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Abstract: Despite many advantages, parallel manipulators are known to possess drive singularities where the control

of one or more degrees of freedom is lost. Around these singular configurations, the required actuator forces grow

unbounded. Previous efforts in the literature put forward singularity-consistent trajectory planning and singularity-

robust modification of the dynamic equations as a solution to this problem. However, this previous method is applicable

only for the open-loop operation of the manipulator, whereas initial configuration errors, external disturbances, and

modeling errors should necessarily be taken into account in a closed-loop sense in real-life applications. With this aim, a

switching inverse dynamics controller is proposed in this study for the trajectory tracking control of parallel manipulators

as they pass through drive singular configurations. Simulations of the application of the developed controller result in

good tracking performance, even in the presence of modeling errors, while the actuator efforts remain bounded and

continuous in the neighborhood of the singularity.
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1. Introduction

When compared to conventional robotic arms, parallel manipulators offer definite advantages due to their

closed-loop architecture, such as faster and more precise positioning ability, higher load-carrying capacity, and

higher end-effector accelerations. However, their closed-loop structure also results in their main weakness: drive

singularities encountered during their inverse dynamics solution, around which the required actuator forces tend

to infinity, and hence the desired trajectory becomes impossible to accomplish by the manipulator.

Gosselin and Angeles [1] performed a detailed analysis of the singularities of closed-loop kinematic chains,

and showed that this type of singularities characteristically arises inside the workspace, as opposed to the

singularities that are encountered during the inverse kinematics solutions. For this reason, the usable workspace

of parallel manipulators is dramatically small. Therefore, although not controllable at drive singularities [2], it

is needed to develop methods for moving parallel manipulators through these positions in a controllable manner.

Özgören [3] studied the trajectory tracking control of closed-loop kinematic chains, and proposed a control

approach that allows a deviation from the desired trajectory around drive singularities. Jui and Sun [4] devised

a method to overcome the problem of unbounded actuator forces at a drive singularity by relaxing the timing

of the path.

Ider [5,6] showed that a parallel manipulator can pass through its drive singular configurations while the
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required actuator forces remain finite if the trajectory is planned such that its dynamic equations of motion

are consistent at these singularities. He further showed that the dynamic equations can be modified to avoid

ill-conditioning in their neighborhood.

Briot and Arakelian [7] studied the dynamical interpretation of the necessary conditions for parallel

manipulators to pass through drive singularities, and derived also the associated conditions for rigid-link flexible-

joint [8] and flexible-link [9] cases.

However, the suggested technique of modification of the dynamic equations of motion to obtain a full-

rank system following a singularity-consistent planning of the desired trajectory considered the operation of the

manipulator in an open-loop sense, and thus does not take into account initial configuration errors, external

disturbances, and modeling errors that are inevitable in real-life applications. With this aim, a switching

inverse dynamics controller is proposed in this study for the trajectory tracking control problem of parallel

manipulators passing through drive singularities. While the conventional inverse dynamics controller is used at

configurations away from singular positions, a new inverse dynamics control law is developed to be switched in

their neighborhoods, based on the “consistency conditions” and the “modified equations” of Ref. [5], in order to

avoid the control inputs becoming unbounded. As a numerical example, a 3 degree of freedom RPR-RPR planar

parallel manipulator is considered, and the derived control law is tested in the presence of initial positioning

errors and modeling errors.

2. Preliminary formulations

Consider an n degree of freedom nonredundant parallel manipulator. Let m denote the degrees of freedom

of the open-tree structure obtained by virtually disconnecting a sufficient number of unactuated joints of the

robot. Without loss of generality, the joint variables vector can be arranged as qT =
[
qa

T

qu
T
]
, where

qa =
[
q1 · · · qn

]T
is the vector of the joint variables of the actuated joints and qu =

[
qn+1 · · · qm

]T
is the vector of the joint variables of the unactuated joints. The (m− n) velocity-level loop-closure constraints

can be written as
Φq̇ = 0(m−n)×1, (1)

where Φ = Φ (q) is the (m− n) × m constraint Jacobian matrix, and q̇ is the m-dimensional vector of the

joint velocities.

The equations of motion of the parallel manipulator can be obtained in terms of the joint variables q

and the generalized constraint forces as

Mq̈ +B =

[
τ
0(m−n)×1

]
+ΦTλ (2)

where M (q) is the m×m generalized inertia matrix of the open-tree structure, which is known to be positive-

definite, i.e. nonsingular [10], B (q, q̇) is the m -dimensional vector combining the nonlinear terms, λ is the

(m− n)-dimensional vector of constraint reaction forces, τ is the n-dimensional vector of actuator forces, and

q̈ is the m -dimensional vector of the joint accelerations.

In order to eliminate the intermediate variables and to obtain the input–output relation, the matrices

M , B , and Φ are partitioned as follows:

M =

[
Ma

n×m

Mu
(m−n)×m

]
(3)
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B =

[
Ba

n×1

Bu
(m−n)×1

]
(4)

Φ =
[
Φa

(m−n)×n Φu
(m−n)×(m−n)

]
, (5)

where the superscripts a and u denote the partitions associated with the actuated and unactuated joints,

respectively, and the sizes of the matrices and the vectors are shown as subscripts. In terms of the above

partitions, Eq. (2) can be divided into the following two equations:

τ = Maq̈ +Ba − (Φa)
T
λ (6)

(Φu)
T
λ = Muq̈ +Bu (7)

At a drive singularity, Φu is singular. When Φu is nonsingular, λ is obtained as

λ =
[
(Φu)

T
]−1

(Muq̈ +Bu) (8)

τ can then be determined substituting this expression into Eq. (6):

τ = M′q̈ +B′ (9)

where the n×m matrix M′ is

M′ = Ma − (Φa)
T
[
(Φu)

T
]−1

Mu (10)

and the n -dimensional vector B′ is

B′ = Ba − (Φa)
T
[
(Φu)

T
]−1

Bu (11)

The task equations at velocity-level can be expressed as

ψq̇ = ẋ, (12)

where x =
[
x1 · · · xn

]T
denotes the task-space coordinates of the end-effector, and ψ = ψ (q) is the

n×m Jacobian matrix of the task equations. Combining the time derivatives of Eqs. (1) and (12), one obtains

[5,6]

Γq̈ = −Γ̇q̇ +

[
0(m−n)×1

ẍ

]
, (13)

where the m×m matrix Γ = Γ (q) is defined as

Γ =

[
Φ
ψ

]
(14)

As long as Γ is nonsingular, one can solve Eq. (13) for q̈ . The singularity of the matrix Γ , on the other

hand, corresponds to the inverse kinematic singularities [5,6]. In the present study, the desired trajectory is
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assumed to be such that no inverse kinematic singularity is encountered during its realization, i.e. Γ is always

invertible. This assumption does not yield any loss in the practical applicability of the formulations given here,

since inverse kinematic singularities are encountered in general at the boundaries of the workspace only [1]. Eq.

(13) can then be solved for q̈ as

q̈ = Γ−1

(
−Γ̇q̇ +

[
0(m−n)×1

ẍ

])
(15)

Substituting Eq. (15) into Eq. (9), one obtains

τ = M∗
[

0(m−n)×1

ẍ

]
+B∗, (16)

where the n×m matrix M∗ is

M∗ = M′Γ−1 (17)

and the n -dimensional vector B∗ is

B∗ = B′ −M′Γ−1Γ̇q̇ (18)

In Eq. (16), all of the elements in the first m− n columns of the matrix M∗ are multiplied by zero. This fact

suggests utilizing a partitioning of the matrix M∗ as follows:

M∗ =
[
M∗G

n×(m−n) M∗P

n×n

]
(19)

Based on this partitioning, the relation between the input τ and the output x can be obtained in the following

form:

τ = M∗P

ẍ+B∗ (20)

An inverse dynamics control law can then be formulated via Eq. (20) to be used outside the neighborhood of

drive singularities. In the control law, command accelerations u have to be specified. For example, using PD

control, u can be generated as

u = ẍd +C1

(
ẋd − ẋ

)
+C2

(
xd − x

)
, (21)

where superscript d denotes desired values and C1 and C2 are constant feedback gain diagonal matrices. Then

τ can be computed through Eq. (20) as

τ = M∗P

u+B∗ (22)

The invertibility of the M∗P

matrix appearing in the control law should also be investigated. Under the

assumption of no inverse kinematic singularity, the Γ matrix, and hence the Φ matrix, has always full rank.

Thus, the constraint equations are always linearly independent. In this case, the existence and uniqueness

of a forward dynamic solution, ẍ , of the constrained manipulator are guaranteed for a given τ [11,12]. In

this paper, to obtain the relation between the input τ and the output ẍ , i.e. Eq. (20), the intermediate

variables (λ and q̈) are eliminated outside the neighborhoods of drive singularities (Φu is nonsingular) under

the assumption of no inverse kinematic singularity (Γ is nonsingular). Since singularity of the M∗P

matrix

would violate the existence and uniqueness of ẍ in Eq. (20) for a given τ , one can conclude that the M∗P
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matrix is always nonsingular outside the neighborhoods of drive singularities under the assumption of no inverse

kinematic singularity.

Hence, in the absence of modeling errors and disturbances, the application of the actuator forces given

by Eq. (22) results in actual accelerations equal to the command accelerations, i.e.

ẍ = u (23)

As a result, Eqs. (21) and (23) lead to the following error equation:

ë+C1ė+C2e = 0n×1, (24)

where e = xd − x , and ẋd and ẍd are the desired velocity and acceleration profiles of the end-effector,

respectively.

The form of the error dynamics will depend on the selection of C1 and C2 . Based on this error equation,

the feedback gain matrices can be selected appropriately to ensure asymptotic stability.

At this point, it will be useful to discuss also the effects of the modeling errors and disturbances on the

error dynamics. For this purpose, let the estimates of the actual M∗P

matrix and the actual B∗ vector used in

the dynamic model be denoted by M∗P

model and B∗
model , respectively, and let the external disturbances acting

on the system be represented by an n -dimensional vector D (t). Hence, the application of the control torque

and forces computed through the inverse dynamics control law results in the following equation:

M∗P

modelu+B∗
model = M∗P

ẍ+B∗ +D (25)

By rearranging Eq. (25), one can express the governing error dynamics in such a case as

ë+C1ė+C2e = ε, (26)

where the n-dimensional vector ε is given by

ε =
(
M∗P

model

)−1 (
∆M∗P

ẍ+∆B∗ +D
)

(27)

Here

∆M∗P

= M∗P

−M∗P

model (28)

and

∆B∗ = B∗ −B∗
model (29)

Asymptotic stability of the system can be achieved by selecting the diagonal feedback gain matrices simply as

C1 = diag ([2ζ1ω1, 2ζ2ω2, · · · , 2ζnωn]) (30)

and

C2 = diag
([
ω2
1 , ω

2
2 , · · · , ω2

n

])
, (31)

where ωi and ζi (i = 1, 2, · · · , n) are all positive constants. Hence, by choosing ωi large enough for all i , e can

be reduced. This is because in a practical situation ε varies much more slowly, i.e. it is almost constant, with
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respect to a sinusoidal function even for the smallest one of the ωi ’s. Therefore, after the transient phase, the

error converges to the value ē given below, which gets smaller as the elements of C2 , i.e. ωi ’s, are increased:

ē = (C2)
−1
ε (32)

It is also concluded in Ref. [13] that, in the presence of modeling errors, inverse dynamics control can be quite

good if the feedback gains are selected large enough.

As a last note, before moving on to the next section, it should be recalled that when |Φu| = 0, drive

singularities occur, in the vicinity of which the required actuator forces in general diverge to infinity [3,5], and

hence the actuators unavoidably saturate during the realization of the conventional inverse dynamics control

law. To remedy this, a new inverse dynamics control law is proposed in the next section.

3. Proposed control law

The “consistency conditions” that the desired trajectory should satisfy at drive singularities in order to be

realizable by the manipulator and the “modified equations” to be used to replace the linearly dependent

equations of motion in the neighborhood of these singularities to prevent ill-conditioned inverse dynamics

solution were previously derived in Ref. [5] by considering the combined coefficient matrix of the actuator

forces and the constraint forces. However, as should be apparent from Eq. (7), the rank deficiency of Φu in

this equation system is solely responsible for any drive singular configuration encountered. For this reason,

by following derivation steps similar to those of Ref. [5], i.e. by differentiating Eq. (7) and expressing the

linear dependency relations among the rows of the (Φu)
T

matrix at the singular configuration as ΦuT

skj
=

m−n∑
p=1,(p̸=sk)

αkpΦ
uT

pj , j = 1, · · · ,m − n , k = 1, · · · ,m − n − r , the “modified equations” can be revised as given

below, and these revised equations can be used to replace the linearly dependent rows of the matrix Eq. (7) in

the neighborhood of drive singularities for avoidance of ill-conditioning.

m−n∑
j=1

[
Φ̇uT

skj
−

m−n∑
p=1,(p ̸=sk)

(
αkpΦ̇

uT

pj + α̇kpΦ
uT

pj

)]
λj =

m∑
i=1

{(
Mu

ski
−

m−n∑
p=1,(p ̸=sk)

αkpM
u
pi

)
...
q i +

[
Ṁu

ski
−

m−n∑
p=1,(p ̸=sk)

(
αkpṀ

u
pi + α̇kpM

u
pi

)]
q̈i

}
+

Ḃu
sk

−
m−n∑

p=1,(p ̸=sk)

(
αkpḂ

u
p + α̇kpB

u
p

)
, k = 1, · · · ,m− n− r

(33)

Here, similar to the notation of Ref. [5], r , sk (k = 1, · · · ,m− n− r), and αkp are used to denote the rank of

the (Φu)
T
matrix, its linearly dependent row indices, and the coefficients of the corresponding linear dependency

relations, respectively, at the singular position.

After the replacements, as described above, the resulting system of equations is

(
Φ̂u
)T
λ = N̂u...q + M̂uq̈ + B̂

u
, (34)

where
...
q denotes the vector of the joint jerks, the sk th rows (k = 1, · · · ,m− n− r) of the (m− n)×m matrix

N̂u (q) consist of the coefficients of
...
q i ’s in Eqs. (33) while its remaining r rows are zero rows. Hence, the rank
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of N̂u is m−n−r .
(
Φ̂u
)T

(q, q̇) and M̂u (q, q̇) are obtained by replacing the sk th rows (k = 1, · · · ,m− n− r)

of (Φu)
T

and Mu with the rows consisting of the coefficients of λj ’s and q̈i ’s in Eqs. (33), respectively, and

B̂
u
(q, q̇) is obtained by replacing the sk th elements (k = 1, · · · ,m− n− r) of Bu with the remaining terms

in Eqs. (33).

Eq. (34) can be employed to determine λ in the neighborhood of drive singularities, as

λ =

[(
Φ̂u
)T]−1 (

N̂u...q + M̂uq̈ + B̂
u
)
, (35)

where Φ̂u has in general full rank when the system is in motion. Then τ can be determined by substituting

Eq. (35) into Eq. (6):

τ = N̂′...q + M̂′q̈ + B̂′, (36)

where the n×m matrices N̂′ and M̂′ are

N̂′ = − (Φa)
T

[(
Φ̂u
)T]−1

N̂u (37)

M̂′ = Ma − (Φa)
T

[(
Φ̂u
)T]−1

M̂u (38)

and the n -dimensional vector B̂′ is

B̂′ = Ba − (Φa)
T

[(
Φ̂u
)T]−1

B̂
u

(39)

The rank of N̂′ is equal to the rank of N̂u , which is m− n− r .

Eq. (13) can be differentiated to obtain [5,6]

Γ
...
q = −

(
2Γ̇q̈ + Γ̈q̇

)
+

[
0(m−n)×1...
x

]
(40)

Since Γ̈ also depends on q̈ , the terms −
(
2Γ̇q̈ + Γ̈q̇

)
in Eq. (40) can be rearranged as

−
(
2Γ̇q̈ + Γ̈q̇

)
= Pq̈ +R, (41)

where P (q, q̇) is an m × m-dimensional matrix and R (q, q̇) is an m -dimensional vector. By using such a

rearrangement in terms of P and R , it is seen that the terms involving q̈ in Eq. (40) are linear in q̈ . Solving

Eq. (40) for
...
q and substituting Eqs. (15) and (41) yields

...
q = Γ−1

[
PΓ−1

(
−Γ̇q̇ +

[
0(m−n)×1

ẍ

])
+R+

[
0(m−n)×1...
x

]]
(42)
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Before proceeding, it is worth recalling that the Γ matrix can be inverted above due to the assumption of no

inverse kinematic singularity. Substitution of Eqs. (15) and (42) into Eq. (36) gives

τ = N̂∗
[

0(m−n)×1...
x

]
+ M̂∗

[
0(m−n)×1

ẍ

]
+ B̂

∗
, (43)

where the n×m matrices N̂∗ and M̂∗ are

N̂∗ = N̂′Γ−1 (44)

M̂∗ =
(
N̂′Γ−1P+ M̂′

)
Γ−1 (45)

and the n -dimensional vector B̂
∗
is

B̂
∗
= B̂′ + N̂′Γ−1

(
R−PΓ−1Γ̇q̇

)
− M̂′Γ−1Γ̇q̇ (46)

In Eq. (43), all of the elements in the first m− n columns of the matrices N̂∗ and M̂∗ are multiplied by zero.

This fact leads to a partitioning of the matrices N̂∗ and M̂∗ as

N̂∗ =
[
N̂∗G

n×(m−n) N̂∗P

n×n

]
(47)

M̂∗ =
[
M̂∗G

n×(m−n) M̂∗P

n×n

]
(48)

Based on this partitioning, the relation between the input τ and the output x can be obtained in the following

form:

τ = N̂∗P ...
x + M̂∗P

ẍ+ B̂
∗

(49)

An inverse dynamics control law can then be formulated using Eq. (49), provided that the desired trajectory

is consistent. Since the rank of N̂∗P

is less than n , in the control law, both command accelerations u and

command jerks u̇ have to be specified. u is given in Eq. (21) and u̇ is obtained by differentiating Eq. (21) as

u̇ =
...
xd +C1

(
ẍd − ẍ

)
+C2

(
ẋd − ẋ

)
, (50)

where
...
xd is the desired jerk profile of the end-effector. Then τ can be computed as below:

τ = N̂∗P

u̇+ M̂∗P

u+ B̂
∗

(51)

In the absence of modeling errors and disturbances, substitution of Eq. (51) into Eq. (49) results in

N̂∗P

η̇ + M̂∗P

η = 0n×1, (52)

where η = u − ẍ . Since Eq. (23) is valid outside the neighborhood of the drive singularity in the absence of

modeling errors and disturbances,

η (te) = 0n×1, (53)
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where te is the entrance time to the singularity neighborhood. Since the rank of the matrix N̂∗P

is less than

n (namely, m− n− r), among the n scalar equations of Eq. (52), n− (m− n− r) = 2n−m+ r of them can

be converted to algebraic equations through elementary row operations. Then, using these algebraic equations,

2n−m+r of η1, · · · , ηn can be obtained in terms of the remaining ones and these results can be used to reduce

the system of Eq. (52) by 2n −m + r unknowns and 2n −m + r equations. The reduced system is a linear

first-order system of m− n− r differential equations in the m− n− r unknowns κ1 (t) , . . . , κm−n−r (t), which

can be expressed as the initial value problem given below:

κ̇ (t) = Λ (t)κ (t) (54)

κ (te) = 0(m−n−r)×1 (55)

Since the Λ (t) matrix is a continuous function of t on the closed time interval Υ, and te is a given point in

Υ, then, according to the existence and uniqueness theorem for linear first-order systems [14], the initial value

problem has a unique solution on Υ, and obviously it is the trivial solution, i.e. κ (t) = 0(m−n−r)×1 . Hence, in

light of the relations between κ and η described above, η (t) = 0n×1 . Therefore, Eqs. (23) and (24) are still

valid inside the neighborhood of drive singularities, i.e. the application of the computed forces from Eq. (51)

linearizes and decouples the system in the absence of modeling errors and disturbances.

A block diagram of the implementation of the proposed switching inverse dynamics control law around

drive singular configurations is shown in Figure 1. The developed method can also be summarized as follows:

d
x

+
−

1 2s+C C

PD

controller 

+
+

2
s

*P

M u

u

+
+

*
B

s

τ

Conventional model 

* *ˆ ˆP P

+N Mu u +
+

*
B̂

s

x

s

Modified model 

Command accelerations 

Robot

Conventional model: outside the singularity neighborhood
Execute 

Modified model: inside the singularity neighborhood{

Figure 1. Block diagram of the proposed switching inverse dynamics controller around drive singular configurations.

τ =

{
M∗P

u+B∗, outside the neighborhood of singularity

N̂∗P

u̇+ M̂∗P

u+ B̂
∗
, inside the neighborhood of singularity

(56)
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Before concluding this section, it should be mentioned that, being different from its conventional counterpart,

acceleration information is also required in this new control law in addition to the position and velocity measure-

ments. However, as can be seen from Eq. (56), these accelerations are needed only in the neighborhood of the

singular position, and can be computed through the following procedure, instead of their direct measurement.

Rearranging Eq. (2) and differentiating Eq. (1), one can write

Mq̈ −ΦTλ =

[
τ
0(m−n)×1

]
−B (57)

Φq̈ = −Φ̇q̇ (58)

In the above equations, q and q̇ are the measured quantities, and τ is vector of the computed torques and forces

at one previous time step. Hence, Eqs. (57) and (58) constitute a linear system of 2m− n scalar equations in

2m−n unknowns, q̈ and λ . As mentioned previously, under the assumption of no inverse kinematic singularity,

q̈ can be uniquely determined from this system [11,12]. Once q̈ is solved, ẍ can be determined using Eq. (13).

It should be noted that the accuracy of the computed accelerations as described here will depend on the accuracy

of the dynamic model at hand. A similar computational approach was also used in Ref. [15] for the accelerations

required in the inverse dynamics control of flexible joint parallel manipulators.

4. Case study

A 3 degree of freedom RPR-RPR planar parallel manipulator is considered in this section, as shown in

Figure 2. Here R denotes a revolute joint, P a prismatic joint, and underlines denote the actuated joints.

This manipulator was previously considered in Ref. [6], where its inverse dynamics, singular configurations,

“consistency conditions”, and “modified equations” were given. The numerical values of the kinematic and

dynamic parameters of the manipulator, and the singularity-consistent motion used in the numerical example

of Ref. [6] are also used in the simulations of the present study as the corresponding numerical values of the

manipulator parameters given in Table 1, and as the reference (desired) motion given below for 0 ≤ t ≤ 1 s,

respectively:

xd
P (t) = 0.800 + f (t) cos

(
10

9
π

)
(59)

x

y  
P  

12J

34J  

61J

45J  

1θ

3θ  

6θ  

2S  

3S  

6S  

5S  

4S  

Gravity, g

Motor, 1T
Linear

actuator, 2F

Linear

actuator, 1F

Figure 2. A 3 degree of freedom RPR-RPR planar parallel manipulator.
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Table 1. Numerical values of the manipulator parameters (taken from Ref. [6]).

Link lengths and angular
Masses (kg)

Centroidal moments Mass center
dimensions of inertia (kg.m2) distances (m)

(m)

|J12J61| 1.0 m2 2.0 I2 0.05 |J12S2| 0.15
|J34J45| 0.4 m3 1.5 I3 0.03 |J34S3| 0.15
|J34P | 0.2 m4 1.0 I4 0.02 |J34S4| 0.20

(◦ )
∠PJ34J45 0 m5 1.5 I5 0.03 |J45S5| 0.15
∠S4J34J45 0 m6 2.0 I6 0.05 |J61S6| 0.15

ydP (t) = 0.916 + f (t) sin

(
10

9
π

)
(60)

θd3 (t) = 320◦, (61)

where

f (t) = 20.7303t2 − 87.8009t3 + 146.5637t4 − 103.6459t5 + 25.6528t6 (62)

The parallel manipulator is assumed to be initially mispositioned with (xP )0 = 0.75 m, (yP )0 = 0.900 m and

(θ3)0 = 318◦ . The control torque and forces are to be computed using Eq. (22) unless the manipulator is near

a drive singularity. However, a drive singularity arises when θ6 = θ3 − π [6], and Eq. (51) is to be switched

within the ± δ -neighborhood of this singular configuration (i.e. for |θ3 − θ6 − π| < δ [6]), where δ is a positive

constant used to define the switching condition between the two control modes.

To validate the performance of the proposed control law, a series of simulations is performed in the

MATLAB® /Simulink® environment, and the results are summarized in Table 2 [16]. In the first of these

simulations (i.e. Case 1 of Table 2), a PD controller is used to generate the command accelerations, and δ

is selected to be 0.5◦ . The constant feedback gain diagonal matrices are chosen to be in binomial form, i.e.

C1 = 2ω0I3 and C2 = ω2
0I3 , where In denotes the n×n identity matrix and ω0 is a positive constant chosen as

30 rad/s. The errors in the end-effector states, the motor torque, and the actuator forces are shown in Figures

3–6. Negligibly small steady-state errors in the end-effector states are obtained both before the entrance of

the neighborhood and towards the end of the task. The maximum task violations occurred after entering the

singularity neighborhood are 0.0002 mm in xP and yP , and 0.0001◦ in θ3 . In addition, the jumps in the

control torque and forces at the entrance and exit of the neighborhood are negligible, and hence not visible in

the associated figures. Note that, at the end of the considered motion, the desired end-effector velocities are

zero, but the desired acceleration of point P is not zero. For this reason, the actuator efforts are not close to

zero at the end of the shown simulation.

Moreover, the tracking performance is observed to be quite good even in a doubled switch region (i.e.

δ = 1◦) such that the steady-state errors in the end-effector states both before the entrance of the neighborhood

and towards the end of the task are again negligible, and the maximum task violations that occurred after

entering the singularity neighborhood are still pretty small: 0.0026 mm and 0.0031 mm in xP and in yP ,

respectively, and 0.0013◦ in θ3 (Case 2 of Table 2).

To see the effects of modeling errors, the closed-loop control system is also simulated using 5% smaller

values for the mass and inertia values in the model while all the other simulation parameters are kept the same

as in the first simulation. This corresponds to Case 3 of Table 2. The errors in the end-effector states towards
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Figure 3. Errors xP and yP in Case 1, where no mod-

eling error exists, command accelerations are generated

through a PD controller with an ω0 of 30 rad/s, and

switching is set to be in the ± 0.5◦ -neighborhood of the

drive singularity.

Figure 4. Error in θ3 in Case 1, where no modeling error

exists, command accelerations are generated through a PD

controller with an ω0 of 30 rad/s, and switching is set to

be in the ± 0.5◦ -neighborhood of the drive singularity.
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Figure 5. Motor torque, T1 , in Case 1, where no mod-

eling error exists, command accelerations are generated

through a PD controller with an ω0 of 30 rad/s, and

switching is set to be in the ± 0.5◦ -neighborhood of the

drive singularity.

Figure 6. Linear actuator forces, F1 and F2 , in Case 1,

where no modeling error exists, command accelerations are

generated through a PD controller with an ω0 of 30 rad/s,

and switching is set to be in the ± 0.5◦ -neighborhood of

the drive singularity.

the entrance of the neighborhood and towards the end of the task take almost constant values so that steady-

state can be assumed to be reached (Figures 7 and 8). Furthermore, the steady-state errors at the entrance of

the neighborhood are quite small (0.4538 mm and 0.4414 mm in xP and yP , respectively, and 0.0157◦ in θ3).

The steady-state errors towards the end of the task are also small: 1.1108 mm and 1.0543 mm in xP and yP ,

respectively, and 0.0039◦ in θ3 . The jumps in the control torque and forces at the entrance and exit of the

neighborhood are small enough not to cause large position errors (Figures 9 and 10). The tracking performance

in the presence of modeling errors can be improved with increasing ω0 . As an example of this, with ω0 increased

from 30 rad/s to 50 rad/s only, 57% to 66% reductions are achieved in all the steady-state errors and in all

the maximum task violations occurred after entering the singularity neighborhood, as can be seen in Case 4 of
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Figure 7. Errors in xP and yP in Case 3, i.e. in the

presence of 5% modeling error while the rest is the same

as in Case 1.

Figure 8. Error in θ3 in Case 3, i.e. in the presence of

5% modeling error while the rest is the same as in Case 1.
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Figure 9. Motor torque, T1 , in Case 3, i.e. in the

presence of 5% modeling error while the rest is the same

as in Case 1.

Figure 10. Linear actuator forces, F1 and F2 , in Case

3, i.e. in the presence of 5% modeling error while the rest

is the same as in Case 1.

Table 2: all the errors in xP and yP are in the order of one-tenth of a millimeter, and all the errors in θ3 are

in the order of one-thousandth of a degree. Another way of decreasing the resulting errors in the presence of

modeling errors is to add an integral action to the controller, i.e. the command accelerations are generated as

u = ẍd +K1

(
ẋd − ẋ

)
+K2

(
xd − x

)
+K3

∫ (
xd − x

)
dt, (63)

where the constant feedback gain diagonal matrices can be again chosen to be in binomial form, i.e. K1 = 3ω0I3 ,

K2 = 3ω2
0I3 , and K3 = ω3

0I3 . Then, with the same ω0 of 30 rad/s, the addition of the integral control yields

75% to 97% reductions in all the steady-state errors and in all the maximum task violations encountered after

entering the singularity neighborhood, as shown in Case 5 of Table 2: all the errors in xP and yP are at most

in the order of one-tenth of a millimeter, and all the errors in θ3 are at most in the order of one-thousandth of a

degree. Moreover, further improvements can be achieved by increasing ω0 , while using a PID controller. When
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compared to a PD controller with an ω0 of 30 rad/s, 94% to 99% reductions are accomplished in all the steady-

state errors and in all the maximum task violations encountered after entering the singularity neighborhood

by using a PID controller with an ω0 of 50 rad/s, as given in Case 6 of Table 2: all the errors in xP and

yP are at most in the order of one-hundredth of a millimeter, and all the errors in θ3 are in the order of one

ten-thousandth of a degree.

5. Discussion and conclusions

Due to the highly nonlinear and coupled nature of parallel manipulators, control strategies that are not based on

a dynamic context cannot guarantee high performance in every application [17,18] and can even become unstable

in high speed operations [17]. Therefore, owing to its linearizing and decoupling feedback loop, inverse dynamics

control is widely used for this aim; and it is also extended to handle the control of parallel manipulators with

their joint flexibilities also being taken into account, some examples of which were cited in Ref. [19]. However,

this conventional technique suffers from being ill-conditioned around drive singular configurations, and hence the

actuators will unavoidably saturate in their neighborhood. This will dramatically deteriorate the performance

of the manipulator by resulting in poor tracking. Thus, the use of the conventional inverse dynamics controller is

severely restricted in practice, due to these singularities [20], and the usable workspace of parallel manipulators

is dramatically decreased.

In this paper, a switching inverse dynamics controller is proposed for the trajectory tracking control

of parallel manipulators considering their drive singularities. For this purpose, while the conventional inverse

dynamics controller is employed outside the neighborhood of singularities, a new inverse dynamics control law

is developed to be switched around them. It should be recalled here that the desired trajectory is to be such

that the dynamic equations of motion of the manipulator are consistent at the singular configuration.

The performance of the proposed controller is tested by applying it to a 3 degree of freedom RPR-RPR

planar parallel manipulator in the presence of initial positioning errors and modeling errors. In all the cases

considered, including the cases wherein the selected size of the singularity neighborhood is doubled or modeling

errors exist, good tracking performance is obtained, while the motor torque and actuator forces are kept finite

and continuous at and near the singularity.

Similar to its conventional counterpart, the performance of this newly suggested control law also depends

on the accuracy of the dynamic model of the manipulator. However, a precise tracking of the desired trajectory

is still possible even in the presence of modeling errors and disturbances by increasing the feedback gains and/or

adding an integral action to the controller. Another alternative for handling the model uncertainties might be

to combine the inverse dynamics control law with the learning algorithms [21].

It should also be emphasized that, although acceleration information is needed for determining the control

forces in the neighborhood of the singularity, the necessity of their measurement is eliminated by the use of

the dynamic equations. Hence, position and velocity measurements of the manipulator joints are sufficient to

realize the proposed switching control law.
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Nomenclature

Symbols

B vector that includes the generalized Coriolis, centrifugal, and gravity forces
C1,C2 constant feedback gain diagonal matrices
e vector that includes the errors in the end-effector states
m degree of freedom of the open-tree structure
M generalized inertia matrix
n degree of freedom of the parallel robot

N̂u coefficient matrix of
...
q in the modified dynamic equations

q joint variable vector
P coefficient matrix of q̈ in the combined jerk-level kinematic relations
R vector of the third order velocity terms appearing in the combined jerk-level kinematic relations
t time
u command accelerations
x vector of the Cartesian end-effector variables
Γ coefficient matrix of q̈ in the combined acceleration-level kinematic relations
λ vector of Lagrange multipliers
τ vector of the actuator forces
Φ coefficient matrix of q̇ in the velocity-level loop-closure constraint equations
ψ coefficient matrix of q̇ in the velocity-level task equations

Superscripts and modifiers

a partitions associated with the actuated joints
∗ modifications associated with the coordinate transformation by the direct kinematic solution to express

the equations of motion in terms of the vector
[
01×(m−n) ẍ

]T
(and also its time derivative in the

modified dynamic equations) after λ is eliminated
d desired values
· time derivative

G partitions associated with the zero elements of the vector
[
01×(m−n) ẍ

]T
(and also its time derivative

in the modified dynamic equations)̂ modifications associated with replacing the linearly dependent dynamic equations by the “modified
equations”

−1 inverse
P partitions associated with the Cartesian end-effector variables
′ modifications associated with eliminating λ from the equations of motion
T transpose
u partitions associated with the unactuated joints
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