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Abstract: The aim of this paper is to optimize an 8/6 doubly salient switched reluctance machine using three compu-

tational intelligence methods, which include particle swarm optimization, a genetic algorithm, and differential evolution.

Three cases are investigated where different parameters are considered like the stator pole arc, rotor pole arc, and ratios,

which define the stator yoke and rotor thickness. The objective functions considered are the average torque and the

torque-to-weight functions. The simulations are carried out using MATLAB and FEMM software. The optimal results

found are compared with the initial design, and it is shown that high improvements are achieved.
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1. Introduction

To meet challenging requirements, the performance improvement of electrical machines is necessary, and this

is a subject of much investigation by many research teams worldwide. Performance improvement concerns not

only conventional asynchronous or synchronous machines, but also new machine structures, such as the switched

reluctance machine (SRM), which is the main concern of this paper.

The robustness, reliability, performance, and cost of SRMs have enabled them to develop multiple

applications (air conditioners, extractors, centrifugations, electrical vehicles, machine tools, flywheel energy

storage, shipbuilding, aeronautics, wind generators, etc.) [1–4].

New designs, more efficient structures, and better adaptation to new requirements are the goals of

manufacturers and researchers. To improve the performance of SRMs, this research will focus specifically

on optimizing the geometric structure, control parameters, and material properties.

In [5], the authors used particle swarm optimization (PSO) to optimize the geometric parameters of an

8/6 SRM with two objective functions: to increase the average torque and to minimize the ripple. In [6], torque

production is improved using a PSO algorithm to optimize the stator and rotor angles of an 8/6 SRM. In [7], the

authors maximized the geometric parameters of a 6/4 SRM coupled to a compressor, using a genetic algorithm

(GA) to increase the average torque. In [8], PSO was applied to the rotor pole arc of a 4/2 SRM to minimize

the torque ripple. In [9], the augmented Lagrangian method was used to determine optimum magnetic circuit

parameters to minimize torque ripple. In [10], high efficiency and low torque ripple were investigated using a

genetic fuzzy algorithm.
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The aim of this work is to optimize the geometrical parameters of an 8/6 doubly salient switched reluctance

machine (DSSRM) in order to maximize the average torque and torque-to-weight. This was performed using

three computational intelligence (CI) methods: PSO, a GA, and differential evolution (DE).

The main contribution of this work is related to the following aspects: the high number of the studied

geometrical parameters; their impact on the magnetic characteristics, i.e. the average torque and torque-

to-weight; the comparative study of the three optimization algorithms, GA, PSO, and DE; and the hybrid

simulation using FEMM [11] coupled to MATLAB software [12].

The paper is organized as follows. Section 2 describes the structure of the studied DSSRM prototype.

Section 3 discusses the CI methods used in this paper. The results obtained are discussed in Section 4. A

conclusion with a synthesis of the most significant results obtained in this work is drawn in Section 5.

2. Structure of the SRM to be optimized

2.1. The studied SRM structure

There are different topologies of SRMs according to the structure of the stator and rotor poles (large or small),

their numbers, feeding mode, etc.

The choice of number of poles per stator, Ns, and rotor, Nr, is important since they have significant

influence on the torque. The speed, N , is related to the frequency of the power supply (f = Nr×N/m)

according to the mode of supply: unidirectional (m = 1 ) or alternative (m = 2 ). It is preferred to have the

ratio between stator and rotor poles as a noninteger. The most frequently used structures (Ns/Nr) are 6/4,

8/6, and 12/8 [13]. The number of phases frequently used, q , is 3 or 4.

In order to pursue our previous work on a type of machine and conduct a comparative study of other

research, we opted for an 8/6 DSSRM, as depicted in Figure 1, with the parameters given in Tables 1 and 2

[14].

Figure 1. The investigated 8/6 DSSRM.

2.2. Selection of pole angles

The choice of stator pole arc and rotor arc pole βs and βr has significant effects on the torque ripple, duration

of output torque, and winding space and is an important factor in motor design optimization. To start an

optimization process, one can select pole angles in the middle of the lower half of the feasible triangle, where

βs ≤ β r (Figure 2).
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Table 1. Parameters of the studied 8/6 DSSRM.

Parameter Symbol Value
Number of stator poles Ns 8
Number of rotor poles Nr 6
Number of phases q 4
Air gap length E 0.3 mm
Stack length L 114 mm
Outer diameter Do 190 mm
Rotor diameter Dr 100 mm
Shaft diameter Da 28 mm
Back iron thickness bsy 12.5 mm
Stator pole arc βs 18◦

Rotor pole arc βr 22◦

Table 2. Physical parameters of the studied 8/6 DSSRM.

Parameter Value
Turns/phase ns 144
Wire cross-section area 1 mm2

Coil fill factor 0.7
Coil cross-section area 103 mm2

Peak current 12 A
Voltage 500 V (1 p.u.)
Lamination material M19 steel
Density of M19 ρ 7600 kg/m3

Figure 2. Feasible triangle of the studied 8/6 DSSRM.

2.3. Choice of back iron thickness

The expression of the stator pole width is given by:

ωsp = Dssin

(
βs

2

)
(1)

Due to mechanical and vibration considerations, the stator yoke thickness could have a value in the range of:

ωsp > bsy ≥ 0.5wsp (2)
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With the ratio Kcs :

0.5 < Kcs =
bsy
ωsp

≤ 1 (3)

The rotor yoke thickness could have a value in the range of:

0.5ωsp < bry < 0.75ωsp (4)

With the ratio Kcr :

0.5 < Kcr =
bry
ωsp

≤ 0.75 (5)

3. Optimization of geometric parameters

3.1. Optimization process

The optimization problem can be formulated as follows:

Minimize f (x)
Subject to g (x)= 0

and h (x)≤ 0
(6)

Where:

x: vector of design variables;

f (x) : objective function;

g (x) : set of equality constraints;

h (x) : set of inequality constraints.

The imposed constraints are given by the following equation:

 βs − βr ≤ 0
Pco = Cte
ximin ≤ xi ≤ xiMax

(7)

Finite element software FEMM was used because it offers the possibility of parameterizing the machine geometry

and automating the computer-aided design drawing by means of a MATLAB script. Optimization PSO, GA,

and DE codes were carried out with MATLAB coupled to FEMM, as shown in Figure 3. The function takes the

geometrical parameters of the machine as input, builds the corresponding finite element method (FEM) model,

and then computes the average static torque and the torque-to-weight.
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Initialization of the machine parameters 

Selection of the CI method 

(PSO, GA, DE) 

Initialization of the optimization algorithm 

Modeling of the machine using FEM 

Evaluation of the objective function 

NO 

YES

Is termination 

criterion met? 

 

Print optimal results 

Figure 3. Flowchart of coupling software MATLAB–FEMM.

3.2. Objective functions

3.2.1. Average torque

As mentioned previously, the first objective is to maximize the average torque of the machine. The average

torque is expressed as:

Tav =
q Nr

2π
Wc (8)

where q is the number of phases, Nr is the number of rotor poles, and Wc is the converted coenergy.

The difference between coenergies at aligned and unaligned positions, as depicted in Figure 4, is expressed

by Eq. (9):

Wc = Waligned −Wunaligned = ∆i

(
φ1 + φ2 + . . .

1

2
φn

)
− 1

2
φuIp (9)

where Wc is calculated using npoints on the magnetic flux versus mmf curve with the trapezoidal integration

algorithm, and

∆i =
Ip
n

(10)
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Figure 4. Aligned and unaligned magnetic flux vs. excitation.

3.2.2. Torque-to-weight

The second objective of this work is the maximization of the torque-to-weight. The torque-to-weight is expressed
as:

TWei =
Tav

m
(11)

and

m = ρ v (12)

3.3. Optimization of computational intelligence methods

In this paper, three CI methods are used. These methods are explained in the following sections.

3.3.1. Particle swarm optimization

PSO is a population-based stochastic optimization method developed by Eberhart and Kennedy in 1995, inspired

by the social behavior of bird flocking or fish schooling [15,16]. PSO starts with an initial randomly generated

population, known as particles. Each particle has a particular position and velocity and keeps track of its

coordinates in hyperspace. The coordinates are associated with the best solution (fitness) it has achieved at

a certain point, called pbest, the overall best value, and its location, called gbest, obtained thus far by any

particle in the population. Then, at each iteration, the velocity of each particle is updated toward pbest and

gbest, and, consequently, the position of that particle is also updated.

3.3.2. Genetic algorithm

The GA was first used by Holland [17]. The GA is the most famous global optimization method and is based

on Darwin’s theory of evolution. The GA is a population-based method that starts with a randomly generated

chromosome and then evolves to better solutions. The GA iteratively generates a new population based on

the previous population through the application of genetic operations, which include selection, crossing, and

mutation. The selection aims to select individuals from the population based on their fitness. The crossover

operation combines the features of two parent chromosomes to generate two new offspring. The role of mutation

is to introduce diversity to the population [18,19].
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3.3.3. Differential evolution

DE was initially developed by Price and Storn in 1995 while trying to solve the Chebyshev polynomial fitting

problem [20]. It stems from the genetic annealing algorithm, which was also developed by Price [21]. DE starts

with an initial randomly generated population. Then this population evolves until the termination conditions

are fulfilled. While the population is evolving, the three evolutionary operations, namely differential mutation,

crossover, and selection, are executed in sequence [22].

4. Optimization results

The results obtained in this work were very satisfactory because the percentage of performance improvement

was significant. This study allowed us to find the optimal values of the parameters that would optimize our

objective function. In this work, three cases are investigated.

4.1. Case 1

In this case, the stator pole arc and rotor pole arc β s and β r are taken as design variables, and the objective

function is the average torque Tav . The optimal results, found using PSO, GA, and DE, are given in Table

3. Figure 5 shows the Tav and the weight for the initial and optimized machine. It is worth mentioning that

the optimal results improved the Tav by more than 30%. Furthermore, the GA and DE gave almost the same

results, which were better than the ones found using PSO.

Table 3. Optimal results for CASE 1.

Initial design
Optimal design
PSO GA DE

Generations size 50 50 50
Population size 20 20 50
Average torque [Nm] 14.168 18.87 19.56 19.47
Stator pole arc β◦

s [15
◦–30◦] 18 24.32 25 25.88

Rotor pole arc β◦
r [15

◦–30◦] 22 26.04 26.66 26.83
Weight [kg] 11.808 14.665 14.968 15.294

Figure 6 presents the evolution of the objective function during each iteration for the GA. Figure 7

shows the influence of the optimized values on the torque characteristics–rotor position. Figure 8 presents the

characteristic of the phase inductance–rotor position. There is an increase in the maximum phase inductance

unaligned position.

4.2. Case 2

In this case, the stator pole arc and rotor pole arc β s and β r are taken as design variables, whereas the objective

function is the torque-to-weight TWei . The optimal results found for this case are given in Table 4, and the

torque-to-weight and weight for the initial and optimized machine are shown in Figure 9. We can note that the

TWei has been improved using PSO, GA, or DE compared to the initial design.

4.3. Case 3

In this case, the stator pole arc and rotor pole arc, β s and β r, and the ratios that define the stator yoke and rotor

thicknesses, Kcs and Kcr , are taken as design variables, while the objective function is the torque-to-weight

TWei .
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using GA for Case 1.
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Figure 8. Phase inductance for initial and optimal de-
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Table 4. Optimal results for CASE 2.

Initial design
Optimal design
PSO GA DE

Generations size 50 50 50
Population size 20 20 50
Torque-to-weight [Nm/kg] 1.199 1.231 1.239 1.287
Stator pole arc β◦

s [15◦–30◦] 18 23.7 24.44 24.87
Rotor pole arc β◦

r [15◦–30◦] 22 25.12 25.4 25.63
Weight [kg] 11.808 14.438 14.645 14.822
Average torque [Nm] 14.168 17.663 18.145 19.076

The average torque and the weight for the initial and optimized machine are shown in Figure 10. The

plots of the static torque vs. rotor position shown in Figure 11, the plot of the inductance phases shown in Figure

12, and the magnetic flux vs. excitation for both aligned and unaligned positions shown in Figure 13 indicate

an improvement of the electromagnetic characteristics of the initial structure with optimized parameters using

PSO, GA, and DE. The results of the optimized parameters are given in Table 5.
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Table 5. Optimal results for CASE 3.

Initial design
Optimal design
PSO GA DE

Generations size 50 50 50
Population size 20 20 50
Torque-to-weight [Nm/kg] 1.199 1.268 1.29 1.298
Stator pole arc β◦

s [15◦–30◦] 18 24.34 24.99 24.99
Rotor pole arc β◦

r [15◦–30◦] 22 25.31 25.05 25.02
Kcs [0.25–0.6] 0.56 0.510 0.53 0.518
Kcr [0.25–0.75] 0.63 0.498 0.50 0.494
Weight [kg] 11.808 14.19 14.52 14.44
Average torque [Nm] 14.168 18.001 18.73 18.74

5. Conclusion

This paper discusses the results of a comparative study dealing with optimizing various geometrical parameters

of an 8/6 SRM prototype based on three computational methods (GA, PSO, and DE). As the studied machine

is strongly saturated, the finite element model has been used in a FEMM environment. The advantage of

this free access software is that it offers the possibility to parameterize the SRM geometry and automate the

computer-aided design drawing by means of a MATLAB script. A user-friendly program was implemented to

couple FEMM to MATLAB.

The optimization process considers the objective function ‘torque’ with two main constraints to be related

to the inequality of stator and rotor pole arcs (βs < βr ) and constant copper losses. According to simulation

results where the electromagnetic torque is deduced from the flux characteristics, we conclude that:

• Case 1: The optimization of the two pole arcs (βs, βr ) improved the average torque by 39%, but with an

increase in weight of 30% (not interesting case).

• Case 2: The optimization of the two pole arcs (βs, βr ) improved the torque-to-weight by 7% (interesting

case).

• Case 3: The optimization of four geometric parameters (two pole arcs and two yoke thicknesses) improved

the torque-to-weight by 8% (very interesting case, because the increase in ratio is due to a decrease in

weight, which results in a lower cost).

Work that studies the effects of geometric and control parameters on torque ripple is in progress.
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