
Turk J Elec Eng & Comp Sci

(2016) 24: 4305 – 4321

c⃝ TÜBİTAK

doi:10.3906/elk-1403-39

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

An attribute or tuple timestamping in bitemporal relational databases

Canan ATAY∗

Department of Computer Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey

Received: 05.03.2014 • Accepted/Published Online: 04.08.2015 • Final Version: 20.06.2016

Abstract:Much of the research on bitemporal databases has focused on the modeling of time-related data with either

attribute or tuple timestamping. While the attribute-timestamping approach attaches bitemporal data to attributes, the

tuple-timestamping approach splits the object’s history into several tuples. Although there have been numerous studies

on bitemporal data models, there is no work contrasting these two common approaches in terms of system performance

and ease of use. In this paper, we compared interval-based attribute- and tuple-timestamped bitemporal data models

by running sample queries to measure processing time, and then we evaluated their usability by using the same data.

Our tests indicate that the attribute-timestamping model with one-level nested approach required less time and used

less disk space; therefore, it is more appropriate for modeling bitemporal data.

Key words: Bitemporal database, attribute timestamping, bitemporal query, model comparison, object relational

database systems

1. Introduction

Temporal database researchers have mostly focused on the description of data models to support temporal

implementation strategies, efficient temporal query evaluation, temporal data presentation, and data storage.

Although a temporal database may store the history of objects, bitemporal database systems support both

the history of objects (valid time) and database activity (transaction time). A temporal database system that

captures only the history of an object does not save the retroactive and postactive changes. The systems that

store only database activities are not capable of preserving the validity period of data values or future data.

However, bitemporal databases provide a complete history of both data values and of when those values were

changed, by associating data values with facts and by specifying when those facts were valid. In order to model

the real world accurately and completely, both time dimensions need to be considered. Auditing is exceptionally

important for certain application areas such as insurance, tax, and finance, which can profit from the support

of transactions and valid times.

The proposed temporal relational data models are categorized according to the timestamps attached and

the time dimension they support. The data that have time-related information are known as temporal data.

A timestamp is a time value associated with a data value that might be a temporal element, time interval,

or time point. Timestamps may be attached to attributes (attribute-value timestamping) or tuples (tuple

timestamping). Whereas the first approach requires nonfirst normal-form (N1NF) relations, the latter uses first

normal-form (1NF) relations.

Temporal database researchers have worked extensively for more than three decades; nevertheless, there

∗Correspondence: canan@cs.deu.edu.tr

4305

ATAY/Turk J Elec Eng & Comp Sci

is no standardized temporal database model by any organization. To the best of our knowledge, in spite of

extensive research on bitemporal data models, such as [1–6], no work has been conducted that compares these

bitemporal data models in terms of system performance and ease of use. In this paper, we will compare and

contrast interval-based attribute- and tuple-timestamped bitemporal data models by running sample queries to

measure the processing time and we will evaluate their usability using the same data for both approaches.

In the evaluation process, we consider the nested bitemporal relational data model (NBRDM) [6], with

one and two levels of nesting, and Snodgrass’s tuple-timestamping model [2]. We compare them with a set of

queries to study the performance of the three models. This paper intends to facilitate the implementation and

evaluation of bitemporal database models by presenting queries with a time component. The major factors that

have the most significant impact on system performance will be identified, and the results of the queries will be

analyzed.

The following tasks were conducted in order to resolve which approach is more appropriate for bitemporal

databases: 1) implementing three approaches in an object-relational database with the same bitemporal data;

2) introducing six plain English queries and writing them for three approaches; and 3) measuring system

performances for all three models. We note that the first approach is more appropriate for bitemporal databases

based on the following observations. Attribute timestamping with two levels of nested structure takes longer

for queries; nevertheless, one level of nested structure outperforms the tuple-timestamped method. Besides, it

is important to note that the nested structure is easier to follow, and therefore it can be preferred as a temporal

solution in real-life projects. Moreover, an attribute-timestamping method requires much less space than the

tuple-timestamping method.

The paper is organized as follows. Section 2 briefly reviews related work on bitemporal databases. Section

3 introduces interval-based attribute- and tuple-timestamped bitemporal relational data models. Section 4

presents an overview of the system implementations. Section 5 compares three approaches based on the same

queries and discusses the system performances of the data models. Section 6 concludes the paper and provides

detailed plans for future research.

2. Related work

Temporal database research has been undertaken extensively since the early 1980s. During this time, numerous

temporal extensions to the relational data model and query languages have been proposed. There are two

common approaches for extending the relational data model: tuple timestamping and attribute timestamping.

The distinction between the two lies in where the timestamps are attached. Whereas tuple timestamping uses

the 1NF relations [1,2,4,5], attribute timestamping requires N1NF relations [3,6–13].

There are three different timestamping representation methods: time point, time interval, and temporal

element. The time point references the time domain as a discrete, infinite, countable, linearly ordered set

without end points [14]. Clifford made the discreteness assumption in [12]. The time-interval schema represents

a domain as the continuous maximum time interval. TSQL2 [15] and IXQL [16] introduced interval-based

temporal data models. The temporal element is the finite unions of time intervals; examples of temporal

element-based temporal data models are ParaSQL [17] and nested relational tuple calculus [18].

A taxonomy for classifying databases in terms of valid time and transaction time was developed in [19].

According to this taxonomy, [8,12,13,20,21] are valid time (historical), [3] is a transaction time (rollback),

and [1,2,5,6,11] are bitemporal databases. Ben-Zvi proposed the first data model for bitemporal databases.

He proposed a temporal query language, indexing, synchronization, concurrency, storage architecture, and

4306

ATAY/Turk J Elec Eng & Comp Sci

its implementation [1]. Snodgrass’s temporal model supports transaction and valid times, where tuples are

timestamped with either time instants or time intervals [2]. Bhargava and Gadia attached transaction and

valid timestamps to attribute values, and relational algebra was defined for their model in [3]. Their proposed

model was one of the first to be used as an auditing database system, which also allowed queries and updates to

be restructured. The bitemporal conceptual data model (BCDM) forms the basis for the temporal structured

query language (TSQL) proposed by Jensen et al. [4]. BCDM is based on a tuple-timestamping approach

in which tuples include an implicit attribute value with an ordered pair of integers. Relations in BCDM are

in N1NF, since the timestamps associated with the tuples are time units. Therefore, only uniform tuples

are supported in BCDM. Atay and Tansel attached bitemporal data to attributes and defined a bitemporal

relational algebra as well as a bitemporal relational calculus language for bitemporal data support [6]. They also

implemented a string and abstract data-type representation of bitemporal data and developed a preprocessor for

translating a bitemporal SQL statement into standard SQL statements in [11]. Most of these implementations

use tuple timestamping; however, [20] presented a model that builds valid time support directly into an extensible

commercial object-relational database system. Chau and Chittayasothorn’s [21] model is another example of the

implementation of temporal databases on top of object-relational databases in which attribute timestamping is

used. Their model supports four different types of users, which is similar to the concept of context in [6], except

it only supports valid time.

T4SQL was proposed based on the tuple timestamping approach as a new query language in [22], which

operates in multidimensional temporal relations. It allows one to query temporal relations provided with (a

subset of) the temporal dimensions of validity, transaction, availability, and event time, according to di?erent

semantics. Although any T4SQL query can be translated into an equivalent SQL query, the corresponding SQL

queries are more complex, their size is bigger, and their execution is often quite ine?cient.

XML is also a new database model serving as a powerful tool for approaching semistructured data.

The hierarchical structure of XML provides a natural environment for the use of temporally grouped [7]

or attribute timestamping approaches. The authors in [23] showed that transaction-time, valid-time, and

bitemporal database histories can be represented in XML and queried using XQuery without requiring any

extensions of the current standards. The study in [24] presented the ArchIS system, which uses XML to support

the attribute time-stamping approach; XQuery to express powerful temporal queries, temporal clustering, and

indexing techniques for managing the actual historical data in a RDBMS; and SQL/XML for executing the

queries on the XML views as equivalent queries on the relational database. The study in [25] performed a

comparison of the various temporal XML data models that occur in the literature.

3. Bitemporal relational data models

In this section, the general concept of attribute- and tuple-timestamped models will be discussed. The NBRDM

[6] will be used for the attribute-timestamped approach, whereas Snodgrass’s proposed bitemporal model [2]

will be used for the tuple-timestamped approach.

3.1. Attribute-timestamped model

N1NF relations are used for attribute-timestamped bitemporal data models; timestamps are attached to the

attribute values. Each tuple has the object’s entire history, and each attribute stores the history of values. Only

values in a tuple that are updated have to be changed; others remain the same. All time-related attributes can

be modeled in one relation.

4307

ATAY/Turk J Elec Eng & Comp Sci

A bitemporal atom is defined as the triplet <transaction time, valid time, value> where time components

can be applied as a temporal element, a time interval, or a time point. A bitemporal atom (< [TT l , TTu),

[VT l , VTu), V>) represents:

TT l : Transaction time lower bound,

TTu : Transaction time upper bound,

VT l : Valid time lower bound,

VTu : Valid time upper bound,

V : Data value.

Because the value of now changes as time progresses, the [TT l , now] or [VT l , now] interval is closed

and expanding.

An atom’s and a bitemporal atom’s order are equal to zero. The order of a nested bitemporal relation

scheme is one more than the order of its tuple scheme. The inductive definitions of bitemporal tuple and nested

bitemporal relation schemes were given in [26].

The nested bitemporal relation schema EMPLOYEE depicted in Table 1 is shown below. DNAME and

MANAGER attributes are defined in the DEPARTMENT relation, which makes the EMPLOYEE relation’s

nesting level two.

Table 1. A nested bitemporal relation, EMPLOYEE. (Note that DEPARTMENT and SALARY-B are columns of

EMPLOYEE and displaced on the next line to save space.)

EMP# ENAME-B ADDRESS-B BIRTH DATE
NAME ADDRESS

E1 <[1, now], [1, now], Robin Willie> <[1, now], [1, now], A1 > 1980
E2 <[1, now], [1, now], Kevin Alan> <[1, now], [1, now], A2 > 1975
E3 {<[17,32), [20, 32), Amy Irene>

<[33, 45), [33, 45), Amy Willie>
<[46, 50), [46, 50), Amy Irene>
<[58, now], [60, now], Amy Irene>}

{<[17,32), [20, 32), A3 >,
<[33, 45), [33, 45), A1 >,
<[46, 50), [46, 50), A3 >,
<[58, now], [60, now], A3 >}

1990

E4 <[20, now], [23, now], Nina Brown> {<[20,61), [23,61), A4 >,
<[62, now], [62, now], A6 >}

1982

E5 <[15, now], [15, now], Kyla Hazel> <[15, now], [15, now], A5 > 1985

E3 has disjoint time intervals, from valid time 50 to 60 and transaction time 50 to 58, when she left the

company and rejoined. E3 ’s return to the company was recorded at transaction time 58 and joined at valid time

60. In addition, ‘Kevin Alan’ was assigned as employee E4 ’s manager at transaction time 20, valid from time

23. However, it was noticed at time 30 that actually ‘Kyla Hazel’ should have been E4 ’s manager. Bitemporal

database models are capable of listing any error correction.

3.2. Tuple-timestamped model

Bitemporal data models with a tuple-timestamping approach stay within 1NF relations. A bitemporal relation

has four additional attributes for each time variant attribute: VT LB and VT UB attribute pairs for the valid

time, and TT LB and TT UB attribute pairs for the transaction time. For each update a new tuple is inserted

into a bitemporal relation. As a result, data redundancy occurs. If there is more than one time-related attribute,

each update increases redundancy extensively. A solution might be to decompose each time-related attributes

into separate tables. Nonetheless, the model results in many small relations in the tuple-timestamping approach.

4308

ATAY/Turk J Elec Eng & Comp Sci

Example 1 After converting the EMPLOYEE table in Table 1 into tuple-timestamped relations with valid

and transaction times, six relations are obtained. Three are listed in Tables 2–4, and the other three tables are

omitted to save space.

Table 2. EMPBIRTH.

DEPARTMENT SALARY-B

DNAME-B MANAGER-B
SALARY

DNAME MANAGER

{<[1, 13), [1, 15), Marketing>,
<[14, now], [16, now], Planning>}

<[1, now], [1, now], Kevin Alan> {<[1, 13), [1, 15), 25K>,
<[14, 25), [16, 27), 30K>,
<[26,37), [28, 39), 32K>,
<[38, now], [40, now], 40K>}

{<[1, 13), [1, 15), Sales>,
<[14, now], [16, now], Planning>}

<[1, now], [1, now], Robin Willie> {<[1, 18), [1, 20), 25K>,
<[19, 37), [21, 39), 32K>
<[38, now], [40, now), 40K>}

{<[17, 50), [20, 50), TechSup>,
<[58, now], [60, now], TechSup >}

{<[17, 50), [20, 50), Kyla Hazel>,
<[58, now], [60, now], Kevin Alan>}

{<[17, 26), [20, 30), 20K>,
<[26, 50), [31, 50), 22K>,
<[58, now], [60, now], 25K>}

<[20, now], [23, now], Sales> {<[20, 30), [23, now], Kevin Alan>,
<[31, now], [23, now], Kyla Hazel>}

{<[20, 32), [23, 35), 22K>,
<[33, 44), [36, 47), 24K>,
<[45, now], [48, now], 26K>}

<[15, now], [15, now], Sales> <[15, now], [15, now], Robin Willie> {<[15, 35), [15, 39), 25K>,
<[36, 51), [44, 53), 28K>,
<[52, now], [54, now], 30K>}

Table 3. EMP-ADDRESS.

EMP# BIRTH DATE
E1 1980
E2 1975
E3 1990
E4 1982
E5 1985

Table 4. EMP-MANAGER.

EMP# ADR. TT LB TT UB VT LB VT UB
E1 A1 1 now 1 now
E2 A2 1 now 1 now
E3 A3 17 32 20 32
E3 A1 33 45 33 45
E3 A3 46 50 46 50
E3 A3 58 now 60 now
E4 A4 20 61 23 61
E4 A6 62 now 62 now
E5 A5 15 now 15 now

4. Implementation

This section outlines how the attribute- and tuple-timestamped approaches presented in the previous section

can be implemented. In order to measure the performance of the aforementioned three bitemporal models,

query tests are performed. For each bitemporal model, a hypothetical company database of more than 15 years

4309

ATAY/Turk J Elec Eng & Comp Sci

of past data is utilized. The first implementation database constitutes the EMPLOYEE relation, whose schema

is listed in Table 5 (referred to as EMPLOYEE 2 hereafter). The second implementation database is similar to

the EMPLOYEE relation, except the level of nesting is equal to 1 (EMPLOYEE 1), as seen in Table 6. Lastly,

the third implementation database is made up of six 1NF tables (EMPLOYEE T), and their schema is depicted

in Table 7.

Table 5. Attribute-timestamped database schema EMPLOYEE 2, two-level nested bitemporal relation.

EMP# MANAGER TT LB TT UB VT LB VT UB
E1 Kevin Alan 1 Now 1 now
E2 Robin Willie 1 Now 1 now
E3 Kyla Hazel 17 50 20 50
E3 Kevin Alan 58 Now 60 now
E4 Kevin Alan 20 25 23 now
E4 Kyla Hazel 31 Now 23 now
E5 Robin Willie 15 Now 15 now

Table 6. Attribute-timestamped database schema EMPLOYEE 1, one-level nested bitemporal relation.

EMP#

ENAME-B ADDRESS-B

BIRTH DATE

DEPARTMENT SALARY-B

NAME ADDRESS
DNAME-B MANAGER-B

SALARY
DNAME MANAGER

Table 7. Tuple-timestamped database schema, EMPLOYEE T.

EMP#
ENAME-B ADDRESS-B

BIRTH DATE
DEPT-B MANAGER-B SALARY-B

NAME ADDRESS DNAME MANAGER SALARY

4.1. Attribute-timestamped bitemporal data model NBRDM

4.1.1. Bitemporal atom type

We defined a bitemporal atom in Section 3 as having the form < [TTl, TTu), [VTl, VTu), V> . The bitemporal

atom contains the DATE data type for the lower and upper bounds of valid and transaction times. Depending

on the application, time intervals might be TIMESTAMP or DATE. The value part may be INTEGER, BIG-

INT, SMALLINT, CHARACTER, CHARACTER LARGE, CHARACTER VARYING, OBJECT, DECIMAL,

NUMERIC, or BOOLEAN. Figure 1 depicts the bitemporal atom as an abstract data type, BTA.

CREATE TYPE BTA AS (

TT_LB DATE,

TT_UB DATE,

VT_LB DATE,

VT_UB DATE,

VALUE CHARACTER VARYING(50));

Figure 1. Representation of a bitemporal atom as an abstract data type.

The object-relational database’s type system allows us to define a BTA as a structured abstract data

type. Retrieving or removing a component is allowed in the query expressions. Defined BTA can be used,

similarly to other built-in types, in SQL statements.

4310

ATAY/Turk J Elec Eng & Comp Sci

4.1.2. Nested bitemporal relation

A tuple in a nested bitemporal relation is an instance of the structured type on which the table is defined. Having

a set of identical abstract data types in a single tuple actually simulates the attribute timestamping approach

with a single-attribute table for each object’s time related attributes [6]. Although Table 5 summarizes the

nested relation schema EMPLOYEE 2, which has a nesting level equal to two, Table 6 depicts the nested relation

schema EMPLOYEE 1 with a nesting level of one. The schema trees of EMPLOYEE 1 and EMPLOYEE 2 are

shown in Figures 2 and 3, respectively.

EMP# SALARY-B DEPARTMENT-B BIRTH-DATE ADDRESS-B ENAME-B

SALARY

MANAGER-B

ADDRESS MANAGER DNAME NAME

EMPLOYEE

Figure 2. Schema tree for the one-level nested bitemporal relation EMPLOYEE 1.

MANAGER -B

EMP# SALARY-B DEPARTMENT BIRTH-DATE ADDRESS-B ENAME-B

SALARY DNAME- B ADDRESS

MANAGER DNAME

NAME

EMPLOYEE

Figure 3. Schema tree for the two-level nested bitemporal relation EMPLOYEE 2.

4.2. Tuple timestamped bitemporal data model

An implementation of a hypothetical company database with the tuple-timestamped approach results in six

tables, namely EMP-NAME, EMP-BIRTH, EMP-ADDRESS, EMP-DEPARTMENT, EMP-MANAGER, and

EMP-SALARY. Besides EMP-BIRTH, each table has six attributes, which are EMP#, time-related attribute’s

name, TT LB, TT UB, VT LB, and VT UB. EMP# is employee id, TT LB is the start of transaction time,

4311

ATAY/Turk J Elec Eng & Comp Sci

TT UB shows the end of transaction time, VT LB is the start of valid time, and VT UB is the end of valid

time. Because EMP-BIRTH is not time-related, this table has two attributes: employee id and employee birth

date in date format. A UML diagram for Snodgrass’s model is depicted in Figure 4.

EMP-SALARY

1 1

EMP-ADDRESS

EMP-DEPARTMENT
EMP-MANAGER

EMP-NAME

M

M M

M M

1 1

1

1 EMP#

BIRTH-DATE

EMP#

NAME

TT_LB

TT_UB

VT_LB

VT_UB

EMP#

SALARY

TT_LB

TT_UB

VT_LB

VT_UB

M

EMP#

ADDRESS

TT_LB

TT_UB

VT_LB

VT_UB

EMP#

DEPT.

TT_LB

TT_UB

VT_LB

VT_UB

EMP#

MANAGER

TT_LB

TT_UB

VT_LB

VT_UB

Figure 4. UML diagram for the tuple timestamped database schema EMPLOYEE T.

5. Query comparisons

Initially, 10,000 initial tuples and 10 years of data are inserted into bitemporal nested tables and six tuple-

timestamped 1NF tables. These data reflect typical uses in the existing company’s application domain.

Generating the initial set of 10,000 data was clearly explained in [11]. Although bitemporal nested tables

contain six attributes and 10,000 tuples, the corresponding six tuple-timestamped tables contain a total of 32

attributes and 310,000 tuples. An additional 100,000 and 1,000,000 tuples are inserted into all three tables to

compare different approaches, and then the same queries are run.

Queries

This section compares attribute-timestamped (based on EMPLOYEE 2 and EMPLOYEE 1 tables) and

tuple-timestamped (based on EMPLOYEE T schema; EMP-BIRTH, EMP-NAME, EMP-ADDRESS, EMP-

MANAGER, EMP-DEPARTMENT, and EMP-SALARY tables) approaches for seven English queries. These

queries are written in SQL for Oracle 9i. Each query is run five times and the average value is selected.

‘12.31.9999’ is a special constant for representing the infinite upper limit and/or ‘now’. This is common practice

in other implementations as well.

4312

ATAY/Turk J Elec Eng & Comp Sci

Query 1: List employee numbers and names that currently work in Department 22 and earn more than 100K.

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, NAM.VALUE AS NAME,

FROM EMPLOYEE E,

TABLE(E.NAME) NAM, TABLE(E.SALARY) SAL,

TABLE(E.DEPARTMENT) DM,

TABLE(DM.DNAME) DEP,

WHERE DEP.VALUE = ’DEP ID22’ AND SAL.VALUE > 100000

AND NAM.VT UB =’12.31.9999’ AND SAL.VT UB =’12.31.9999’

AND DEP.VT UB =’12.31.9999’
Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
SELECT E.EMP#, NAM.VALUE AS NAME,

FROM EMPLOYEE E,

TABLE(E.NAME) NAM, TABLE(E.SALARY) SAL

TABLE(E.DNAME) DEP

WHERE DEP.VALUE = ’DEP ID22’ AND SAL.VALUE > 100000

AND NAM.VT UB =’12.31.9999’ AND SAL.VT UB =’12.31.9999’

AND DEP.VT UB =’12.31.9999’
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT NAM.EMP#, NAM.NAME AS NAME,

FROM EMP-NAME NAM, EMP-DEPARTMENT DEP, EMP-SALARY SAL

WHERE DEP.DEPARTMENT =’DEP ID22’ AND SAL.SALARY > 100000

AND DEP.EMP#=SAL.EMP# AND SAL.EMP#= NAM.EMP#

AND NAM.VT UB = ’12.31.9999’

Query 2: List the salary values stored in the database between the times 01.01.2008 and 01.01.2012.

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, SAL.VALUE AS SALARY,

SAL.TT LB AS TT LOWERBOUND, SAL.TT UB AS TT UPPERBOUND,

SAL.VT LB AS VT LOWERBOUND, SAL.VT UB AS VT UPPERBOUND

FROM EMPLOYEE E,

TABLE(E.SALARY) SAL

WHERE SAL.VT LB BETWEEN ’01.01.2008’ AND ’01.01.2012’
Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
Same as two-level nested bitemporal relation
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT EMP#, SALARY AS SALARY,

SAL.TT LB AS TT LOWERBOUND, SAL.TT UB AS TT UPPERBOUND,

SAL.VT LB AS VT LOWERBOUND, SAL.VT UB AS VT UPPERBOUND

FROM EMPSALARY SAL

WHERE VT LB BETWEEN ’01.01.2008’ AND ’01.01.2012’

4313

ATAY/Turk J Elec Eng & Comp Sci

Query 3: Obtain all records of the departments in which the employee CANAN EREN ATAY has worked in
the database during the date range [‘01.01.2010’, ‘12.12.2012’].

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, NAM.VALUE AS NAME, DEP.VALUE AS DEPARTMENT,
DEP.VT LB AS VT LOWERBOUND, DEP.VT UB AS VT UPPERBOUND
FROM EMPLOYEE E,

TABLE(E.NAME) NAM,
TABLE(E.DEPARTMENT) DEP MAN,

TABLE(DEP MAN.DNAME) DEP
WHERE NAM.VALUE = ’CANAN EREN ATAY’
AND ’01.01.2010’ >= DEP.VT LB AND ’12.12.2012’ <= DEP.VT UB
Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
SELECT E.EMP#, NAM.VALUE AS NAME, DEP.VALUE AS DEPARTMENT,
DEP.VT LB AS VT LOWERBOUND, DEP.VT UB AS VT UPPERBOUND
FROM EMPLOYEE E,

TABLE(E.NAME) NAM,
TABLE(E.DNAME) DEP,

WHERE NAM.VALUE = ’CANAN EREN ATAY’
AND ’01.01.2010’ >= DEP.VT LB AND ’12.12.2012’ <= DEP.VT UB
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT EMP#, EN.ENAME AS NAME, DEP.DNAME AS DEPARTMENT,
DEP.VT LB AS VT LOWERBOUND, DEP.VT UB AS VT UPPERBOUND
FROM EMP-DEPARTMENT DEP, EMP-NAME EN
WHERE EN.ENAME = ’CANAN EREN ATAY’
AND DEP.EMP#=E.EMP#
AND ’01.01.2010’ >= DEP.VT LB AND ’12.12.2012’ <= DEP.VT UB

Query 4: As of time ‘11.11.2011’, who was working in the DEP ID11 department?

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, NAM.VALUE AS NAME,
DEP.VT LB AS VT LOWERBOUND, DEP.VT UB AS VT UPPERBOUND,
DEP.TT LB AS TT LOWERBOUND, DEP.TT UB AS TT UPPERBOUND
FROM EMPLOYEE E,

TABLE(E.NAME) NAM,
TABLE(E.DEPARTMENT) DEP MAN,

TABLE(DEP MAN.DEPARTMENT) DEP
WHERE DEP.VALUE = ’DEP ID11’
AND ’11.11.2011’ BETWEEN DEP. TT LB AND DEP. TT UB
Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
SELECT E.EMP#, NAM.VALUE AS NAME,
DEP.VT LB AS VT LOWERBOUND, DEP.VT UB AS VT UPPERBOUND,
DEP.TT LB AS TT LOWERBOUND, DEP.TT UB AS TT UPPERBOUND
FROM EMPLOYEE E,

TABLE(E.NAME) NAM,
TABLE(E.DNAME) DEP

WHERE DEP.VALUE = ’DEP ID11’
AND ’11.11.2011’ BETWEEN DEP.TT LB AND DEP.TT UB
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT EMP#, EN.ENAME AS NAME,
DEP.VT LB AS VT LOWERBOUND, DEP.VT UB AS VT UPPERBOUND,
DEP.TT LB AS TT LOWERBOUND, DEP.TT UB AS TT UPPERBOUND
FROM EMP-DEPARTMENT DEP, EMP-NAME EN
WHERE EN.EMP# = DEP.EMP#
AND DEP.DNAME = ’DEP ID11’
AND ’11.11.2011’ BETWEEN DEP.TT LB AND DEP.TT UB

4314

ATAY/Turk J Elec Eng & Comp Sci

Query 5: Who was CANAN EREN ATAY’s manager between the times ‘03.03.2008’ and ‘06.06.2008’, as
known to the database system within the time range [‘03.01.2008’, ‘06.08.2008’]?

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, MAN.VALUE AS MANAGER,
MAN.VT LB AS VT LOWERBOUND, MAN.VT UB AS VT UPPERBOUND,
MAN.TT LB AS TT LOWERBOUND, MAN.TT UB AS TT UPPERBOUND
FROM EMPLOYEE E, TABLE(E.NAME) NAM,

TABLE(E.DEPARTMENT) DEP MAN,
TABLE(DEP MAN.MANAGER) MAN

WHERE NAM.VALUE = ‘CANAN EREN ATAY’
AND ’03.03.2008’>= MAN. TT LB AND ’06.08.2008’<= MAN. TT UB
AND ’03.01.2008’>= MAN.VT LB AND ’06.08.2008’<= MAN.VT UB
Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
SELECT E.EMP#, MAN.VALUE AS MANAGER,
MAN.VT LB AS VT LOWERBOUND, MAN.VT UB AS VT UPPERBOUND,
MAN.TT LB AS TT LOWERBOUND, MAN.TT UB AS TT UPPERBOUND
FROM EMPLOYEE E,
TABLE(E.NAME) NAM,
TABLE(E.MANAGER) MAN

WHERE NAM.VALUE = ‘CANAN EREN ATAY’
AND ’03.03.2008’>= MAN. TT LB AND ’06.08.2008’<= MAN. TT UB
AND ’03.01.2008’>= MAN.VT LB AND ’06.08.2008’<= MAN.VT UB
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT EN.EMP#, MAN.MANAGER,
MAN.VT LB AS VT LOWERBOUND, MAN.VT UB AS VT UPPERBOUND,
MAN.TT LB AS TT LOWERBOUND, MAN.TT UB AS TT UPPERBOUND
FROM EMP-NAME EN, EMP-MANAGER MAN
WHERE EN.NAME = ’CANAN EREN ATAY’ AND MAN.EMP#=EN.EMP#
AND ’03.03.2008’>= MAN.TT LB AND ’06.08.2008’<= MAN.TT UB
AND ’03.03.2008’>= MAN.VT LB AND ’06.08.2008’<= MAN.VT UB

Query 6: What are the EMP# and managers of employees who were employed by the company between
‘01.01.2012’ and ‘03.03.2012’, as known by the database on ‘06.06.2012’?

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, MAN.VALUE AS MANAGER,
MAN.VT LB AS VT LOWERBOUND, MAN.VT UB AS VT UPPERBOUND,
MAN.TT LB AS TT LOWERBOUND, MAN.TT UB AS TT UPPERBOUND
FROM EMPLOYEE E,
TABLE(E.DEPARTMENT) DEP MAN,
TABLE(DEP MAN.MANAGER) MAN

WHERE ’06.06.2012’ BETWEEN MAN. TT LB AND MAN. TT UB
AND MAN. VT LB >=’01.01.2012’ AND MAN.VT UB <= ’03.03.2012’
Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
SELECT E.EMP#, MAN.VALUE AS MANAGER,
MAN.VT LB AS VT LOWERBOUND, MAN.VT UB AS VT UPPERBOUND,
MAN.TT LB AS TT LOWERBOUND, MAN.TT UB AS TT UPPERBOUND
FROM EMPLOYEE E,

TABLE(E.MANAGER) MAN
WHERE ’06.06.2012’ BETWEEN MAN. TT LB AND MAN. TT UB
AND MAN.VT LB >=’01.01.2012’ AND MAN.VT UB <= ’03.03.2012’
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT MAN.EMP#, MAN.MANAGER AS MANAGER,
MAN.VT LB AS VT LOWERBOUND, MAN.VT UB AS VT UPPERBOUND,
MAN.TT LB AS TT LOWERBOUND,MAN.TT UB AS TT UPPERBOUND
FROM EMP-MANAGER MAN
WHERE ’06.06.2012’ BETWEEN MAN. TT LB AND MAN. TT UB
AND MAN.VT LB>=’01.01.2012’ AND MAN.VT UB<’03.03.2012’

4315

ATAY/Turk J Elec Eng & Comp Sci

Query 7: What is the employee number of the employees who shared the same addresses at the same time?

When was it?

Attribute timestamped table EMPLOYEE 2, two-level nested bitemporal relation.
SELECT E.EMP#, A.ADDRESS.VALUE, E1.EMP#, B.ADDRESS.VALUE,
A.VT LB AS VT LOWERBOUND, A.VT UB AS VT UPPERBOUND,
B.VT LB AS VT LOWERBOUND, B.VT UB AS TT UPPERBOUND

FROM EMPLOYEE E, TABLE(E.ADDRESS) A,
EMPLOYEE E1, TABLE(E1.ADDRESS) B

WHERE A.VALUE = B.VALUE
AND E.EMP# > E1.EMP#
AND TIME SLICE(E.EMP#, E1.EMP#, A, B)

Attribute timestamped table EMPLOYEE 1, one-level nested bitemporal relation.
Same as two-level nested bitemporal relation.
Tuple timestamped bitemporal tables EMPLOYEE T.
SELECT A.EMP#, A.ADDRESS.VALUE, B.EMP#, B.ADDRESS.VALUE,
A.VT LB AS VT LOWERBOUND, A.VT UB AS VT UPPERBOUND,
B.VT LB AS VT LOWERBOUND, B.VT UB AS TT UPPERBOUND
FROM EMP-ADDRESS A,

EMP-ADDRESS B
WHERE A.ADRESS = B. ADRESS
AND A.EMP# > B.EMP#
AND ((A.VT LB > B.VT LB AND A.VT LB < B.VT UB)
OR (A.VT UB > B.VT LB AND A.VT UB < B.VT UB)
OR (B.VT UB > A.VT UB AND B.VT LB < A.VT LB)))

According to the taxonomy in [6], the queries can be classified as follows: Query 1 is a current context

query, Query 2 is a bitemporal context query with a valid time interval, and Queries 3–6 are historical context

queries. Query 3 has a valid time interval, Query 4 a transaction time point, Query 5 valid and transaction

time intervals, Query 6 a valid time interval and transaction time point, and, finally, Query 7 is a bitemporal

context query with join operation.

Query 1 selects tuples where DEPARTMENT = ‘DEP ID22’ and SALARY > 100,000. If the mentioned

time-related attributes’ valid time upper bounds are equal to ‘12.31.9999’, then it projects the EMP# and

NAME attributes. Although all these data are stored in one table in the attribute-timestamping approach,

the tuple-timestamping approach requires three tables. Figure 5 shows that the one-level nested approach

(EMPLOYEE 1) performs almost the same as the tuple-timestamped approach (EMPLOYEE T) in terms of

run time for Query 1.

Query 2 returns the salary values of employees whose timestamps are between the given valid time ranges,

i.e. between 01.01.2008 and 01.01.2012. The one-level nested bitemporal relation, EMPLOYEE 1, returned the

selected tuples faster than EMPLOYEE 2 and EMPLOYEE T, as illustrated in Figure 6.

Query 3 selects the DEPARTMENT attribute of a particular employee with a valid time interval between

‘01.01.2010’ and ‘12.12.2012’. The DEPARTMENT bitemporal attribute is on two levels of nesting for the

EMPLOYEE table. Because decomposing the DEPARTMENT attribute to one-level requires more time for

the two-level nested approach (EMPLOYEE 2), and the tuple-timestamped approach (EMPLOYEE T) joins

two tables, the one-level nested approach (EMPLOYEE 1) outperforms the others, as shown in Figure 5.

Query 4 retrieves the state of a table as of the given time point in the past. The DEPARTMENT

attributes’ value component equal to ‘DEP ID11’ is selected. The DEPARTMENT bitemporal attribute is on

two levels of nesting for the EMPLOYEE 2 table. Because decomposing DEPARTMENT to one-level requires

4316

ATAY/Turk J Elec Eng & Comp Sci

more time than the EMPLOYEE 2 table, and the tuple-timestamped approach joins two different tables, the

one-level nested approach, EMPLOYEE 1, outperforms the others for Query 4, as depicted in Figure 5.

T
im

e
(m

s)

Two -Level Nested

Q7Q5Q2

One-Level Nested

 Tuple Timestamped

T
im

e
(m

s)

Two -Level Nested

Q4 Q3 Q6 Q1

One -Level Nested

Tuple Timestamped

Figure 5. Query 1, Query 3, Query 4, and Query 6 times

for bitemporal data models.

Figure 6. Query 2, Query 5, and Query 7 times for

bitemporal data models.

Query 5 is a typical bitemporal query when the valid-time and transaction-time qualifiers are both interval

values. The query first decomposes the two-level nested DEP attribute to reach the ‘MANAGER’ bitemporal

attribute, then retrieves the state of a table between [‘06.06.2008’, ‘08.08.2008’] for the EMPLOYEE table. This

query shows if any error correction was made. Because the MANAGER bitemporal attribute is on two levels

of nesting for the EMPLOYEE table, it requires more time than the other two approaches. Tuple-timestamped

and one-level nested approaches perform with the same time for Query 5, as shown in Figure 6.

Query 6 retrieves the state of a table as of a time point in the past, namely ‘06.06.2012’ in this example.

Because this query deals with one bitemporal tuple for EMPLOYEE 2 and EMPLOYEE 1 tables, and tuple

timestamping for the EMPLOYEE T MANAGER table, all approaches take almost the same time, as illustrated

in Figure 5.

Query 7 is a bitemporal context query. Join and slice operations are used. The selection operation picks

tuples where the ADDRESS attributes’ value components are equal. The time slice operation synchronizes

the valid time component of the ADDRESS with respect to the ADDRESS A valid time component, and

hence implements ‘when’. The projection operation retains EMP# and ADDRESS bitemporal attributes’

value components along with common valid time lower and upper bounds. Because the ADDRESS bitemporal

attribute is on the same level for both EMPLOYEE 2 and EMPLOYEE 1 tables, it requires the same time for

attribute timestamped approaches. However, the tuple-timestamped approach joins the ADDRESS table by

itself. Due to excessive redundancy, as seen in Figure 6, this approach performs weaker.

After these statistics were collected, 100,000 and then 1,000,000 new tuples were inserted into all tables.

Figures 7 and 8 illustrate the run times for Query 1 to Query 6 for 100,000 and Figures 9 and 10 for 1,000,000,

respectively.

5.1. Query results

Attribute-timestamped nested bitemporal tables, both two-level (EMPLOYEE 2) and one-level (EMPLOYEE 1),

acquired 2,097,152 bytes in segments, and the tuple-timestamped table (EMPLOYEE T) captured 17,039,360

bytes in segments. The latter approach requires 8 times more memory than the other approaches for 10,000

initial data. After inserting an additional 100,000 and 1,000,000 tuples, memory requirements were measured

and the following values were retained, as depicted in Table 8. As can be seen, tuple-timestamped tables ac-

4317

ATAY/Turk J Elec Eng & Comp Sci

quired 15 times more for 100,000 and 30 times more for 1,000,000 memory spaces than the other nested tables,

respectively.

T
im

e
(s

)

Two- Level Nested

Q5 Q2 Q1

One-Level Nested

Tuple Timestamped

T
im

e
(s

)

Two-Level Nested

Q6 Q4 Q3

One-Level Nested

Tuple Timestamped

Figure 7. Query 1, Query 2, and Query 5 run times for

100,000 tuples.

Figure 8. Query 3, Query 4, and Query 6 run times for

100,000 tuples.

T
im

e
(s

)

Two -Level Nested

Q5 Q2 Q1

One-Level Nested

Tuple Timestamped

T
im

e
(s

)

Two - Level Nested

Q6 Q4 Q3

One- Level Nested

Tuple Timestamped

Figure 9. Query 1, Query 2, and Query 5 run times for

1,000,000 tuples.

Figure 10. Query 3, Query 4, and Query 6 run times for

1,000,000 tuples.

Statistics are also obtained from Oracle 9i’s AUTOTRACE utility and listed in Table A1 in the Appendix.

The meaning of these statistical explanations can be found at www.oracle.com. According to these statistics,

for the initial 10,000 data in Table A2 in the Appendix, the number of times a buffer was free when visited

is lower for Queries 2, 5, and 6 for EMPLOYEE 1, and Queries 1 and 3 for EMPLOYEE T. This means that

the buffer is freer in the attribute-timestamping approach. The total number of bytes received was less for

EMPLOYEE T tables over Oracle Net Services. The total number of bytes sent was less for the EMPLOYEE 2

table from the foreground processes. The number of times a consistent read was requested for a block was almost

the same for EMPLOYEE 1 and EMPLOYEE T tables. Logical reads of database blocks from either the buffer

cache or process private memory were higher in the attribute-timestamping approach tables, EMPLOYEE 2

and EMPLOYEE 1. The number of blocks encountered from the buffer cache for scanning was higher in

attribute-timestamping approach tables, EMPLOYEE 2 and EMPLOYEE 1. The number of rows that were

processed during a scan operation was higher in EMPLOYEE 2. The amount of CPU time used was higher for

4318

ATAY/Turk J Elec Eng & Comp Sci

EMPLOYEE 2, because decomposing from nesting level two to level one takes more time. The amount of CPU

time used by a session from the time a user’s call starts until it ends is higher for the attribute-timestamping

approach tables, EMPLOYEE 2 and EMPLOYEE 1. Database time was higher for EMPLOYEE 2 for Queries

1, 3, 4, and 5. Queries 2 and 6 took the same time for EMPLOYEE 2 and EMPLOYEE T. The nonidle wait

count was higher for Queries 1 to 3 in EMPLOYEE 2, and for Queries 4 to 6 in EMPLOYEE T. Again, the

attribute-timestamping approach, EMPLOYEE 1, with one-level nesting, outperforms the others. The total

number of parse calls is lower with EMPLOYEE 1, whereas it is almost the same with EMPLOYEE 2 and

EMPLOYEE T. The number of user calls is the same for all three approaches. Among all three approaches,

work area execution is always less with EMPLOYEE 1. Statistics for 100,000 and 1,000,000 are listed in Tables

A3 and A4, respectively, in the Appendix.

Table 8. Memory space requirements for all tables.

EMP-NAME

EMP# NAME TT LB TT UB VT LB VT UB

EMP-ADDRESS

EMP# ADDRESS TT LB TT UB VT LB VT UB

EMP-BIRTH

EMP# BIRTH DATE

EMP-DEPARTMENT

EMP# DEPT. TT LB TT UB VT LB VT UB

EMP-MANAGER

EMP# MANAGER TT LB TT UB VT LB VT UB

EMP-SALARY

EMP# SALARY TT LB TT UB VT LB VT UB

Table 9. Oracle 9i AUTOTRACE utility.

Approach type Bytes in segments Bytes in segments Bytes in segments
for 10,000 objects for 100,000 objects for 1,000,000 objects

Attribute timestamped, two-level
nested, EMPLOYEE 2 2,097,152 10,485,760 49,283,072
Attribute timestamped, one-level
nested, EMPLOYEE 1 2,097,152 12,582,912 58,720,256
Tuple timestamped, EMPLOYEE T 17,039,360 158,334,952 1,471,296,869

On the basis of these tests, we have come to the following conclusions. Bitemporal/temporal queries have

the same complexity for both attribute- and tuple-timestamped approaches. If the query must join tables (as it

must in most cases), the one-level nested attribute-timestamped approach outperforms the tuple-timestamped

approach. In addition, when the priority is to keep all data together rather than split them into many tables and

use memory sparingly, the one-level nested attribute-timestamped approach should be preferred. Nevertheless,

if the number of objects is large and a fast response time is the highest priority, then the tuple-timestamped

approach might be chosen. Finally, the attribute-timestamped approach, regardless of whether it is two-level

or one-level nested, requires less memory than the tuple-timestamped approach.

4319

ATAY/Turk J Elec Eng & Comp Sci

6. Conclusion

In this paper, it has been shown that attribute- and tuple-timestamped interval-based bitemporal databases can

be implemented in an object-relational database. Both models have been tested to determine which performs

better in terms of time and space. In order to demonstrate the implementation of the aforementioned models

in this paper, we performed experiments to observe the performance of the models using the same data. The

experiment was intended to compare the performance of the two different bitemporal schemas. For instance, if

the designer is interested in determining the most cost-effective approach for a given table size, then this study

can use the approach that is superior for certain table sizes.

Comparison items included query performance and space requirement. In order to gain insight into each

implementation’s relative performance, different tasks were evaluated. Each approach has its own advantages

and disadvantages. Our test conclusion indicated that the attribute timestamped with more than one level of the

nesting method might require slightly more time, because the nested bitemporal relational database creates a

separate table for each time-related attribute. In addition, decomposing the nested level requires time. However,

the attribute timestamped with the one-level nested approach required less time than the tuple-timestamped

approach when the query joined more than one tuple-timestamped table. The attribute-timestamped method

used less disk space because the tuple-timestamping method splits the object’s history into several tables. If

every time-related attribute is separated into different tables and queries need to join these tables, then the

tuple-timestamping run time is higher. On the other hand, tuple timestamping results in a significant amount

of redundancy if every time-related attribute is in the same table.

Database management query languages and systems will eventually include bitemporal data management

as an integral part. Some commercial DBMS software products have included limited bitemporal support. We

believe that this work will influence the design and implementation decisions of bitemporal relational databases.

Future work includes the study of generating benchmark data and queries for bitemporal databases.

Acknowledgment

I would like to express gratitude to the anonymous reviewers for their valuable comments, which improved

the manuscript significantly.

References

[1] Gadia S. Ben-Zvi’s pioneering work in relational temporal databases. In: Tansel AU, Clifford J, Gadia S, Jajodia

S, Segev A, Snodgrass R, editors. Temporal Databases. Redwood City, CA, USA: Benjamin Cummings, 1993. pp.

202-207.

[2] Snodgrass R. An overview of Tquel. In: Tansel AU, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass R, editors.

Temporal Databases. Redwood City, CA, USA: Benjamin Cummings, pp. 141-182.

[3] Bhargava G, Gadia S. Relational database systems with zero information loss. IEEE T Knowl Data En 1993; 5:

1-20.

[4] Jensen CS, Soo MD, Snodgrass R. Unifying temporal data models via a conceptual model. Inf Syst 1994; 19:

513-547.

[5] Shasha D, Zhu Y. SpyTime: a performance benchmark for bitemporal database. Available online at

http://www.cs.nyu.edu/shasha/spytime/spytime.html. 2001.

[6] Atay CE, Tansel A. Bitemporal Databases: Modeling and Implementation. Saarbrücken, Germany: VDM Verlag,

2009.

[7] Clifford J, Croker A. The historical relational data model (HRDM) and algebra based on lifespans. In: IEEE 1987

International Conference on Data Engineering; 3–5 February 1987; Los Angeles, CA, USA. New York, NY, USA:

IEEE. pp. 1-26.

4320

http://dx.doi.org/10.1109/69.204093
http://dx.doi.org/10.1109/69.204093
http://dx.doi.org/10.1016/0306-4379(94)90013-2
http://dx.doi.org/10.1016/0306-4379(94)90013-2
http://dx.doi.org/10.1109/ICDE.1987.7272420
http://dx.doi.org/10.1109/ICDE.1987.7272420
http://dx.doi.org/10.1109/ICDE.1987.7272420

ATAY/Turk J Elec Eng & Comp Sci

[8] Gadia S. A homogeneous relational model and query languages for temporal databases. ACM T Database Syst

1988; 13: 418-448.

[9] Gadia S, Bhargava G. A Formal Treatment of Updates and Errors in a Relational Database. Ames, IA, USA: Iowa

State University, 1997.

[10] Tansel AU. Temporal relational data model. IEEE T Knowl Data En 1997; 9: 464-479.

[11] Atay CE, Tansel AU. BtSQL: nested bitemporal relational database query language. Turk J Elec Eng & Comp Sci

2014; 1: 1-20.

[12] Clifford J, Tansel AU. On an algebra for historical relational databases: two views. In: ACM SIGMOD 1985

International Conference on Management of Data; 15–18 May 1985; Dallas, TX, USA. New York, NY, USA: ACM.

pp. 247-265.

[13] Tansel AU. Adding time dimension to relational model and extending relational algebra. Inf Syst 1986; 11: 343-355.

[14] Toman D. Point-based temporal extension of temporal SQL. Lect Notes Comp Sci 1997; 1341: 437-452.

[15] Snodgrass R. The TSQL2 Temporal Query Language. Dordrecht, the Netherlands: Kluwer Academic Publishers,

1995.

[16] Lorentzos NA, Mitsopoulos YG. SQL extension for interval data. IEEE T Knowl Data En 1997; 9: 480-499.

[17] Gadia S, Nair SS. Temporal databases: a prelude to parametric data. In: Tansel AU, Clifford J, Gadia S, Jajodia

S, Segev A, Snodgrass R, editors. Temporal Databases. Redwood City, CA, USA: Benjamin Cummings, 1993. pp.

28-66.

[18] Tansel AU, Tin E. The expressive power of temporal relational query languages. IEEE T Knowl Data En 1997; 9:

120-134.

[19] Snodgrass R, Ahn I. Performance evaluation of a temporal database management system. Commun ACM 1986; 15:

96-107.

[20] Yang J, Ying H, Widom J. TIP: A temporal extension to informix. In: ACM SIGMOD 2000 International Conference

on Management of Data; 15–18 May 2000; Dallas, TX, USA. New York, NY, USA: ACM. pp. 596-671.

[21] Chau VT, Chittayasothorn S. A temporal compatible object relational database system. In: IEEE 2007 Southeast

Conference; 22–25 March 2007; Richmond, VA, USA. New York, NY, USA: IEEE. pp. 93-98.

[22] Combi C, Montanari A, Pozzi G. The T4SQL temporal query language. In: ACM 2007 International Conference

on Information and Knowledge Management; 6–10 November 2007; Lisbon, Portugal. New York, NY, USA: ACM.

pp. 193-202.

[23] Wang F, Zaniolo C. XBiT: An XML-based bitemporal data model. Lect Notes Comp Sci 2004; 3288: 810-824.

[24] Wang F, Zhou X, Zaniolo C. Using XML to build efficient transaction-time temporal database systems on relational

databases. In: IEEE 2006 International Conference on Data Engineering; 3–8 April 2006; Atlanta, GA, USA. New

York, NY, USA: IEEE. pp: 131-135.

[25] Ali KA, Pokorny J. A comparison of XML-based temporal models. In: IEEE 2006 International Conference on

Signal-Image Technology and Internet-Based Systems; 17–21 December 2006; Hammamet, Tunisia. New York, NY,

USA: IEEE. pp. 339-350.

[26] Tansel AU, Atay CE. Nested bitemporal relational algebra. In: International Symposium on Computer and Infor-

mation Sciences; 1–3 November 2006; İstanbul, Turkey. pp. 622-633.

4321

http://dx.doi.org/10.1145/49346.50065
http://dx.doi.org/10.1145/49346.50065
http://dx.doi.org/10.1109/69.599934
http://dx.doi.org/10.1016/0306-4379(86)90014-1
http://dx.doi.org/10.1109/69.599935
http://dx.doi.org/10.1109/69.567055
http://dx.doi.org/10.1109/69.567055
http://dx.doi.org/10.1145/1321440.1321470
http://dx.doi.org/10.1145/1321440.1321470
http://dx.doi.org/10.1145/1321440.1321470
http://dx.doi.org/10.1007/978-3-540-30464-7_60
http://dx.doi.org/10.1007/978-3-642-01350-8_31
http://dx.doi.org/10.1007/978-3-642-01350-8_31
http://dx.doi.org/10.1007/978-3-642-01350-8_31
http://dx.doi.org/10.1007/11902140_66
http://dx.doi.org/10.1007/11902140_66

ATAY/Turk J Elec Eng & Comp Sci

Appendix

Table A1. Oracle 9i AUTOTRACE utility.

1 Buffer is not pinned count
2 Bytes received via SQL*net from client
3 Bytes sent via SQL*net to client
4 Consistent gets
5 Session logical reads
6 Table scan blocks obtained
7 Table scan rows obtained
8 CPU used by this session
9 CPU used when call started
10 Db time
11 Nonidle wait count
12 Parse count (total)
13 User calls
14 Work area executions

Table A2. Statistics values for 10,000 data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Q1

80 1818 4404 1843 1843 1785 195,047 8 8 9 7 9 5 7
3193 1714 4742 4504 4503 1142 129,125 6 6 5 3 4 5 2
66 1684 5009 1277 1277 1253 174,774 6 6 7 4 5 3 2

Q2
96 3363 762,276 1408 1417 1262 144,671 8 8 12 223 18 54 7
3 2190 2,133,727 1309 3932 1303 144,794 11 10 8 298 3 54 2
116 1998 1,149,644 1022 1022 890 138,189 7 7 12 170 15 54 9

Q3
40 1779 4621 622 622 564 51,718 7 7 8 9 5 5 2
48 1660 4868 327 256 8167 24,978 4 4 6 3 4 4 1
29 1531 5221 326 326 285 32,037 5 5 6 7 5 5 3

Q4
24 1759 15,729 709 571 656 59,887 8 8 9.2 14 7.2 5 5
521 1634 16,221 963 771 436 39,461 4 4 7 4 4.6 5 2
74 1517 24,611 441 441 381 41,512 7 7 8 110 9 5 6

Q5
159 2130 4106 851 851 626 58,234 8 8 19 53 30 5 9
31 2008 4155 342 342 297 29,276 5 5 8 46 9 5 2
115 1759 3927 422 428 313 33,154 6 6 9 75 14 5 6

Q6
102 2077 3958 345 256 214 21,334 7 7 8 8 13 5 6
45 1930 4055 191 154 186 21,331 5 5 6 3 4 5 1
97 1560 3838 222 657 9831 14,222 6 5 8 19 14 4 8

1

ATAY/Turk J Elec Eng & Comp Sci

Table A3. Statistics values for 100,000 data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Q1

111 1818 5079 6873 6873 6006 637,506 20 20 54 27 55 5 30
163 1767 5022 6115 6111 5194 533,552 15 15 51 25 56 5 30
121 1656 5053 3518 3518 3362 424,898 9 9 14 34 11 5 5

Q2
33 2195 2,089,949 3425 1567 1627 161,211 14 14 18 309 7 33 3
222 2180 2,090,224 3950 2060 3346 320,184 16 16 237 306 5 53 14
5 2000 1,149,622 1464 1456 1453 225,888 10 10 12 151 4 54 1

Q3
336 1778 4920 5998 3853 2116 209,578 20 20 42 70 43 4 20
284 1661 4921 4011 4011 1808 215,918 10 10 29 31 35 5 17
129 1531 5227 2109 2109 1958 206,558 10 10 16 31 12 5 8

Q4
526 1758 16,109 3514 3514 2982 319,119 10 10 15 8 7 5 3
523 1635 16,454 2622 2622 2154 219,061 11 11 14 12 6 5 2
0 1525 24,591 1968 1968 1958 206,558 7 7 9 3 3 5 2

Q5
102 2130 4573 4706 4706 4202 417,487 18 18 111 23 27 5 11
53 3483 2362 4139 4139 3616 317,407 11 11 98 13 28 5 11
92 1759 4262 2157 2157 2053 217,539 9 9 13 17 15 5 9

Q6
9 2061 4685 1095 1095 1078 111,166 7 7 6 3 6 5 1
6 1931 4749 1096 1096 1084 111,120 6 6 6 3 5 5 1
0 1561 4354 1010 1010 1005 111,122 5 5 5 3 3 5 1

2

ATAY/Turk J Elec Eng & Comp Sci

Table A4. Statistics values for 1,000,000 data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Q1

30 1613 5320 26,837 26,837 26,750 2,860,274 47 41 110 90 7 4 6
45 1579 5352 13,775 13,775 9304 1,390,886 28 28 264 732 6 4 2
50 1503 5941 18,863 18,863 18,787 2,274,684 27 27 101 105 7 4 5

Q2
49 1918 1,317,631 12,038 12,038 5977 627,187 28 28 85 266 12 29 3
27 1917 1,317,806 13,180 13,180 13,082 1,598,957 35 35 102 308 14 52 6
63 1987 1,149,888 7070 7070 6995 1,095,676 15 14 60 197 10 53 5

Q3
38 1599 4152 19,331 19,331 19,243 1,989,410 34 34 106 9 5 4 3
46 1553 4237 10,416 14,955 14,851 1,997,065 36 36 142 46 4 4 2
8 1455 4077 4990 4990 4973 496,419 27 6 29 34 2 4 2

Q4
1314 1510 16,065 12,781 12,781 10,994 1,131,866 30 30 134 256 27 4 13
1118 1459 16,631 5807 7690 6046 991,987 13 13 48 1706 25 4 11
689 1371 24,378 7750 5815 6868 690,137 12 12 53 63 10 4 7

Q5
26,691 1849 4482 51,817 51,817 9563 1,034,135 43 43 397 701 15 4 6
13,334 1804 4402 13,245 19,163 9916 1,682,624 17 17 63 3021 15 4 6
75,289 1580 4093 5012 5087 4973 496,419 11 11 27 29 13 4 8

Q6
137 1542 4138 6818 6818 6640 715,416 15 15 37 39 20 4 9
115 1499 4153 4887 6517 6504 1,062,732 11 10 26 164 2 4 1
30 1365 3782 6630 6630 6592 715,190 12 12 50 63 5 4 3

3

	Introduction
	Related work
	Bitemporal relational data models
	Attribute-timestamped model
	Tuple-timestamped model

	Implementation
	Attribute-timestamped bitemporal data model NBRDM
	Bitemporal atom type
	Nested bitemporal relation

	Tuple timestamped bitemporal data model

	Query comparisons
	Query results

	Conclusion

