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Abstract:This paper presents the stability analysis of a six-phase self-excited induction generator (SP-SEIG) based on

the eigenvalue stability criteria for its linearized model. This demonstrates the small signal stability behavior during

steady-state operating conditions. The eigenvalue approach also establishes an opportunity to correlate eigenvalues

with machine parameters. The investigation in this paper reveals that the eigenvalues are dependent upon the machine

parameters, and the most critical parameter is the variation in magnetizing inductance (Lm) . The eigenvalues are varied

in accordance with the machine variables and give focus to the stabilization of the SP-SEIG. A particular voltage build-up

phenomenon is also experimentally verified to validate the proposed analytical approach in this paper.
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1. Introduction

The stability of electrical machines is an important factor for consideration and is directly affected by many

design parameters during steady-state operation. The first overall scenario on the stability of AC machines

was developed in 1965 using the root locus technique [1]. The instability of the induction motor, which is

fed by the frequency inverter, was analyzed in [2]. Other works [3–8] analyzed an induction motor drive with

different schemes of rectifier-inverter, single cage, controlled current, current source inverter, double cage, and

voltage source inverter, using Nyquist stability criterion, root-locus technique, transfer function technique, a

linearized small signal model, decoupled boundary layer model, and Lyapunov’s first method, respectively. All

these works only analyzed the three-phase induction motor drive, taking into account different schemes and

using the proposed techniques.

In the final years of the past decade, limited literature was available on the dynamic stability of isolated

three-phase induction generators [9,10]. These works are insufficient compared with the well-documented three-

phase induction motor, as discussed above. The work in [9] dealt with the steady-state analysis of the three-

phase isolated induction generator feeding an induction motor (IM) load using the predictor-corrector-type

continuation method. Eigenvalue analysis was also used to examine the stability of the induction generator. On

the other hand, the phase-plane plot, eigenvalue, and root-locus techniques were used to analyze the dynamic

stability of the two parallel operated autonomous induction generators supplying an induction motor with long-

shunt compensation in [10]. In [11–13], the stability of the three-phase synchronous machine was examined by

using small signal analysis, Nyquist stability criteria, and the root-locus technique, respectively.

To the best of our knowledge, the stability analysis of the three-phase AC machine has been carried out
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in detail in the aforementioned literature. Such analysis was not developed for multiphase AC machines until

2002. The stability issue using small-signal analysis of a multiphase machine was recognized first by Singh et al.

[14] in 2003, followed by Duran et al. in 2008 [15] and Singh et al. in 2014 [16]. The authors in [14] analyzed the

stability of a six-phase induction machine, considering the effect of common mutual leakage reactance between

the two three-phase stator winding sets and supply harmonics. Conversely, [15] and [16] analyzed a five-phase

motor with an injection of third harmonics and a six-phase synchronous generator connected to the utility grid,

respectively. Such analysis contains no evidence for six-phase induction generators in isolated mode.

Small signal analysis with an eigenvalue approach focuses on a simple, stable, and successful operation

under any balanced operating condition during small excursion behavior of a machine. Eigenvalue analysis is

also employed to determine the critical operating conditions of the studied machine. In this paper, a linearized

model of a six-phase isolated generator in d-q variables in a synchronously rotating reference frame is developed

from the voltage equations of a multiphase induction machine [17]. In the present analysis, an eleventh-order

linearized model for the SP-SEIG is developed for the dynamic stability analysis. The stability is investigated

under perturbation of any one variable from the placement of the eigenvalues of the machine. In this linearized

model, the effects of common mutual leakage inductance (L lm) on two three-phase winding sets and cross-

saturation coupling (L ldq) between the d- and q-axis of the individual stator have not been considered in order

to avoid the complexity of the solution. This analysis also presents the effect of magnetizing inductance during

the process of self-excitation and finds that speed plays an important role, which is necessary for initiating

and sustaining the self-excitation process in an isolated SP-SEIG for a given value of capacitance and load.

Magnetizing inductance (Lm) also plays an important role in the dynamics of voltage build-up and stabilization

of the SP-SEIG.

2. Fundamental modeling of SP-SEIG

2.1. Modeling of stator dynamics

An AC machine can have as many phases as coils per pole pair. Generally, all three-phase machines are

designed with 60◦ phase belts, but sometimes these machines are also wound with 120◦ phase belts. A three-

phase machine can be easily converted to six-phase by ‘splitting’ the 60◦ phase belts into two portions, each

spanning 30◦ , without any additional cost. The detailed design of a six-phase machine was given in [17].

The equivalent circuit of the SP-SEIG is shown in = 1. The voltage and electromagnetic torque equations

can be elaborated in the form of machine variables (the current is selected as an independent variable) for a six-

phase induction generator in an arbitrary reference frame [18] by using Park’s transformation, which converts the

nonlinear differential equations with time-dependent inductance terms (three-phase axis model) into simplified

equations with constant inductance terms (two-phase axis model):

V1q= −r1iq1+pψd1+pψq1; (1)

V1d= −r1id1−pψq1+pψd1; (2)

V2q= −r2iq2+pψd2+pψq2; (3)

V2d= −r2id2−pψq2+pψd2; (4)
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Figure 1. Equivalent circuit of SP-SEIG in dq axis.

V ′
rq=r

′
ri

′
qr+(p−pr)ψ′

dr+pψ
′
qr; (5)

V ′
rd=r

′
ri

′
dr− (p−pr)ψ

′

qr+pψ
′

dr; (6)

ψq1= −Ll1iq1+ψqm;ψd1= −Ll1id1+ψdm;ψq2= −Ll2iq2+ψqm; (7)

ψd2= −Ll2id2+ψdm;ψ′
qr= −L

′

lri
′

qr+ψqm;ψ′
dr= −L′

lri
′
dr+ψdm; (8)

where:

ψdm=Ldmidm;ψqm=Lqmiqm; idm= −id1−id2+i′dr; iqm= −iq1−iq2+i
′

qr

Simplifying Eqs. (1)–(6) by using Eqs. (7) and (8), they can be rewritten as follows.

V1d= −r1id1+p(Ll1+Ldm)iq1+pLqmiq2−pLqmi
′
qr−p(Ll1+Ldm)id1−pLdmid2+pLdmi

′
dr (9)

V1q= −r1iq1−p(Ll1+Ldm)id1−pLdmid2+pLdmi
′
dr−p(Ll1+Lqm)iq1−pLqmiq2+pLqmi

′
qr (10)

V2d= −r2id2+p(Ll2+Lqm)iq2+pLqmiq1−pLqmi
′
qr−p(Ll2+Ldm)id2−pLdmid1 + pLdmi

′
dr (11)

V2q= −r2iq2−p(Ll2+Ldm)id2−pLdmid1+pLdmi
′

dr−p(Ll2+Lqm)iq2−pLqmiq1+pLqmi
′
qr (12)

In the induction machine, rotor windings are short-circuited, and hence V ′
rd = V ′

rq= 0.

0 =r′ri
′
qr+(p−pr) (L′

lr+Ldm)i′dr−(p−pr)Ldmid1−(p−pr)Ldmid2+p(L
′

lr+Lqm)i
′

qr−pLqmiq1−pLqmiq2 (13)

0 =r′ri
′
dr− (p−pr) (L′

lr+Lqm)i′qr+(p−pr)Lqmiq1+(p−pr)Lqmiq2+p(L
′
lr+Ldm)i′dr−pLdmid1−pLdmid2 (14)
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For uniform air gap length, Ldm = Lqm = Lm , the equation for Lm was given in [17]:

Lm= 0.0002i3m−0.004i2m+0.019im+0.1031, (15)

im=

√
[(−id1−id2+i′dr)2+(−iq1−iq2+i′qr)2]. (16)

2.2. Modeling of shunt excitation capacitor bank and load

The mathematical modeling of both sets of the shunt excitation capacitor bank, connected in parallel with pure

resistive loads, can be written in the (dq0 ) axis [18] as shown below.

pV1d=(i1dc/C1) + pV1q (17)

pV1q=(i1qc/C1)−pV1d (18)

pV2d=(i2dc/C2) + pV2q (19)

pV2q=(i2qc/C2)−pV2d (20)

According to Kirchhoff’s current law, the current equations at the excitation shunt capacitor terminals respec-

tively are given as:

i1dc=id1−i1dL; i1qc=iq1−i1qL; i2dc=id2−i2dL; i2qc=iq2−i2qL; (21)

i1dc=C1pV1d; i1qc=C1pV1q; i2dc=C2pV2d; i2qc=C2pV2q. (22)

If a pure resistive load is considered across the terminal of the generator, the load current equations can be

given by:

i1dL=V1d/R1; i1qL=V1q/R1; i2dL=V2d/R2; i2qL=V2q/R2. (23)

Hence, with pure resistive load, the q- and d-axis voltage equations can be modified as follows.

pV1d= (id1/C1)− (V1d/R1C1) + pV1q (24)

pV1q=(iq1/C1)−(V1q/R1C1)− pV1d (25)

pV2d=(id2/C2)−(V2d/R2C2) + pV2q (26)

pV2q=(iq2/C2)−(V2q/R2C2)− pV2d (27)

2.3. Modeling of torque and rotor dynamics

The electromagnetic torque and rotor speed of the SP-SEIG can be expressed in terms of selected state-space

variables as:

Te=(3/2) (P/2) (Lm/Lr) [(iq1+iq2)Ψ
′
dr− (id1+id2)Ψ

′
qr] , (28)

ωr=(1/p) (P/2) (1/J) (Te−Tm) , (29)

where Te is electromagnetic torque, Tm... is mechanical input torque, andLr= L′
lr+Lm .
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After combining Eqs. (9)–(14) and Eqs. (24)–(29), it is convenient to write the system equations in a

synchronously rotating reference frame by setting ω = ωe and rewrite them in matrix form as given in Eq. (30).

All other symbols used are explained in Table 1.

Table 1. Nomenclature.

Symbols Description Symbols Description
V1d, V1q d-q axis voltage of winding set I ωe Synchronously rotating reference frame

speed
V2d, V2q d-q axis voltage of winding set II θr Electrical angular displacement of the

rotor
V ′

rd, V
′
rq d-q axis rotor voltage referred to stator r1 , r2 Stator resistance per phase of stator

sets I and II
ψd1ψq1 d -q axis flux linkage per second of

winding set I
r′r Rotor resistance per phase referred to

stator

ψd2, ψq2 d -q axis flux linkage per second of
winding set II

L
l1
, Ll2 Stator leakage inductance per phase of

stator sets I and II
ψ′

dr, ψ
′
qr d-q axis rotor flux linkage per second

referred to stator
L′
lr Rotor leakage inductance per phase re-

ferred to stator
id1, iq1 d-q axis current of winding set I Lm Steady-state saturated magnetizing in-

ductance
id2, iq2 d-q axis current of winding set II i

1dc
, i1qc d-q axis current through shunt capaci-

tor across winding set I
i′dr, i

′
qr d-q axis rotor current referred to stator i

2dc
, i

2qc
d-q axis current through shunt capaci-
tor across winding set II

P Number of poles i1dL, i
1qL

d-q axis current along resistive load
across winding set I

J Moment of inertia i
2dL
, i

2qL
d-q axis current along resistive load
across winding set II

ω Speed of the reference frame C
1
, C2 Shunt capacitor per phase along stator

sets I and II
ωr Rotor speed R1, R2 Resistive load per phase along stator

sets I and II

3. Development of linearized SP-SEIG model

The behavior of induction machines is nonlinear, so there is a need for linearization of these nonlinear equations

and for rewriting them in state variable form for further analysis. The procedure involved in the linearization

of nonlinear differential equations of the SP-SEIG has included the assumptions for small displacement. First,

the product terms of two or more deviations must be neglected. Second, flux levels have little variation for

keeping the inductance terms constant. In the process of linearization, initially each variable is replaced by

its value, and then both the assumptions are applied for simplifying the linearized differential equations. In

this way, small-displacement linear equations are developed from a fixed operating point. The linear differential

equations of the SP-SEIG are given in Eq. (31). The linearized machine equations are conveniently derived from

the voltage equations with currents as state variables under steady-state balanced conditions. This selection is

generally determined by a particular application.

The resulting set of differential equations are linear with regard to small disturbances.
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where,

p1=(((3P )/4) (Lm/(Lm+L′lr)))
p2=(((3P )/4) (Lm/(Lm+L′lr)))

Eq. (32) in the state space form is written as:

Apx = Bx+ u (32)

where x =
[
id1 iq1 id2 iq2 i′dr i′qr V1d V1q V2d V2q ωr

]T
,

u =
[
0 0 0 0 V ′

rd V ′
rq 0 0 0 0 Tm

]T
, and A and B are given by Eqs. (33) and (34).
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and the subscript ‘0’ denotes steady-state values.

It is also suitable to indicate Eq. (32) in the elementary form of a linear differential equation (state

equation). This standard state equation can be written as:

px = A−1Bx+A−1u (35)

where

E = A−1B (36)

F = A−1 (37)

The linear differential equations written in standard or state variable form in Eq. (35) can be rewritten as:

px = Ex+ Fu (38)

where u is the input vector, and if it is equal to zero, the solution of linear differential Eq. (35) can be given by

Eq. (39). The characteristic equation of A is determined by Eq. (40) from [18]:

x = KeAt (39)

and
det (A− ζI) = 0 (40)

where roots ζ of Eq. (40) are referred to as eigenvalues, characteristic roots, or latent roots, and I is an identity

matrix.

4. Eigenvalue analysis of small signal

Eigenvalues allow a direct and effective approach for stability analysis of the SP-SEIG at any small displacement.

These are either real or complex values obtained from the characteristic equation of the studied system. Real

values correlate with the nonoscillatory mode of the state variables. Positive and negative real values indicate

a periodic instability and a decaying mode, respectively. However, when they are complex, they occur as a

pair of complex-conjugate eigenvalues that signifies a mode of oscillation of the state variables. The real part

of the complex-conjugate eigenvalue corresponds to damping, whereas the imaginary part corresponds to the
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frequency of oscillations. Real parts may be either positive or negative. Positive values indicate an exponential

increase with time (an unstable condition), and negative values indicate an exponential decrease with time (a

stable condition). Basic linear system theory can be used to calculate the eigenvalues [1,3,4,18–22].

The eigenvalues of the SP-SEIG can be obtained by using the standard eigenvalue computer routine. To

calculate the roots of matrix [E] given by Eq. (40), i.e. the eigenvalues of the SP-SEIG, a computer program

has been developed from Eq. (39). The eleven state variables contribute to a set of eleven eigenvalues. The

sets of eigenvalues are given in Table 2 for small displacement at three different equilibrium points (different

rotor speeds). It is also important to consider the saturation effect in the SP-SEIG in order to express the

nonlinear nature of magnetizing reactance. The nonlinear characteristic relating magnetizing inductance (Lm)

to magnetizing current (Im) is determined by standard experimental tests. During self-excitation, variation

in the value of magnetizing inductance due to saturation is the main factor in dynamics of voltage build and

stabilization. The transient response of unstable voltage points of the SP-SEIG is shown in Figure 2a. No load

voltage is shown in Figures 2b and 2c. The effect of magnetizing inductance in self-excitation with speed is

shown in Figure 2d when both the winding sets are connected to 38.5 µF. The experimental setup (Figure 3)

is arranged in an electrical lab of the Alternate Hydro Energy Center, Indian Institute of Technology Roorkee,

Roorkee, Uttarakhand, India. The machine parameters (per phase) are also given in Table 3. At stall, one of

the eigenvalues of the studied system has zero real part, and hence the self-excitation of the studied system will

be initiated. When the speed increases from stall to a rated (no load) speed from their respective columns 1 to 2

(3), one of the eigenvalues has a positive real part, as given in Table 2, and tends to sustainable self-excitation.

In the following ways, variations of eigenvalues have been determined to analyze the study of stability by varying

the minimum shunt capacitance, (varying machine parameters, and varying system loading.

4.1. Effect of shunt capacitance required for self-excitation

The minimum capacitance required for self-excitation can be determined by any scheme as given in [22,23]. As

in [22], the value of the minimum capacitance depends on the eigenvalues of system matrix A, whereas in [23], it

Table 2. Eigenvalues (rad/s) of the studied system under no load.

Eigenvalues
(rad/s)

Significance
of
eigenvalues

Stall
Nr= 0 rpm
id1 = 0
id2 = id1
iq1 = 0
iq2 = iq1
idr = 0
iqr = idr

Synchronous speed
Nr= 1137.34 rpm
id1 = 3.9514
id2 = id1
iq1 = –3.9514
iq2 = iq1
idr = 0.4903
iqr = idr

Rated speed
Nr= 1132.691 rpm
id1 = 4.012
id2 = id1
iq1 = –4.012
iq2 = iq1
idr = 0.4950
iqr = idr

I
Stator eigenvalues

–17.514 ± 1162.647i –17.531 ± 1163.055i –17.668 ± 1163.107i

II –166.646 ± 902.778i –154.239 ± 899.185i –154.397 ± 900.421i

III Rotor eigenvalue –11.557 ± 651.911i –43.835 ± 633.862i –43.512 ± 634.491i

IV Capacitor –23.199 ± 321.009i –76.018 ± 317.838i –77.0425 ± 323.389i

V eigenvalues –187.058 ± 295.855i –119.147 ± 38.866i –118.449 ± 37.272i

VI Real eigenvalue 0.000 + 0.000i 9.590 + 0.000i 9.925 + 0.000i
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(a) (b)

(c)                                                                             (d)

Time (s)Time (s)

Figure 2. Transient response of: (a) unstable points from column 1 of Tables 4 and 5, (b) simulated no-load terminal

voltage, (c) experimental no-load terminal voltage, and (d) relation between magnetizing inductance (Lm) and no-load

machine speed.

Figure 3. Laboratory set-up with stator winding arrangement.

depends on the optimization constraints so as to achieve better performance. A minimum value of capacitance

(38.5 µF) is determined by the magnitude and nature of the eigenvalue. When one of the eigenvalues has zero

real part, as illustrated in Table 2, the self-excitation phenomenon has been initiated. In Tables 4 and 5, efforts

are made to examine the magnitude and nature of all eigenvalues w.r.t. the minimum value of capacitance and

rated frequency. This effort shows the effects of the other values of capacitance moving from the first to last

column of Tables 4 and 5. There are abrupt variations in the imaginary parts and/or the rated frequency of
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stator eigenvalues. These variations of eigenvalues are tabulated in Tables 4 and 5 at no-load on synchronous

speed and rated speed, respectively. In Tables 4 and 5, when the movement is from column 1 to 3, the frequency

of stator eigenvalue IV starts increasing. This corresponds to unstable operation, as shown already in Figure

2a.

Table 3. Parameters of a 1.1-kW, 36-slot, 6-pole, 6-phase, 415-V, 2.9-A, 50-Hz, and 960-RPM squirrel cage induction

machine.

Measured parameters Value/phase Measured parameters Value/phase
Stator resistance r1, r2 4.12 Ω Rotor leakage inductance Llr 43.3 mH
Stator leakage inductance Ll1, Ll2 21.6 mH Magnetizing inductance Lm 234.6 mH
Rotor resistance rr 8.79 Ω Self-excitation capacitance C1, C2 38.5 µF

Table 4. Comparison of eigenvalues from Cmin to higher C at synchronous speed.

id1 = 3.9514
id2 = id1
iq1 = –3.9514
iq2 = iq1
idr = 0.4903
iqr = idr
Nr = 1137.34
Cmin= 38.5 µF

id1 = 3.313
id2 = id1
iq1 = –3.313
iq2 = iq1
idr = 0.5884
iqr = idr
Nr = 812.6
C1= C2= 78.5 µF

id1 = 2.883
id2 = id1
iq1 = –2.883
iq2 = iq1
idr = 0.6082
iqr = idr
Nr = 650
C1= C2= 118.5 µF

–17.668 ± 1163.109i –13.691 ± 848.215i –12.172 ± 715.445i

–154.343 ± 900.412i
–614.831 + 0.000i –747.475 + 0.000i
281.735 + 0.000i 408.278 + 0.000i

–43.733 ± 634.411i –132.102 ± 605.217i –122.182 ± 503.961i
–77.094 ± 323.471i –26.153 ± 496.442i –19.460 ± 442.395i
–118.033 ± 39.439i –73.278 ± 59.517i –85.917 ± 119.507i
9.532 + 0.000i 11.334 + 0.000i 6.447 + 0.000i

4.2. Effect of machine parameters

The variation of eigenvalues with machine parameters has also been determined. These parameters are stator

resistance, rotor resistance, stator leakage inductance, rotor leakage inductance, magnetizing inductance, and

inertia constant. The most critical parameter is the variation of magnetizing inductance (Lm) in the dynamics

of voltage build-up and stabilization of the SP-SEIG. With the change in magnetizing inductance, all eigenvalues

are slightly affected, as shown in Figure 4.

4.3. Effect of system loading

The effects of resistive loading, for a fixed excitation/fixed reactive power, on the rotor eigenvalues are depicted

in Table 6 for rated speed and synchronous speed. According to the real eigenvalues presented in Table 6, the

studied system is moving from an unstable point (column 1) to a stable point (columns 2 to 3). This means

that machine operation tends to be more stable. When real eigenvalues are negative, self-excitation cannot

be initiated and/or cannot be sustained, as shown in Figure 2a. On the contrary, when real eigenvalues are

positive, self-excitation will be initiated and sustained, as shown in Figures 2b and 2c. In Figure 2a, voltage

generation is initiated, but after a very short time period it dies out. Figures 2b and 2c depict the analytical

and experimental waveforms of terminal voltage and the current of a system at no-load speed of 1000 RPM,

4227



SINGH and SINGH/Turk J Elec Eng & Comp Sci

Table 5. Comparison of eigenvalues from Cmin to higher C at rated speed.

id1 = 4.012
id2 = id1
iq1 = –4.012
iq2 = iq1
idr = 0.4950
iqr = idr
Nr = 1132.69
Cmin= 38.5 µF

id1 = 3.394
id2 = id1
iq1 = –3.394
iq2 = iq1
idr = 0.6059
iqr = idr
Nr = 815.686
C1= C2= 78.5 µF

id1 = 2.97
id2 = id1
iq1 = –2.97
iq2 = iq1
idr = 0.495
iqr = idr
Nr = 657.2
C1= C2= 118.5 µF

–17.668 ± 1163.107i –13.692 ± 848.216i –12.172 ± 715.455i

–154.397 ± 900.421i
–614.811 + 0.000i –747.328 + 0.000i
281.727 + 0.000i 408.512 + 0.000i

–43.512 ± 634.491i –132.065 ± 605.217i –121.898± 503.966
–77.042 ± 323.389i –26.171 ± 496.406i –19.613 ± 442.336i
–118.449 ± 37.272i –73.611 ± 58.481i –86.202 ± 116.908i
9.925 + 0.000i 11.952 + 0.000i 6.377 + 0.000i
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Figure 4. Eigenvalue variations with small perturbation in magnetizing inductance.

respectively. Once the voltage has been established, the stability around the equilibrium point can be evaluated

when the studied system is referred to a reference rotating frame. Table 2 shows the system eigenvalues for three

different equilibrium points with no load. Table 6 shows the system eigenvalues under six different equilibrium

points for the system with load.

5. Conclusion

Stability studies of the SP-SEIG are developed by using a simple method based on eigenvalue analysis. Eigenval-

ues play an important role in the selection of minimum capacitance required for self-excitation and the condition

at which excitation will be initiated and sustained. When one of the eigenvalues has zero real part, it gives the

minimum capacitance value to initiate the self-excitation of the machine, and when one of the eigenvalues has

a positive real part, self-excitation will be initiated and sustained. From the analysis, it is demonstrated that
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all the eigenvalues are affected by the change in magnetizing inductance (Lm), and this shows that the most

critical parameter is a small perturbation in magnetizing inductance (Lm) in the dynamics of the SP-SEIG.
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