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Received: 24.11.2014 • Accepted/Published Online: 15.07.2015 • Final Version: 20.06.2016

Abstract: This study investigates the use of delay vector variance-based features for steganalysis of recorded speech.

Because data hidden within a speech signal distort the properties of the original speech signal, we designed a new audio

steganalyzer that utilizes delay vector variance (DVV) features based on surrogate data in order to detect the existence

of hidden data. The proposed DVV features are evaluated individually and together with other chaotic-type features.

The performance of the proposed steganalyzer method is also discussed with a focus on the effect of different hiding

capacities. The results of the study show that using the proposed DVV features alone or in cooperation with other

features helps in designing a distinctive audio steganalyzer, as cooperation with other chaotic-type features provides

higher performances for stego and cover objects.

Key words: Steganography, steganalysis, speech, chaos, false neighbors, Lyapunov exponent, surrogate data, delay

vector variance

1. Introduction

Steganography is the science of covert communication that is applied by hiding secret messages in digital signals.

To achieve secure and undetectable communication, a stego signal (used to conceal a secret message) should be

indistinguishable from a cover signal, which does not contain any secret message. Analyzing the detection of

stego and cover signals is called steganalysis. The set of techniques used for steganalysis is called a steganalyzer.

‘Embedding’ is a term generally used in the steganalysis literature to express hidden information. Em-

bedding, however, has another meaning in chaos theory. To prevent possible misunderstandings, ‘embedding’

is used in this paper as it is used in chaos theory, not in steganalysis.

Existing methods of audio steganalysis target various data-hiding techniques. The work in [1] focused on

least significant bit-based steganography, whereas the work in [2] addressed the steganalysis of the MP3stega

algorithm. The steganalysis of the Hide4pgp algorithm was explored in [3]. Spread spectrum watermarking

and stochastic modulation steganography were considered in [4]. Watermarking and steganographic data-

hiding methods for time and frequency domains were studied in [5]. An essential reference for the basics of

steganography can be found in [6]. See [7] for a brief summary of steganalysis approaches.

Chaotic feature-based audio steganalysis was investigated in [8] and [9] and found useful for distinguishing

stego from cover signals. Chaotic phenomena in speech are still the subject of various research studies. Though

many of the reported approaches assume the linearity and stationarity of audio, theoretical and experimental
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evidence for the existence of chaotic phenomena in speech signals also exists, which cannot be covered by linear

modeling [8–10]. The delay vector variance (DVV) method, which is based on surrogate time series [11], is one

technique that determines the level of nonlinearity in signals [12]. Assuming that hiding data leads to additive

distortion of a speech signal, it is anticipated that this process will change the nonlinear and chaotic structure

of the speech signal, and consequently the DVV and chaotic-based features.

A change in chaotic structure also means a change in nonlinear structure, which manifests as a deviation

from the numerical values of the DVVs of the cover signal and therefore enables the detection of the possible

existence of a hidden signal. Using DVV-based features was proposed for the first time in [9]. Performance

results in [9], which was studied only one special test case, showed that DVV-based features are very promising

for speech steganalysis even though they were used alone, i.e. not combined with any other chaotic-based

features. In this paper, research cases are extended and the performance results of [9] are improved with a

combination of DVV-based features when compared to the authors’ previously proposed chaotic features [8].

Section 2 of this paper provides an overview of DVV analysis for nonlinear signals. Section 3 shows the

application of DVV analysis to steganalysis and DVV feature extraction, and also shows how hiding data changes

DVV-based features. Feature selection and the results of the experiments are given in Section 3. Conclusions

are drawn in Section 4.

2. DVV method

To assess the presence of nonlinearity in time series, the ‘surrogate time series’ method is a widely used technique

offered by Theiler et al. [12]. A surrogate time series is produced with the same magnitude and a similar Fourier

phase to transform the original time series. Although there are different approaches to producing surrogate time

series, the most widely used is the iterative amplitude adjusted Fourier transform (iAAFT), which was proposed

by Schreiber and Schmitz [13]. In this paper, the iAAFT approach is used to produce surrogate time series.

For detailed information, please refer to [13].

By comparing the characteristics of the original and the surrogate time series, the level of nonlinearity

in the time series can be anticipated. Metrics based on surrogate times are defined for performing such a

comparison.

2.1. Nonlinearity measurements

Besides the DVV method, there are two other approaches used to predict the nonlinearity of the time series.

These are third-order autocovariance and asymmetry due to time reversal [14].

Third-order autocovariance is a higher-order extension of the traditional autocovariance, and can be given

by:

tC3(τ) = ⟨xnxn−τxn−2τ ⟩ (1)

Here, τ is the time lag. Given that the time series is accepted as time-reversible, if the probabilistic properties

do not change with regards to time reversal, invariance for the probabilistic features can be measured by using

the following equation:

tREV (τ) =
⟨
(xn − xn−τ )

3
⟩

(2)

In [13,14], it was shown that with the combination of DVV, these two methods are very helpful for two-tailed

tests of nonlinearity.
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2.2. DVV method

The DVV method was first proposed in 2003 [14]. It is a generic predictor of nonlinearity that uses phase spaces

of time series. For an embedding dimension DE , a set of delay vectors x(n) are generated with time lag τ :

x(n) = [xn−DEτ , ..., xn−τ ] (3)

The definition of proper values and the effects of selecting improper values for the embedding dimension DE

and time delay τ were extensively described in [8,11]. Figure 1 illustrates a sample of the embedding operation

of a real audio time series into a 3D phase space.
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Figure 1. Phase space of a real speech segment for T = 10 and DE = 3.

To determine a specific embedding dimension, DE , the DVV method computes the mean target variance,

σ∗2 , for all sets of Ωn . Here, every Ωn is a group that consists of delay vectors that are a certain distance from

x(n). The distance is varied in relation to the distribution of pairwise distances between delay vectors [14].

The DVV method can be summarized as follows:

σ∗2(rd) =

1
N

N∑
n=1

σ2
n(rd)

σ2
x

(4)

• For the given embedding dimension DE , the mean, µd , and the standard deviation, σd , are computed

over all pairwise Euclidean distances between delay vectors.

• For the given embedding dimension, DE , andΩn(rd) sets are generated according to the following formula:

Ωn(rd) = {x(i)| ∥x(n)− x(i)∥ ≤ rd} ; i= 1, 2,.., N . Here, N is the sample count in the time series of x,

and rd is the particular distance that must be chosen from the interval [µd − −ndσd ;µd + ndσd ], where

nd is a parameter that controls the span over which to compute the DVV plot.

• For the given embedding dimension DE , the variance of every set of Ωn(rd), σ2
n(rd) is computed. The

average value of all sets, Ωn(rd), is normalized by the variance of the time series σ2
x . At the end, the

measure of unpredictability is computed by:
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Unless one set, Ωn(rd), contains more than 30 delay vectors, it is not taken into account when performing

the computations [14].

As a result of standardizing the distance axis, the DVV plots are easily interpreted. Figure 2 shows the

DVV plots of four benchmark signals to further explain DVV. According to the plots, the Henon Map signal

(A) is the most predictable signal, while colored noise (C) is the most unpredictable. Note that all the x-axes

are standardized as distances to make the comparison easier [15].
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Figure 2. Solid curves represent the DVV plots for (a) the Henon Map, (b) Mackey–Glass, (c) colored noise, and (d)

the laser time series. Average DVV plots computed over 99 surrogates are shown as dashed curves [15].

3. A new steganalyzer feature set using the DVV method

By evaluating Figure 2, the nonlinear dynamics of the signal become easier to interpret. However, this approach

is not enough, given that objective decisions are not used when creating evaluations. For this reason, Schreiber
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and Schmitz created the method described below, which produces numerical results [13]:

n surr≥ 2

α
−1 (5)

1. The number of surrogate data, n surr, is decided according to the defined limit of significance,α (generally

0.05):

2. The n surr surrogate time series is produced from the original time series s1 , s2 ,. . . sn surr .

3. DVV curves of the original and surrogate time series are constructed.

4. Statistically analyze DVV curves by using one-sided or two-sided tests to find out their coherence with

the original data by using various methods.

For the fourth step, we decided to use RMSE values for measuring the difference between the DVV curves

of the original and the surrogate signal. For n surr surrogate time series, the RMSE vector is constituted as

RMSE = {RMSE 1 , RMSE 2 ,. . . , RMSE n surr } .

For using DVV-based features for speech steganalysis, we have designed a feature set based on calculated

RMSE values of surrogate time series. The proposed feature vector, which must be constituted for every original

time series (i.e. audio record), consists of four elements—mean, variance, skewness, and kurtosis—which are

values that are calculated over RMSE values [9]:

Fsurr = {mean (RMSE) var (RMSE) ske (RMSE) kur (RMSE) (6)

In the Ωn set, the square value of the neighborhood distances between all delayed vector couples is:

d(x(n), x(m))2 = ∥x(m)− x(n)∥2 =

DE∑
k=1

(x(n+ k)− x(m+ k))2 (7)

The mean, µd , and variance values, σ2
d , in the Ωn set are:

µd =
x(m)∈Ωn

E[d] σ2
d =

x(m)∈Ωn

E
[
(d− µd)

2
]
= E

[
d2
]
− µ2

d (8)

Assuming that hiding data in cover signals means adding zero-mean and σ2
ε varianced white noise with a

magnitude of ε(n), if we reorganize Eq. (7) for both cover and stego signal, then:

dC(x(n), x(m))2 = d2C =

DE∑
k=1

(x(n+ k)− x(m+ k))2 (9)

dS(x(n), x(m))2 = d2S =

DE∑
k=1

([x(n+ k) + ε(n+ k)]− [x(m+ k) + ε(m+ k)])2 (10)

If we expand the term of d2
S , which is used for stego signals, then:

d2S =
DE∑
k=1

{x2(n+ k) + 2x(n+ k)ε(n+ k) + ε2(n+ k) + x2(m+ k) + 2x(m+ k)ε(m+ k)

+ε2(m+ k)− 2 [x(n+ k)x(m+ k) + x(n+ k)ε(m+ k) +ε(n+ k)x(m+ k) + ε(n+ k)ε(m+ k)]}
(11)
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If we put d2C =
DE∑
k=1

x2(n+ k) + 2x(n+ k)x(m+ k) + x2(m+ k) into Eq. (11), then:

d2S = d2C +
DE∑
k=1

{
2x(n+ k)ε(n+ k) + ε2(n+ k) + 2x(m+ k)ε(m+ k) + ε2(m+ k)

−2 [x(n+ k)ε(m+ k) + ε(n+ k)x(m+ k) +ε(n+ k)ε(m+ k)]}
(12)

As long as all the pairs of ⟨ε(m+k), ε(n+k)⟩ , ⟨ε(m+k), ε(m+k)⟩ , ⟨ε(m+k), x(m+k)⟩ , ⟨ε(m+k)x(n+k)⟩ ,
⟨ε(n + k), x(m + k)⟩ ve ⟨ε(n + k), x(n + k)⟩, are independent and identically distributed, the mean values of

Eq. (12) can be simplified as:

E
[
d2S

]
x(n)∈Ωn

= E
[
d2C

]
x(n)∈Ωn

+DE . E
[
ε2 (n+ k)

]
+DE .E[ε2 (m+ k)] (13)

Because ε(n) is zero-mean, and σ2
ε is varianced, white noise is calculated as:

E
[
d2S

]
x(n)∈Ωn

= E
[
d2C

]
x(n)∈Ωn

+DE .2σ
2
ε (14)

The variance value used in DVV analysis and seen in Eq. (8) can be defined for cover and stego signals as

follows:

(σ2
d)C =

x(m)∈Ωn

E
[
d2C

]
− (µd)

2
C (15)

(σ2
d)S =

x(m)∈Ωn

E
[
d2S

]
− (µd)

2
S (16)

Using Eqs. 414) and (15), the term (σ2
d)S can be written as:

(σ
2
d)S = (σ

2
d)C + (µd)

2
C +DE .2σ

2
ε − (µd)

2
S (17)

With the assumption of (µd)
2
C ≈ (µd)

2
S , Eq. (17) can be simplified as:

(σ
2
d)S = (σ

2
d)C +DE .2σ

2
ε (18)

Such results show that the variance values of stego signals used in DVV analysis are always higher than those

of the cover signal.

The first three elements of the proposed Fsurr feature vector can be seen in Figure 3 and are calculated

over 2000 stego and cover signals using DSSS [16] and stochastic modulation [17] steganography techniques.

Here the n surr value is 20, and the difference between the feature values of the cover and stego signals is

demonstrated in Figure 3.
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Figure 3. The first three elements of Fsurr of 2000 cover and stego signals, which are constituted with (a) steganographic

techniques DSSS and (b) stochastic modulation. nsurr is 20 for Fsurr .

4. Experimental results

Tests were performed using nine different methods of hiding data. Five of these methods used watermarking

techniques, whereas the other four used steganographic techniques. Watermarking methods were used to extend

the case to the widest range of possibility, although a stego signal can be deliberately changed before the signal is

received [18]. The watermarking techniques used were direct-sequence spread spectrum (DSSS), frequency hop-

ping with spread spectrum (FHSS), echo hiding (ECHO) [16], stochastic modulation (STOMOD) [17], and DCT-

based watermarking (COX) [19]. The four steganographic methods used were Steganos (www.steganos.com),

MP3Stego (www.petitcolas.net/fabien/steganography/mp3stego), Steghide (http://steghide.sourceforge.net),

and Hide4Pgp (www.heinz-repp.onlinehome.de/Hide4PGP.htm). Note that stochastic modulation can be used

for steganography; in this study, however, using STOMOD for watermarking is taken into account.

These methods were selected due to their popularity, free availability, and wide usage in related works.

The individual performance of steganography and watermarking methods is used to determine whether the

proposed feature set is useful for audio steganalysis or not.

4.1. Dataset

The database used for the test scenario is a subset of the TIMIT speech database (https://catalog.ldc.upenn.edu/

LDC93S1), which is widely known in the evaluation of automatic speech recognition systems. The TIMIT

database comprises over 6300 utterances from 630 male and female speakers, sampled at 16 kHz. Two

thousand speech segments, ignoring dialects and male–female differences, were randomly selected from the

TIMIT database for experiments in this study. For every data-hiding method studied, a stego signal subset was

constituted that contained hidden data in utterances using the data-hiding method.

4.2. Data hiding

We concealed messages into excerpts using nine data-hiding methods. The procedure for concealing messages

was randomly selected; half of the set used stego and cover signals for training, while the other half was used for

testing. An objective distortion measure, the signal-to-watermark ratio (SWR), was used to define the payload

level in the watermarking methods:

SWR =

∑
x(n)2∑

(x(n)− y(n))2
, (19)
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where x(n) and y(n) signify cover and watermarked signals, respectively. For steganographic methods, the

performances of three different data-hiding rates of each individual method were evaluated and found to be at

100% and 50% of maximum allowed capacity.

4.3. Feature set

The feature set proposed in this study has four elements, all of which are based on DVV values, as described in

Eq. (6). This new feature set was used for all steganalysis trials, unless otherwise stated. In producing the DVV-

based feature vector, the DVV MATLAB Toolbox was utilized (http://www.commsp.ee.ic.ac.uk/∼mandic/dvv.

htm).

To determine if DVV-based features can be used to improve the performance of other chaotic-based

steganalyzer feature sets already investigated in the literature, a unified feature set was constituted and tested.

The proposed chaotic-based feature set [8] is used for this purpose, which consists of 22 elements and is defined

below:
Fchaotic(DE) = {FFNF (DE)|DE = 3, 4, 5, 6, 7} ∪ λ { i| i = 1, 2, 3, 4, 5, 6, 7} (20)

Here, FFNF (DE) is the feature set of the false neighbor fraction (FNF), which is based on the statistical values

of the FNF method [20], while λi is i . The Lyapunov exponent (LE) value of the signal is as shown in [21].

Using these chaotic features in audio steganalysis is very advantageous, as described in [8]. FFNF (DE) is

described as follows:

FFNF (DE) = [FNF,mean (dDE
(s(n), s(m))) , RMS (dDE

(s(n), s(m)))] (21)

Here, the three elements of the feature vector are the fraction of false neighbors, the average size of the

neighborhood, and the root mean-squared size of the neighborhood. The FNF and LE values of the signals are

calculated with TISEAN [22].

By assembling chaotic features with proposed DVV-based features, a unified feature set, which comprises

26 elements, can be defined as follows:

F (DE) = Fsurr ∪ {FFNF (DE)|DE = 3, 4, 5, 6, 7} ∪ λ { i| i = 1, 2, 3, 4, 5, 6, 7} (22)

4.4. Feature selection and classifiers

To achieve the highest detection rate in order to evaluate redundant features, a sequential forward float-

ing search method (SFFS) [23] was coupled with a support vector machine (SVM) classification method

(http://sourceforge.net/projects/svm/). A radial basis function with gamma equal to 4 was used in the SVM

as a SVM function.

4.5. Simulation results

To assess the validity of the proposed feature set, several tests were carried out that considered the effect of

payload. The performance of the DVV-based steganalyzer is provided in Table 1 for the TIMIT dataset. As

a performance metric, results are given as percent of the performance, missed detection count (MISS), and

false alarm count (FA). In all simulations, half of the dataset was used for training the SVM classifier and the

remaining half was used to test the designed steganalyzer with a trained classifier.

In the TIMIT dataset, it is observed that SWR values greater than 38 dB for DSSS, 34 dB for FHSS, 20

dB for Cox, and 18 dB for ECHO become noticeable, namely audible. For this reason, 20 dB, 30 dB, and 40

dB were selected as payloads. It is shown that a 30-dB payload causes performance to drop to 55% with the
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Table 1. SVM-based steganalysis performance for different data-hiding capacities with DVV features.

Watermarking methods
Method SWR MISS FA %

DSSS

20 dB 0/1000 0/1000 100.0
30 dB 1/1000 2/1000 99.9
40 dB 5/1000 6/1000 99.5

FHSS

20 dB 2/1000 0/1000 99.9
30 dB 5/1000 6/1000 99.5
40 dB 16/1000 13/1000 98.0

ECHO

20 dB 98/1000 236/1000 83.3
30 dB 176/1000 395/1000 71.5
40 dB 293/100 489/1000 60.9

COX

20 dB 285/1000 212/1000 75.2
30 dB 452/1000 457/1000 54.6
40 dB 478/1000 485/1000 51.9

STOMOD

20 dB 13/1000 8/1000 99.0
30 dB 53/1000 34/1000 95.7
40 dB 171/1000 98/1000 89.8

Steganography methods
Method Capacity MISS FA %

usage

STEGA
50% 142/1000 166/1000 84.5
100% 64/1000 73/1000 93.2

HIDE4PGP
50% 42/1000 176/1000 89.1
100% 33/1000 84/1000 94.2

STEGHIDE
50% 121/1000 154/1000 86.3
100% 48/1000 83/1000 93.5

MP3
50% 287/1000 167/1000 77.3
100% 203/1000 124/1000 83.7

Cox method; note, however, that this level of payload is audible. For steganographic methods, the performance

of each method was evaluated individually for two different data-hiding rates: 100% and 50% of maximum

allowed capacity. There was no audibility concern for steganographic methods, as the maximum data-hiding

rate used in the tests is equal to the maximum allowed capacity—the audibility threshold. The performance of

the steganalyzer decreases as payload (in terms of SWR or capacity usage) also decreases. This is because a

higher payload causes more corruption to the audio data, which makes detecting hidden data much simpler.

Curves of the receiver-operating characteristics (ROCs) for watermarking and steganography methods

are illustrated in Figure 4. The calculated conditions for producing ROC curves hold the same configuration

used in Table 1—namely, the same database and the same SVM classifier. ROC curves provide performance

Figure 4. ROC curves for (a) watermarking and (b) steganographic methods obtained using the SVM classifier. The

dataset is a random sample of 2000 speeches from the TIMIT database. The payload is 20 dB for watermarking methods

and 100% capacity usage for steganographic methods.

4137
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Table 2. SVM-based steganalysis performance for different data-hiding capacities with chaotic features.

Watermarking methods

Method SWR MISS FA %

DSSS

20dB 0/1000 0/1000 100.0
30 dB 0/1000 0/1000 100.0
40 dB 2/1000 2/1000 99.8

FHSS

20 dB 0/1000 0/1000 100.0
30 dB 1/1000 3/1000 99.8
40 dB 13/1000 9/1000 99.0

ECHO

20 dB 74/1000 148/1000 88.9
30 dB 132/1000 295/1000 78.7
40 dB 212/100 437/1000 67.6

COX

20 dB 227/1000 245/1000 76.4
30 dB 435/1000 442/1000 56.2
40 dB 471/1000 451/1000 53.9

STOMOD

20 dB 7/1000 5/1000 99.4
30 dB 40/1000 22/1000 96.9
40 dB 108/1000 61/1000 91.5

Steganography methods

Method Capacity MISS FA %
usage

STEGA
50% 105/1000 117/1000 88.9
100% 32/1000 84/1000 94.2

HIDE4PGP
50% 32/1000 143/1000 91.3
100% 29/1000 55/1000 95.8

STEGHIDE
50% 44/1000 65/1000 94.6
100% 19/1000 32/1000 97.5

MP3
50% 239/1000 127/1000 81.7
100% 154/1000 114/1000 86.6

results if the threshold of the decision is changed. Figure 4 illustrates that DVV-based features are powerful

even with biased thresholds.

The unified feature set, as described in Eq. (22), is also evaluated to investigate the unification of DVV-

based features with other proposed, chaotic-type steganalyzers. The performance results of the steganalyzer

with unified features can be seen in Table 2. The steganalyzer used DVV-based features only, showing that

using a unified set of features provides higher performance results.

Table 3 gives the comparative results of using chaotic and DVV-based features individually and together.

Using the support of DVV-based features, chaotic-based features are more discriminative than when they

are alone. Comparing DVV-based and chaotic-type features shows that even though DVV-based features

use very limited information from the audio data (namely, RMSE values of the original and surrogate DVV

curves), the performance results are very promising. Since chaotic-type features were selected from a variety

of chaos measurement methods [8], high performance results should be expected. However, the DVV-based

steganalyzer achieved slightly higher performance results for some steganalysis conditions. Table 2 shows that

Table 3. Comparative performance results of different feature-based steganalyzers for different data-hiding capacities.

Watermarking methods
Method SWR CHAOTIC DVV CHAOTIC

+ DVV

DSSS

20 dB 100.0 100.0 100.0
30 dB 100.0 99.9 100.0
40 dB 99.8 99.5 99.8

FHSS

20 dB 100.0 99.9 100.0
30 dB 99.8 99.5 99.8
40 dB 98.8 98.0 99.0

ECHO

20 dB 87.8 83.3 88.9
30 dB 78.5 71.5 78.7
40 dB 66.4 60.9 67.6

COX

20 dB 72.2 75.2 76.4
30 dB 55.4 54.6 56.2
40 dB 52.3 51.9 53.9

STOMOD

20 dB 99.3 99.0 99.4
30 dB 96.6 95.7 96.9
40 dB 90.3 89.8 91.5

Steganography methods
Method Capacity CHAOTIC DVV CHAOTIC

usage + DVV

STEGA
50% 88.2 84.5 88.9
100% 92.6 93.2 94.2

HIDE4PGP
50% 90.8 89.1 91.3
100% 93.8 94.2 95.8

STEGHIDE
50% 88.8 86.3 94.6
100% 94.4 93.5 97.5

MP3
50% 81.0 77.3 81.7
100% 85.5 83.7 86.6
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with the support of DVV-based features, the performance of a chaotic-based steganalyzer provides even better

performance.

When comparing recently proposed audio steganalysis approaches, the proposal of Geetha et al. [23],

which uses Hausdorff distance and higher-order statistics, is analyzed. In Geetha et al.’s study, the selected

classifier is the J48 decision tree algorithm, and a database of 200 audio samples was used for steganalysis.

For our study, the SVM is selected as a classifier, and 2000 randomly selected audio samples from the TIMIT

database were used. Even though the database and classifier used in this study differ from those of Geetha et al.’s

study, information about the performance of the proposed steganalyzers is still provided. For a fair comparison,

tests should be performed using the same database and detection algorithms; however, Table 4 shows that the

proposed DVV-based steganalyzer provides better performance for the DSSS and Steghide methods and poorer

performance for the ECHO method.

Table 4. Comparative performance results of different feature-based steganalyzers with different database and classifiers.

Method Capacity usage Hausdorff DVV Chaotic + DVV
DSSS 10% (SWR: 33 dB) 78.6 99.7 99.9
Echo 10% (SWR: 26 dB) 88.4 78.8 83.4
Steghide 10% 83.2 78.7 86.4

5. Conclusion

We have proposed a new feature vector based on DVV analysis of nonlinear data. We have constituted a new

numerical feature vector by using DVV analysis, which is normally used for detecting the nonlinearity level

of signals. Tests for the proposed steganalyzer were carried out by using the TIMIT database. Compared to

recently proposed similar steganalyzer studies [3,5,8,24–26], DVV-based features used as speech steganalyzers

show very promising results, specifically for the DSSS, FHSS, STOMOD, Hide4PGP, and Steghide methods.

Moreover, tests were repeated for a new steganalyzer that is composed of a combination of DVV-based and

chaotic-based features. A number of test results for different embedding capacities and different decision

thresholds (ROC curves) are also presented. Use of DVV-based features in cooperation with other chaotic

features improves the performance further. This combined steganalyzer provides the advantages of both DVV-

based and chaotic features, and it can be used for almost all speech steganography methods proposed in the

literature.

Moreover, comparative results are obtained from our proposed steganalyzers and those of Geetha et al.

[24] for the same usage capacities used in [24].

Test results show that for the Steghide and Hide4pgp steganography methods, our combined DVV-based

and chaotic-based steganalyzer has the most distinctive feature set among the published high-performance

steganalyzers [3,5,8,9,24–26]. Given the performance results of this study, it can easily be said that DVV-based

features can be used for speech steganalysis as well as nonlinearity detection. In fact, the combined DVV-

and chaotic-based steganalyzer is the best tool for distinguishing speech data from secret data hidden by the

Steghide and Hide4pgp steganography methods.

For the special case of mp3 audio files, recent studies have shown that with specific features, a more than

95% detection rate is achievable with SVM classifiers, even at low hiding capacity rates such as 20% [27,28].

The performance of the proposed steganalyzer can be increased further by using side information specific to

the mp3 files. As long as chaotic-type and DVV-based steganalyzers fall short of this level of achievement,
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the proposed DVV and chaotic-type features should be preferred for non-mp3 samples, namely coded but not

compressed audio files such as .wav files.
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[26] Özer H, Sankur B, Memon N, Avcıbaş İ. Detection of audio covert channels using statistical footprints of hidden

messages. Digit Signal Process 2006; 16: 389-401.

[27] Qiao M, Sung AH, Liu Q. MP3 audio steganalysis. Inform Sciences 2013; 31: 123-134.

[28] Yu X, Wang R, Yan D, Zhu J. MP3 Audio steganalysis using calibrated side information feature. J Comput Inf

Syst 2012; 8: 4241-4248.

4141

http://dx.doi.org/10.1147/sj.353.0313
http://dx.doi.org/10.1007/978-1-4684-4730-9_5
http://dx.doi.org/10.1007/978-1-4684-4730-9_5
http://dx.doi.org/10.1109/83.650120
http://dx.doi.org/10.1109/83.650120
http://dx.doi.org/10.1103/PhysRevE.66.026209
http://dx.doi.org/10.1103/PhysRevE.66.026209
http://dx.doi.org/10.1063/1.166424
http://dx.doi.org/10.1063/1.166424
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.1016/j.eswa.2010.04.012
http://dx.doi.org/10.1016/j.eswa.2010.04.012
http://dx.doi.org/10.1016/j.dsp.2005.12.001
http://dx.doi.org/10.1016/j.dsp.2005.12.001

	Introduction
	DVV method
	Nonlinearity measurements
	DVV method

	A new steganalyzer feature set using the DVV method
	Experimental results
	Dataset
	Data hiding
	Feature set
	Feature selection and classifiers
	Simulation results 

	Conclusion

