Batch B, Computation System C

Output: Schedule SB with TATB, ENB

Begin

1. Compute the level Li,j of each task ti,j∈ B using Eq. (1)

2. Compute the stochastic b-level (sbi,j) for each task ti,j∈ B using Eq. (5)

3. Divide batch B into levels from 1 to LB

4. For each level Lk , form queue Qk by adding and sorting tasks in decreasing order of sbi,j

5. For each level k = 1 to LB do

6. //Processor Selection

While there are tasks at level Lk

a. Remove the task ti,j∈ B from the list Qk

b. Compute expected earliest starting time (ST i,j,x) and expected earliest finish time (FT i,j,x) w.r.t.

each px∈ C at fmax
x using Eqs. (6) and (7) respectively

c. Assign processor px∈ C with minimum FT i,j,x to task ti,j

d. Add task ti,j to SCHLIST k

e. Update SB(Proci,j) using Eq. (17)

End While

7. //Frequency selection without sacrificing the turnaround time

For each task ti,j∈SCHLIST k

a. Determine the processor px=SB(Proci,j) and EST i,j,x
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b. Compute the slack slot SlackT i,j,x using Eq. (19)

c. Compute the continuous frequency fnew(ti,j) using (20)

d. Schedule task ti,j on processor px with discrete frequency fx,z >̄ fnew (ti,j)

e. // >̄ represents immediately greater than or equal fraction

f. Update ST i,j,x and FT i,j,x corresponding to fx,z using Eqs. (21) and (22)

g. Send precedence-constraints data to all successors ti,k∈Succi,j
h. Update SB(freqi,j) using Eq. (23)

End For

8. End For

9. Get Schedule SB

10. Compute TATB using schedule SB and Eq. (9)

11. Compute ENB using schedule SB and Eq. (14)

12. Return SB , TATB , and ENB

End

Next, the ESHEFT algorithm selects the discrete frequency (fx,z) immediately greater than the continu-

ous frequency fCont
x ; this frequency is assigned to task ti,j for execution. Due to the difference between discrete

(fx,z) and continuous (fnew(ti,j)) frequencies, the expected earliest starting time (ST i,j,x) and expected ear-

liest finish time(FT i,j,x) will be updated using Eqs. (21) and (22), respectively. The algorithm also updates

schedule SB information using Eq. (23).

ST i,j,x = EST i,j,x, (21)

FT i,j,x = ST i,j,x + wx,z (ti,j) , (22)

SB

(
freqi,j

)
= fx,z. (23)

Following scheduling and frequency selection for all tasks, the algorithm computes the turnaround time (TATB)

and energy consumption (ENB) of the batch B using Eqs. (9) and (14), respectively.

4.1. Performance evaluation

To evaluate performance, a simulation program is developed using MATLAB with the Intel Core i5-3470 that

realizes DVFS-enabled processors of 5 types, namely Intel Core 2 Duo with 4 frequencies, Intel Core 2 Extreme

with 4 frequencies, AMD Sempron APUs with 3 frequencies, AMD Athlon APUs with 3 frequencies, and TI

DSP with 2 frequencies. A simulation environment of 15 processors consisting of 3 processors of each type

is created. To generate the batch B consisting of a random number of jobs (DAGs) and random processing

and precedence-constrained tasks, a statistical prediction technique is used to get the normal distribution of

processing and precedence-constraint times. The simulation program also takes 4 input parameters: 1) number

of stochastic jobs in a batch B; 2) range of stochastic tasks in each job; 3) ranges of expectations and variances

of processing times of tasks; 4) ranges of expectations and variances of precedence-constraint times [18]. The
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performance of the ESHEFT is compared with ECS [9] and SHEFT [14] with 2 variations. Similar to ECS and

SHEFT, ECS-1 and SHEFT-1 schedule jobs from batch B one-by-one randomly, whereas SHEFT-2 and ECS-2

convert the whole batch B into a single DAG by adding the pseudo-entry and -exit tasks with zero processing

and communication times to schedule the tasks. Five different batches are created that consist of 10, 20, 30, 40,

and 50 jobs with task ranges from 32 to 256, which results in the number of tasks [320, 2560], [640, 5120], [960,

7680], [1280, 10240], and [1600, 12800], respectively. The ranges of expectation and variance of processing times

are [1, 3000] and [20, 1000] respectively, whereas ranges of expectation and variance of precedence-constrained

times are [1, 500] and [20, 100], respectively. The results corresponding to 5 batches with turnaround time,

energy consumption, and their standard deviations are shown in Figures 1–4, respectively.
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Figure 1. Turnaround time of different batches. Figure 2. Turnaround standard deviation of different

batches.
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Figure 3. Energy consumption of different batches. Figure 4. Energy consumption standard deviation of

different batches.

Figure 1 represents the turnaround time of ECS-1, ECS-2, SHEFT-1, SHEFT-2, and ESHEFT on the

computation systems of 15 processors for 5 batches. It is observed from Figure 1 that the order of turnaround

time performance is ESHEFT, SHEFT-2, ECS-2, SHEFT-1, and ECS-1. It can also be seen from Figure 1 that

the performance of ESHEFT increases with the size of the batch. For average performance of the 5 batches,

the respective percentages for improvement of ESHEFT with respect to ECS-1, ECS-2, SHEFT-1, and SHEFT-

2 are 12.5%, 11.5%, 12.2%, and 10.7% in terms of turnaround time. It is observed from Figure 2 that the

ESHEFT algorithm offers more stable performance, as the standard deviation of the offered turnaround time

is smaller in comparison to other algorithms. Corresponding to the turnaround time presented in Figure 1, the
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energy consumption (kJ) of the same 5 batches is shown in Figure 3. It is observed from Figure 3 that the

ESHEFT algorithm consumes minimal energy; the order of energy consumption is given as ESHEFT, ECS-2,

SHEFT-2, ECS-1, and SHEFT-1. The energy-aware algorithms ECS-1 and ECS-2 both take into consideration

the execution time and energy consumption of tasks; hence, both offer lower energy consumption in comparison

to SHEFT-1 and SHEFT-2, respectively. For the average energy consumption of 5 batches, the percentages

for energy consumption improvement of ESHEFT with respect to ECS-1, ECS-2, SHEFT-1, and SHEFT-2 are

11.1%, 10.4%, 11.4%, and 10.7%, respectively. It is also observed from Figure 4 that the ESHEFT algorithm

offers the minimum energy standard deviation, which results in more stable performance in comparison to its
peers.

Both ECS-1 and SHEFT-1 algorithms schedule jobs one-by-one randomly and only exploit the parallelism

between the tasks of a job rather than making use of parallelism between different jobs, resulting in a greater

number of idle slots on the schedule. Therefore, ECS-1 and SHEFT-1 offer higher turnaround time in comparison

to the ECS-2, SHEFT-2, and ESHEFT algorithms. More idle slots consume more energy towards the total

energy consumption, which causes ECS-1 and SHEFT-1 to consume more energy in comparison to the ECS-

2, SHEFT-2, and ESHEFT algorithms. ECS-2 and SHEFT-2 form a single DAG, adding some precedence

constraints between jobs as well as tasks, which results in less parallelism and more delay in the execution time

of tasks; hence, these algorithms offer greater turnaround time in comparison to ESHEFT. Since the proposed

algorithm ESHEFT explores and exploits the parallelism between and within the jobs, the ESHEFT algorithm

makes full use of resources, which results in less turnaround time. Additionally, SHEFT-2 and ECS-2 consume

more energy in idle slots in comparison to the ESHEFT algorithm.

The main reason behind the good performance of the ESHEFT algorithm is that it combines all of the

jobs to exploit the parallelism between and within the jobs of the batch and generates a continuous frequency

based on the available idle slot that helps to choose the discrete frequency of the processor. It can be concluded

that combining the jobs into batches and scheduling using ESHEFT has a major impact on performance in

comparison to peers for the QK |ti,j∼ pred, stoc|minTATB minENB problem.

5. Conclusion

An energy-aware stochastic ESHEFT algorithm is proposed to schedule the batch of precedence-constrained jobs

(DAGs) on DVFS-enabled processors, incorporating the slack time of tasks to minimize energy consumption

without sacrificing turnaround time. Using a randomly generated batch of precedence-constrained jobs, the

simulation results demonstrate the superiority of the ESHEFT algorithm over SHEFT and ECS in terms of

turnaround time, energy consumption, and their standard deviations. From the experimental study, it is found

that scheduling the precedence-constrained stochastic jobs into batches is preferable to scheduling a single job

in terms of turnaround time and energy consumption, as it results in higher system utilization, lower monetary

costs, and lower negative environmental effects. Additionally, the performance of the ESHEFT algorithm

suggests its possible use for scheduling in general multiprocessor, multicore processors, and large-scale parallel

computing systems.

Symbol Explanation

C Computation system C with K different per-chip DVFS-enabled processor px.

Vx/Fx The set of nx discrete voltage (vx,z)/frequency (fx,z) levels for processor px∈ C.

B Batch of M jobs and each job Ji∈ B consisting of multiple dependent tasks.

Ti/Ei Ti consists of Mi dependent tasks ti,j and Ei consists of precedence-constrained edge
ei,(j,k) between tasks.
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Succi,j The set of all successor tasks of ti,j .

Predi,j The set of predecessors of task ti,j

Li,j/LB The level of tasks ti,j/batch B.

[wi,j,x,z] A matrix of orderM×Mmax×K×NC , where wi,j,x,z gives processing time of task ti,j∈Ti

w.r.t. frequency level fx,z∈Fx.

[wi,(j,k)] A matrix of order M×Mmax×Mmax, wi,(j,k) gives approximate precedence-constraint
time of edge ei,(j,k) between tasks ti,j and ti,k.

sbi,j The stochastic b-level (sbi,j) of task ti,j w.r.t. to DVFS-enabled processor.

ST i,j,x Expected start time of task ti,j scheduled on processor px.

FT i,j,x Expected finish time of task ti,j scheduled on processor px.

RT x Expected ready time of processor px.

TATB The turnaround time of batch B.

Powx,z The power consumption of processor px consists of static power (PStatic) and dynamic
power (PDynamic) at voltage vx,z.

ENB The total energy consumption of batch B.
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