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Abstract: We propose a new compression algorithm that compresses plain texts by using a dictionary-based model

and a compressed string-matching approach that can be used with the compressed texts produced by this algorithm.

The compression algorithm (CAFTS) can reduce the size of the texts to approximately 41% of their original sizes.

The presented compressed string matching approach (SoCAFTS), which can be used with any of the known pattern

matching algorithms, is compared with a powerful compressed string matching algorithm (ETDC) and a compressed

string-matching tool (Lzgrep). Although the search speed of ETDC is very good in short patterns, it can only search

for exact words and its compression performance differs from one natural language to another because of its word-based

structure. Our experimental results show that SoCAFTS is a good solution when it is necessary to search for long

patterns in a compressed document.

Key words: Compressed string matching, text compression, dictionary-based compression, exact pattern matching,

CAFTS

1. Introduction

As the amount of text data increases day by day, the problems of storing such data and finding a string in these

texts are becoming more important. The solution to the former is to compress the text data and the solution

to the latter is to use an efficient string-matching algorithm. Some compressed texts can be searched directly

without decompression and this process is generally called compressed pattern matching or compressed string

matching. In recent years, many algorithms have been developed to solve the compressed pattern matching

problem. A compressed pattern matching algorithm is generally specific to one compression algorithm, and

cannot be used with another.

The term compressed string matching was first seen in Amir and Benson’s work [1]. Manber offered

a compression scheme that allows compressed pattern matching [2]. Although any string matching algorithm

can be used with this scheme, its compression ratio and string matching speed are moderate. It was shown

in [3] that searching simple patterns in texts that are compressed with a byte-oriented word-based Huffman

coding algorithm is nearly 2 times faster than searching them in regular texts. Dense codes are statistical

codes that use a word-based strategy, and they are efficient when searching for a single word in a compressed

text. Two different semistatic dense codes, which were developed in 2003, are called the End-Tagged Dense

Code (ETDC) [4] and (s,c)-Dense Code (SCDC) [5]. Subsequently developed dynamic counterparts of them,

Dynamic ETDC (DETDC) and Dynamic SCDC (DSCDC), are better in compression speed, but worse in

decompression speed [6]. The other two latest developed dense codes, Dynamic Lightweight ETDC (DLETDC)
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and Dynamic Lightweight SCDC (DLSCDC), are able to perform decompression as fast as semistatic dense

codes [7]. Although the compression speed of dynamic lightweight dense codes is worse than that of dynamic

dense codes, it is still better than that of semistatic dense codes. On the other hand, dynamic lightweight dense

codes are not better than dynamic dense codes, and dynamic dense codes are not better than semistatic dense

codes in terms of compression ratio. Apart from these, Culpepper and Moffat described methods for searching

in byte-coded compressed text and phrase-based searching in a restricted type of byte code [8].

Most of the compressed pattern matching studies deal with the problem of searching patterns in texts

that are compressed using the two most well-known dictionary based compression methods, LZ77 [9] and LZ78

[10], or their variants like LZSS [11] and LZW [12]. Farach and Thorup suggested a pseudo-optimal compressed

matching algorithm for LZ77 [13]. However, it cannot find all the occurrences of the pattern in the compressed

text. The algorithm proposed in [14] finds only the first occurrence of a single pattern in LZW compressed

text, while the algorithms proposed in [15,16] find all occurrences of multiple patterns by simulating the move

of the Aho–Corasick pattern matching machine [17]. Furthermore, Navarro and Raffinot proposed a hybrid

compression scheme that allows a search as fast as LZ78 and has a similar compression ratio to LZ77 [18].

Later, Navarro and Tarhio modified the Boyer–Moore string matching algorithm [19] so as to perform string

matching over LZ78 and LZW compressed texts [20]. In addition, Klein and Shapira presented an adaptation

of LZSS that is suitable for compressed matching [21].

It is also possible to perform pattern matching over texts that are compressed with an algorithm that uses

an n-gram model. BPE [22] and Re-Pair [23] are the best-known examples of digram coding. The algorithm

described in [24] is able to search BPE compressed texts. Moffat and Wan constructed a system for browsing

and searching over texts compressed with a variant of the Re-Pair algorithm [25]. In one of our previous works

[26], we devised a slightly different digram coding algorithm (Iterative Semi-Static Digram Coding: ISSDC).

We think that texts that are compressed with ISSDC can be searched directly with a similar approach and this

is a subject of our ongoing work.

In the current paper, we present a dictionary-based compression algorithm that uses a semistatic model.

We name our algorithm CAFTS (Compression Algorithm for Fast Text Search), since texts that are compressed

with CAFTS can be searched directly without decompression, which is generally faster than a search on

uncompressed texts. The presented algorithm takes its origin from STECA (Static Text Compression Algorithm)

[27], which is one of our previous works. The main difference between STECA and CAFTS is that while STECA

uses static dictionaries CAFTS uses a semistatic approach. Since CAFTS has to build a dictionary for each

source, its compression speed is slower but its compression ratio is higher and it is not language dependent.

Another difference is that while CAFTS builds sub-dictionaries that contain the most frequently used trigrams

that come after ‘each different digram’, STECA deals with only digrams/trigrams that come after ‘each different

character’. For this reason, the total dictionary size in STECA is relatively small and this contributes to its

compression speed. Even though the compression ratio of CAFTS cannot be better than that of dynamic

dictionary-based encoders like Gzip and Unix Compress, it can be better than semistatic and dynamic dense

codes in some languages (see Section 4.1). We also present a compressed string matching approach that is used

with texts that are compressed with CAFTS (SoCAFTS: Search on CAFTS). Although it is not possible to

search for short patterns that contain less than 5 characters with SoCAFTS (the reason will be explained in

the last paragraph of Section 3), the decompress-and-search technique on CAFTS (DSCAFTS) can be used as

a fast solution to search for short patterns (see Section 4.2).
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We organized the paper as follows: we explain the CAFTS compression algorithm in Section 2 and the

SoCAFTS search method in Section 3. We give the compression ratio and compression/decompression time

results of CAFTS, and also the compressed pattern matching time results of SoCAFTS in Section 4 with a

comparison with other methods. Finally we conclude this paper in Section 5.

2. Compression algorithm for fast text search (CAFTS)

CAFTS performs compression by using a semistatic model and a dictionary that contains the most frequently

used trigrams. The main dictionary consists of several sub-dictionaries, and each of them contains the most

frequently used trigrams after a particular digram. The algorithm selects the corresponding sub-dictionary by

looking at the last encoded digram. For example, if the trigram to be compressed is ‘eir’ and the last encoded

digram is ‘th’, the algorithm searches ‘eir’ in the sub-dictionary of ‘th’. The explanations of the alphabet and

dictionary generation (first pass of the algorithm) and the compression method (second pass of the algorithm)

are given in the next two subsections.

2.1. Alphabet and dictionary generation in CAFTS

In the first pass of CAFTS, the frequencies of the characters in the text are found and they are sorted in

descending order of their frequency. The first σ characters having total frequencies above 99.95% are selected

for the alphabet Σ. The selected σ characters are inserted into Σ in ASCII code order. The generated Σ

with the most frequently used 60 characters that forms the 99.95% of the file ‘dickens.txt’ (an English text file,

which is taken from http://introcs.cs.princeton.edu/data/) is given in Table 1 as an example. ‘Σ Code = 0’ is

reserved for the escape character that is to be used when the current encoded character is not in Σ, like Q, U,

V, X, and Z. These capital letters do not exist in Σ, because they are rarely used in this text file. We used this

file as an English test file in Section 4 (Experimental results). If you look at Table 2, you can see that there are

91 different characters in the English file. This means that the total frequency of these 5 capital letters and 26

more characters is below 0.05%. The reason for not adding all of the characters used in the text to Σ is that

the compression ratio will be affected negatively if Σ includes the characters that exist very rarely in the text.

By eliminating these characters, we can add more trigrams to the sub-dictionaries (31 more trigrams for each

sub-dictionary in our example). We choose this 0.05% value, because it gives the best compression ratio in our

experiments. We also limited the size of the σ to 127 for the same reason.

After a code table is prepared for Σ, the different digrams and the trigrams placed after those digrams

are searched in the text and the trigram dictionaries (sub-dictionaries) are prepared for each digram by using a

trie data structure. Because CAFTS uses the dictionary size of 256 and one code must be used for the escape

character, there are β = 256 – σ– 1 codes left to represent trigrams. Since σ ≤ 127, β will be at least 128

(for our example in Table 1, β = 256 – 60 – 1 = 195). Therefore, a sub-dictionary for a digram can contain

maximum β most frequently used trigrams. If the total number of the trigrams placed after a particular digram

more than once is less than β , all of them are added to the sub-dictionary. The access method to the elements

of a sub-dictionary is a binary search and in order to use this method the trigrams in sub-dictionaries are

sorted in alphabetical order. The structures of the dictionary and the hash tables that are used to access the

sub-dictionaries are shown in Figure 1.

As seen in Figure 1, there are 3600 (602) elements in both the ‘sub-dictionary size hash table’ and ‘sub-

dictionary address hash table’. However, because some digrams do not have any trigrams that are placed after

them more than once (like ‘hj’ in our example), there are less than 3600 sub-dictionaries in the main dictionary.
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It can also be observed in Figure 1 that some sub-dictionaries contain less than 195 trigrams. Therefore, the

number of trigrams in the dictionary will be less than 195 times the number of sub-dictionaries. The ‘σ value’,

‘Σ’, ‘size hash table’, and ‘dictionary’ are added to a corresponding dictionary file. It is not necessary to add

the ‘address hash table’, because its elements can be calculated by the help of the ‘size hash table’.

Table 1. A sample Σ for ‘dickens.txt’ when σ = 60

Σ ASCII
Character

Σ ASCII
Character

Σ ASCII
Character

Code Code Code Code Code Code
1 10 Line Feed 21 72 H 41 103 G
2 32 Space 22 73 I 42 104 h
3 33 ! 23 74 J 43 105 i
4 34 ” 24 75 K 44 106 j
5 39 ’ 25 76 L 45 107 k
6 40 ( 26 77 M 46 108 l
7 41 ) 27 78 N 47 109 m
8 44 , 28 79 O 48 110 n
9 45 - 29 80 P 49 111 o
10 46 . 30 82 R 50 112 p
11 58 : 31 83 S 51 113 q
12 59 ; 32 84 T 52 114 r
13 63 ? 33 87 W 53 115 s
14 65 A 34 89 Y 54 116 t
15 66 B 35 97 a 55 117 u
16 67 C 36 98 b 56 118 v
17 68 D 37 99 c 57 119 w
18 69 E 38 100 d 58 120 x
19 70 F 39 101 e 59 121 y
20 71 G 40 102 f 60 122 z

Table 2. Statistical information about used text files in comparison.

File Name
The Number of Different: The Most Frequently Used:
Chars Digrams Trigrams Characters Digrams Trigrams

Dutch 116 3436 31443
Space e n [en] [n ] [e ] [en ] [ de] [de ]
16% 15% 8% 4.3% 4.0% 2.5% 2.7% 1.0% 0.9%

English 91 2548 25702
Space e t [e ] [ t] [th] [ th] [the] [he ]
17% 9% 7% 2.7% 2.3% 2.1% 1.5% 1.3% 1.1%

Finnish 118 3323 30313
Space a i [n ] [a ] [in] [en ] [in ] [an ]
13% 9% 9% 3.2% 2.2% 1.9% 0.9% 0.8% 0.6%

French 129 3328 27793
Space e s [e ] [s ] [ d] [ de] [es ] [de ]
17% 12% 6% 4.1% 2.6% 2.1% 1.2% 1.0% 0.9%

German 128 4622 41910
Space e n [en] [er] [n ] [en ] [er ] [ de]
15% 13% 8% 3.1% 2.9% 2.7% 1.7% 1.3% 1.0%

Italian 138 3577 28117
Space e a [e ] [a ] [i ] [ di] [la ] [ co]
16% 9% 9% 3.1% 2.8% 2.4% 0.7% 0.6% 0.6%

Spain 134 3833 33601
Space e a [e ] [a ] [s ] [ de] [de ] [os ]
18% 10% 9% 2.8% 2.6% 2.1% 1.4% 1.0% 0.8%

Turkish 125 4650 46733
Space a e 10,13 [n ] [ar] 46,13,10 32,32,32 [lar]
13% 9% 7% 2.2% 1.8% 1.4% 1.0% 0.8% 0.6%

enwik8 205 18611 249172
Space e t [e ] [ t] [th] [ th] [the] [he ]
14% 8% 6% 2.0% 1.4% 1.4% 1.0% 0.9% 0.9%
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Sub-Dictionary

Address Hash Table

195 11953
Sub-Dictionary

Size Hash Table

Dictionary

sub-dictionary of
2 sequential ‘lf’

(line feed) contains
195 trigrams

… 0 …

0 250662 251256

sub-dictionary

of ‘hh’ contains

3 trigrams

[1,1]

[lf,lf]

[42,42]

[h,h]

0 251256250671250662… …

51

[60,60]

[z,z]

[42,43]

[h,i]

[42,44]

[h,j]

[42,45]

[h,k]

[lf,lf] [h,h] [z,z][h,i] [h,j] [h,k]

sub-dictionary

of ‘hk’ contains

1 trigram

…

585 426984

426984

sub-dictionary

of ‘zz’ contains

51 trigrams

-1

…

sub-dictionary

of ‘hi’ contains

195 trigrams

250671

3x195=585 bytes 3x51=153 bytes

Figure 1. Dictionary and hash tables.

2.2. Compression method in CAFTS

CAFTS determines which sub-dictionary will be used by looking at the last encoded digram (LED) and combines

the next three characters after this LED to form the searched trigram. After that, the sub-dictionary size of

the LED is obtained from the ‘size hash table’. If the sub-dictionary size is 0, it means that there is no sub-

dictionary for that LED in the ‘dictionary’. If it is not 0, the address of the beginning of that sub-dictionary is

obtained from the ‘address hash table’, and the trigram is searched in that sub-dictionary with a binary search

mechanism. If the trigram is found, the offset address of that trigram (the index number of the trigram in

that sub-dictionary) +σ is encoded and the last two characters in the trigram are assigned to the LED. If the

trigram is not found in the corresponding sub-dictionary a shifting process is performed: the second character

of the old LED becomes the first character of the new LED, the first character of the old trigram becomes the

second character of the new LED, the last two characters of the old trigram become the first two characters of

the new trigram, and a new character is read from the source for the last character of the new trigram. The

algorithm continues in this fashion. The encoding algorithm is given in Figure 2 and an example is given in the

following paragraph to clarify the encoding process.

Suppose that the text file to be compressed is ‘dickens.txt’ and we are now compressing the phrase

“Oxford University” using the alphabet in Table 1. The algorithm reads two characters (O and x) and checks

their existence in Σ. Because they are found in Σ, they are assigned to the LED and their Σ codes (28 and 58)

are encoded. The algorithm reads the next three characters (f, o and r), which are also found in Σ. The trigram

is formed with these three characters and this trigram searched in the sub-dictionary of ‘Ox’. Since ‘for’ is the

only trigram in the sub-dictionary of ‘Ox’, it is in the first index. After the σ value + index (60 + 1 = 61) is

encoded, the second and the third characters of the trigram (o and r) are assigned to the LED. To form the new

trigram, the next three characters are taken from the source (d, ‘space’, and U). Although the first two of them

are found in Σ, the last one is not. Therefore, the Σ codes of ‘d’ and ‘space’ (38 and 2) are encoded, and to

encode ‘U’, first the escape character (0) is encoded, and later the ASCII code of this character (85) is encoded.

Two characters are taken from the source (n and i) to form the new LED and three characters are taken from

the source (v, e, and r) to form the new trigram (they are all found in Σ). The Σ codes of ‘n’ and ‘i’ (48 and
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Figure 2. CAFTS encoding algorithm.

43) are encoded and the trigram ‘ver’ is searched in the sub-dictionary of the digram ‘ni’. The trigram is found

in the 188th index of this sub-dictionary and 60 + 188 = 248 is encoded. The second and third characters

of the trigram (e and r) are assigned to the LED and, to form the new trigram, the next three characters (s,

i and t) are taken from the source. All of them are found in Σ and assigned to the trigram, but this trigram

is not found in the sub-dictionary of ‘er’. This time, the dictionary index of the first character of the trigram

(53 for s) is encoded and all characters in the LED and trigram are shifted one position from right to left. A

new character is read from the source (y) and assigned to the third character of the trigram. The trigram ‘ity’

is searched in the sub-dictionary of the digram ‘rs’ and again it is not found. The dictionary index of the first

character of the trigram (43 for i) is encoded and, after another shifting process, the LED becomes ‘si’ and the

trigram becomes ‘ty’. This trigram is found in the 170th index of the sub-dictionary of ‘si’ and therefore 60 +

170 = 230 is encoded. The compressed form of the phrase “Oxford University” is shown in Figure 3.

Although the compression ratio of CAFTS in this example is 72% (13/18), the actual compression ratio

is much better (see Section 4.1) as a consequence of the much rarely used escape mode. The time complexity of

the CAFTS compression algorithm is O(u × log(k)) in the worst case, where k is the sub-dictionary size and

u is the text size, while the time complexity of the CAFTS decompression algorithm is O(n), where n is the

compressed text size.
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 O x f o r d   U n i v e r s i t y   

(a) 79 120 102 111 114 100 32 85 110 105 118 101 114 115 105 116 121 32 

(c) 28 58 61 38 2 0 85 48 43 248 53 43 230 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

Figure 3. The ASCII (a) and compressed (c) forms of “Oxford University”.

3. Search on CAFTS compressed texts (SoCAFTS)

SoCAFTS has two extra phases: ‘preprocessing’ and ‘postprocessing’. The searched pattern is compressed

with maximum 3 different combinations using CAFTS in the preprocessing phase and the obtained compressed

patterns are searched in the compressed text with any fast pattern matching algorithm in the searching phase.

Whenever a match is found the postprocessing phase performs some partial decompression before the beginning

and after the end of the matched part of the compressed text to verify that it is exactly the same as the searched

pattern. SoCAFTS uses the same dictionary that is prepared for compression in both of these extra phases.

Because CAFTS uses trigram coding, a pattern may be compressed at most in 3 different forms according

to the starting position of compression. We explain this situation with an example: suppose that we want to

search for the word “compression” on the compressed form of ‘dickens.txt’. Firstly, all of the different compressed

forms of the searched pattern should be determined. This process is illustrated in Figure 4. In order to find all

of the occurrences of the searched pattern in the text, the search procedure must be performed for all different

compressed forms of the searched pattern. Note that in the Compressed Form 1 of Figure 4, if the trigram

‘mpr’ could not be found in the sub-dictionary of ‘co’, the compression procedure would try to search for ‘pre’

in the sub-dictionary of ‘om’. In this situation, there would be no difference between Compressed Form 1 and

Compressed Form 2, and because of that there would be no reason to use both of them in the searching phase.

Similarly if ‘pre’ could not be found in the sub-dictionary of ‘om’, Compressed Form 2 and 3 will be the same.

For this kind of situation, only Compressed Form 3 can be used to increase search speed.

Wherever a compressed form of the searched pattern is found in the compressed text, the postprocessing

phase is initialized. This phase checks whether the uncompressed characters residing at the beginning and

end of the pattern match the characters in the text or not. It requires partial decompression to perform this

check. For example, while checking that if the character sequence in the text before 247 is ‘com’ or not in

‘Compressed Form 2’ of Figure 4, the algorithm may encounter a value that is bigger than 60. This means that

the value represents a compressed trigram and the algorithm must know the corresponding sub-dictionary. If

the two characters before this value are uncompressed characters (<60), the sub-dictionary can easily be found.

If they are not, it is unable to know the content of the LED that comes before this value. For this reason the

postprocessing phase searches for two consecutive uncompressed characters in the backward direction. When

it finds them, it forms the LED and starts to perform partial decompression until it reaches characters before

247. After that, it can be checked whether the character sequence before 247 is equal to ‘com’ or not. If this

verification is successful, then a similar process is performed for the last two characters of the searched pattern.

If the pair after 237 is ‘on’ in the compressed text, the postprocessing phase ends with success.

The searched pattern that we have used in our example contains 11 characters. If the pattern contains

less than 10 characters, the number of characters in the compressed pattern might be only one. It can be seen

from Figure 4 that if the searched pattern was “compress”, 231 in ‘Compressed Form 1’, 237 in ‘Compressed

Form 2’, and 209 in ‘Compressed Form 3’ would not exist in the searching phase. If the compressed pattern

contains only one character, the number of occurrences of this character in the text would be too much (most
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Figure 4. Searching for the word ‘compression’ in 3 different forms.

of them do not belong to our searched pattern). This situation greatly increases the number of unnecessary

postprocessing phases and slows down searching. If the pattern length (m) is 6, ‘Compressed Form 3’ cannot

be formed; if m = 5, ‘Compressed Form 2’ also cannot be formed; and if m ≤ 4, none of them can be formed.

Briefly, SoCAFTS cannot find any result when m ≤ 4, it cannot find all the occurrences of the pattern when

m is 5 or 6, and it can slowly find all the occurrences of the pattern when m is 7, 8, or 9. The time complexity

of SoCAFTS is O(n+rd), where r is the number of matches and d is the distance between the beginning of

the match and two consecutive uncompressed characters in the backward direction.

4. Experimental results

In this section, we present the results of our compression ratio, compression speed, decompression speed, and

string matching tests. We compared CAFTS with ETDC [4], SCDC [5], DLETDC [7], Unix Compress, and

Gzip for compression and decompression performance. We use only DLETDC to represent dynamic dense codes,

because it can be seen in [7] that the most successful of them in terms of compression and decompression time

results is DLETDC.
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Table 3. Compression ratios (in bits/character), compression and decompression times (in seconds).

Gzip Compress DLETDC ETDC SCDC CAFTS
Dutch 2.86 3.04 2.91 2.84 2.80 3.23
English 3.06 3.22 2.82 2.78 2.70 3.23
Finnish 3.03 3.25 4.12 4.02 3.99 3.36
French 2.87 3.11 3.15 3.09 3.04 3.18
German 2.98 3.24 3.40 3.32 3.28 3.45
Italian 3.10 3.24 3.29 3.21 3.17 3.29
Spanish 2.93 3.15 3.33 3.26 3.21 3.32
Turkish 3.09 3.43 4.16 4.08 4.01 3.44
Average ratio 2.99 3.21 3.40 3.33 3.28 3.31
Compression time 20.65 5.15 4.83 6.24 6.32 36.20
Decompression time 1.66 1.55 1.95 1.94 1.91 1.26

In our string matching tests, we compared SoCAFTS with ETDC and Lzgrep [20]. Lzgrep is a string

matching tool that can search in compressed files that are compressed with Unix Compress (LZW) without

decompression and can also search in compressed files that are compressed with Gzip (LZ77) with a fast

decompress-and-search technique. In order to make a fair comparison with Lzgrep, we have implemented BM

[19] and BOM [28,29] pattern matching algorithms to SoCAFTS, by modifying the program codes of Thierry

Lecroq [30]. We have selected only ETDC as a representative of dense codes, because it had given the best

results in [7] for single pattern matching.

We prepared a multilanguage corpus to show the difference in compression ratio when the source texts are

written in different natural languages. In this corpus, there are 8 plain text files that are written in a different

language, and each of them is exactly 15 MB (15.728.640 bytes) in size. The Turkish text file is a simplified

version of The Metu Corpus [31]. Some characters and words belonging to XML format were eliminated to

obtain plain text. The English text file is the first half of the 30 MB ‘dickens.txt’ file, which is taken from

‘http://introcs.cs.princeton.edu/java/data/’. The Spanish, French, Italian, German, Dutch, and Finnish text

files are all generated from free eBooks of Project Gutenberg (http://www.gutenberg.org). The total number of

different Characters, Digrams, and Trigrams and the most frequently used 3 Characters, Digrams, and Trigrams

in these files are given in Table 2.

The computer that we used in our comparison tests has an Intel Core i5-2450M (2.5 GHz) CPU and

6 GB DDR3 (1333 MHz) main memory. The operating system of this computer was Linux (Ubuntu) having

kernel version 3.0.0-17-generic. All of the C codes used in these tests were compiled with GCC ver. 4.6.1

(optimization parameter: -O9 ). The time results were obtained using the Linux ‘command time’ command.

4.1. Compression and decompression performance of CAFTS

The compression ratios for each test file and the total compression and decompression times for the whole test

corpus are given in Table 3. Gzip was used with ‘-9’ parameter for the best compression ratio. Note that the

compression ratio results of ETDC, SCDC, and CAFTS are the ratios of the sum of their compressed files and

semistatic dictionary files.

As seen in Table 3, Gzip is the best algorithm in terms of compression ratio, but its situation is slightly

different, because compressed string matching cannot be done in Gzip compressed files (Lzgrep can perform

decompress-and-search over Gzip compressed files). SCDC is always better than ETDC and ETDC is always
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better than DLETDC in terms of compression ratio (as expected because of the results found in [7]). SCDC has

the best compression ratios in English and Dutch, while ETDC takes second place in these languages. However,

it is also seen in Table 3 that these two compression methods are not successful in Finnish and Turkish. Because

Finnish and Turkish are agglutinative languages, the numbers of different words in these languages are more

than those of the other languages, and it is probably the reason why word-based compression methods like

dense codes are not successful in these languages. As a side note, it is seen in Table 2 that the space character

is used less in these two languages (13%) and this shows that the average word lengths in these languages are

greater than those of the other languages.

Although DLETDC is the best method in terms of compression time, decompression time is a more

important parameter in decompress-and-search methods, and dynamic dense codes are not better than their

semistatic counterparts in terms of this parameter. Compression speed is the weakness of CAFTS, but as seen

in Table 3 CAFTS is powerful in terms of decompression speed.

4.2. String matching performance of SoCAFTS

In order to obtain more accurate time results, a larger text file (enwik8 : the first 100 MB of the XML text

dump of the English version of Wikipedia, which is taken from http://www.cs.fit.edu/˜mmahoney/compression/

textdata.html) was used in string matching tests. For each pattern length (m = 5, 6, 7, 8, 9, 10, 15, 20, 30,

40, and 50), approximately 50 patterns were chosen randomly from enwik8. The average search times of these

patterns are given in Figure 5.

Lzgrep was used with 6 different search modes in our tests: D77-BM, D77-BOM, DW-BM, DW-BOM,

BM-simple, and BM-blocks. The first four of them are decompress-and-search techniques: ‘D77’ represents

decompression with LZ77 (Gzip) and ‘DW’ represents decompression with LZW (Unix Compress). The other

two are direct searches with BM algorithm. We have chosen these 6 parameters because they had given the

best results in [20]. We have also given the results of the decompress-and-search technique that is used with

CAFTS as DSCAFTS.

It is seen in Figure 5 that ETDC performs best when pattern length is less than or equal to 15 and

SoCAFTS BM performs best when pattern length is greater than 15. Because the current implementation of

the ETDC algorithm in the Dense Codes website (http://vios.dc.fi.udc.es/codes/) can only search for exact

words, we cannot use it with long patterns (m >20). It is also seen that SoCAFTS BOM is better than

SoCAFTS BM when m ≤ 15. As a result of the high decompression speed of CAFTS, the search speed

of DSCAFTS is always better than the speed of the decompress-and-search of Lzgrep (D77-BM, D77-BOM,

DW-BM, and DW-BOM) and close to the speed of the direct search of Lzgrep (BM-blocks and BM-simple).

Figure 5 shows clearly that the search time of SoCAFTS steadily increases while the pattern length

decreases (the reason is explained in the last paragraph of Section 3). It is also explained that SoCAFTS

cannot find all the occurrences of the searched pattern in the compressed text when the pattern length is 5 or

6 (for this reason these results are shown with dashed lines). It can find nearly 1/3 of them when m = 5 (only

one compressed form is searched) and nearly 2/3 of them when m = 6 (two compressed forms are searched). If

the search method is not determined by a parameter, our implementation code automatically selects DSCAFTS

when m < 7.

5. Conclusion

The presented compression algorithm, which is named CAFTS, compresses plain texts approximately 41% of

their original sizes (3.31 bpc ∼= 41%) by using multiple sub-dictionaries. Using multiple dictionaries instead of a
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Figure 5. Average search times (in seconds).

single dictionary provides a better compression ratio, because this approach increases the finding probability of

digrams and trigrams in the dictionary. Although this structure causes slow encoding, the ability of performing

string matching without decompression makes this algorithm useful. We think that proposed technique can be

used in document matching in compressed collections.

Like most of the other compressed string matching methods, SoCAFTS is also able to use any kind of

string matching algorithm. With some implementations like Lzgrep, compressed string matching can be done on

files that are compressed with a dynamic dictionary-based compression technique. However, Section 4.2 shows

that the search speed of Lzgrep is much slower than that of ETDC and SoCAFTS. If a single word is to be

searched for in a compressed document, semistatic dense codes (ETDC and SCDC) and dynamic dense codes

(DETDC, DSCDC, DLETDC, and DLSCDC) are very good solutions. However, since their implementations

on the Internet are not able to search for consecutive words, we think that SoCAFTS will be a good alternative

when it is necessary to search for long patterns in compressed large text databases or encyclopedias. For

example, it can be used when the “President of the United States” pattern needs to be searched for in the

compressed enwik8 file (this pattern includes 30 characters and repeats 383 times in this file).

Since some words may be very long in agglutinative languages like Turkish and Finnish, when a user

wants to search for a part of a long word, the current implementations of dense codes cannot be used (they can

only search for an exact word). In this kind of situation, if the part of a word that will be searched for is larger

than 7 characters SoCAFTS can be used; otherwise DSCAFTS can be used.
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