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Abstract: Various scholarly works in the literature have pointed out that placing a preprocessor in front of a standard

postcompressor would help achieve higher gains while compressing natural-language text files. Ever since, there has been

much research on preprocessors to improve the gain attained by concatenated systems. With the same goal in mind

our paper proposes a new word-based preprocessor named METEHAN190 (M190) and contrasts its performance with

four other state-of-the-art preprocessors. Throughout the experiments source files from the Wall Street Journal (WSJ)

archive, and the Calgary, Canterbury, Gutenberg, and Pizza and Chili corpora were used. Postcompressors adapted were

Prediction by Partial Matching compressor using method-D (PPMD) and Monstrous PPM II compressor (PPMonstr).

It was observed that in all three experiments WRT and M190 would achieve the two highest compression gains. For

small text and transcription files from the Calgary corpus, M190 would outperform all preprocessors including WRT.

On the other hand, a look at average encoding and decoding times shows that the semistatic byte-oriented methods are

much faster in comparison to the static dictionary-based methods that encode words with characters.

Key words: Lossless text compression, preprocessing, postcompressor, dictionary, semistatic byte-oriented preproces-

sors, METEHAN 190

1. Introduction

To cope with the ever-growing need of multimedia and textual information sharing, researchers have proposed

various source coding algorithms. The primary aim of these algorithms is to represent a source signal with

minimum number of bits or symbols. Source coding algorithms can be classified in two major groups: (i)

lossless and (ii) lossy compressors. While lossless coding guarantees the exact reconstruction of the original

source data, for lossy coding algorithms only an approximate copy of the original data can be obtained. The

aim of this paper is to propose a new preprocessor that can be used prior to standard postprocessing algorithms

(PPAs) to achieve higher compression gains.

In the literature we can find many lossless compression algorithms and these generally process bits, bytes,

or words. Classical compressors like Huffman are known to use characters as the symbols to compress. Word-

based algorithms on the other hand elect words as their source alphabet. Character and word-based algorithms

can be categorized as: (i) statistical data compression methods and (ii) dictionary-based compression methods.

Statistical compression methods employ variable-length codes and are based on a model. The model is used

to map input data to bit sequences in such a way that probable (frequently encountered) data will produce
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shorter outputs in comparison to improbable data. The quality of compression is based on the model adapted.

Static, semistatic, and adaptive models are among the well-known models. A static model is fixed and is known

by both the compressor and the decompressor and does not depend on the data that are being compressed.

A semistatic model, which is also fixed, is constructed from the data to be compressed and must be included

as part of the compressed data. An adaptive model changes during the compression and is a function of the

previously compressed part of the data. Since that part is available at the decoder storing the model is not
necessary.

Entropy encoders such as Huffman coder [1], adaptive Huffman coder [2], arithmetic coder (AC) [3],

prediction by partial matching (PPM) [4], and PAQ [5] are examples of statistical source coding algorithms.

Statistical two-pass techniques (also known as semistatic) have good compression ratios and also permit faster

searching of compressed texts. Plain Huffman (PH)[6], tagged Huffman (TH)[6], end-tagged dense codes

(ETDC)[7], (s, c)-dense coding [8], and restricted prefix byte coding [9, 10] are examples of the two-pass

techniques. In these methods the first pass is used to gather statistics about the list of source symbols

(vocabulary) and based on the gathered information a model of the text is constructed. During the second

pass each symbol is substituted by a codeword.

Examples of dictionary-based methods include LZ77, LZ78, LZW ([11, 12]), and DEFLATE [13]. Star

transform [14], length index preserving transformation (LIPT) [15], star new transform (StarNT) [16], and

word replacement transformation (WRT) [17] are preprocessing methods that use a static dictionary. Other

algorithms that cannot be classified in either of the two groups are run-length encoders (RLE) [18], Burrows–

Wheeler transform (BWT) ([19, 20]), and BZIP2 [21], which uses block sorting BWT together with Huffman

coding.

Prediction by Partial Matching (PPM) ([4, 22]) is an adaptive statistical data compression technique that

uses context modeling and prediction. PPMC [22] is a hybrid combination of Methods A and B described in [4].

Performance of these compression methods is based on the escape probabilities (the probability of new symbols

occurring in the context). PPMD+ [23], PPMd [24], PPM* [25], and Monstrous PPMII.J (PPMonstr) [26] are

some other variants of the prediction by partial matching algorithm. Compressors like Durilca and Durilca Light

[27] are based on Shkarins’ PPMd [24] and PPMonstr [26]. mPPM, described in [28], is a two-stage compressor.

The first stage maps words into two-byte codewords using a limited length dictionary, and in the second stage

conventional PPM is used to encode codewords or new words.

Electronic book (eBook) use around the world has been constantly on the rise due to the huge success

of tablet computers and eReaders such as Kindle and Elonex. A small survey carried out with a total of

40,337 people from 13 different countries showed that 75 % of the respondents are expected to start reading

eBooks by 2015. Anticipating that these numbers would be even higher if the scope of the survey is widened,

text compression would clearly play an important role in reducing the storage space required. In addition,

compression would reduce the transmission and/or download times and would lead to reduced bandwidth

requirement. Motivated by the fact that placing a preprocessor in front of a postcompressor would help achieve

higher compression gain(s) while compressing text file(s), in the paper we have proposed a new dictionary-based

preprocessor named METEHAN 190 (M190). Our preprocessor is unique in the following ways: i) it employs

a larger alphabet than most static dictionary-based methods so that it can achieve shorter average code length

(alphabet sizes for LIPT, WRT, and M190 are respectively 52, 128, and 190), ii) its larger alphabet provides

the flexibility for a larger dictionary (words from multiple languages can be included in the dictionary), iii)

it does not use capital conversion so that the burden of using extra flags is removed (reduces computational
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complexity), iv) it does not code space and punctuation characters. This is an advantage since PPAs can get a

better compression gain by exploiting the redundancy.

Average bits per character (BPC) compression results obtained from experiments have showed that M190

can outperform all other preprocessors in compressing the Calgary corpus, and when Canterbury and Gutenberg

corpora were used BPC values for M190 were slightly higher than those of WRT but it would still outperform

the remaining algorithms. Time complexity of the proposed M190 preprocessor is also acceptable in comparison

to word-based preprocessors and some PPAs. It has smaller encoding times than WRT, RPBC, PPMD-o4, and

PPMonstr but is approximately four times slower than the semistatic byte-oriented preprocessors ETDC and

SCDC.

The rest of the paper is organized as follows: Section 2 provides a brief summary of some state-of-the-art

preprocessing techniques, namely LIPT, StarNT, WRT, ETDC, SCDC, and RPBC. Section 3 introduces the

encoder and decoder blocks for M190, and provides an example to show its application. Section 4 summarizes

experimental results given four different corpora [Calgary [29], Gutenberg [30], Canterbury [31], and Pizza and

Chili [32]] and the Wall Street Journal (WSJ) archive obtained from TREC project [33]. First, preprocessors

compared are placed prior to PPMD and PPMonstr and BPC values for the concatenated systems are obtained

using Calgary, Canterbury and Gutenberg corpora. Secondly, Section 4 provides a comparison between static

dictionary-based methods [M190 and WRT] and semistatic byte-oriented preprocessors [ETDC and SCDC]. For

comparison six medium-to-large size text files from the Pizza and Chili corpus and a 100 MB text file from

the Wall Street Journal archive were used. Section 5 provides comparative bar graphs for time complexity of

the M190 encoder/decoder pair, other preprocessors, and PPAs. Finally, a short summary is provided and the

paper is concluded.

2. Preprocessing techniques

Preprocessors using a static dictionary replace words in a given text by a character encoding that represents

a pointer to the encoded word in the dictionary. Semistatic techniques on the other hand do not assume any

data distribution and learn it during a first pass in which the model is built. After the creation of the model,

text can be encoded by replacing each symbol with a fixed codeword based on the model. Subsections below

summarize details of some well-known preprocessing algorithms, namely LIPT, StarNt, WRT, ETDC, SCDC,

and RPBC.

2.1. Preprocessors derived from the star transform

The star transform [14] was proposed by Nelson in 2002. The main idea behind this transformation is to define

a unique signature for each word by replacing the letters of the word by a special character, (∗), and to use a

minimum number of characters to identify each specified word. Subsections 2.1.1.–2.1.3. below are examples of

algorithms that have been derived from the basic star transform.

2.1.1. Length index preserving transformation (LIPT)

The LIPT algorithm [15], uses a static English language dictionary with 59,951 words (0.5 MB) and a transform

dictionary of size 0.3 MB. Given a compiled dictionary, the LIPT algorithm would create many disjoint

dictionaries based on word lengths. All words of length i would then be placed in dictionary Di and then

sorted according to the frequency of the word in the corpus being compressed. The algorithm then carries out

mapping to encode words in each disjoint dictionary Di .
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A word in position k of the disjoint dictionary Di , denoted Di[k] , is encoded using the alphabet [a–z,

A–Z] and Eq. (1):

1 < k < 52 ∗clen c
53 < k < 2756 ∗clen c c

2756 < k < 140, 608 ∗clen c c c.
(1)

Since LIPT encoded words have ’*’ in front of them, the LIPT decoder locates encoded words with a star

and then finds the length block indicator, which comes after the ’*’ symbol. Afterwards, characters that come

after the length block indicator are used to compute an offset from the beginning of the chosen length block.

The word at this location in the original dictionary would be the decoded word. Words without ’*’ in front of

them are nontransformed words and hence are written to decoded file as they are, without any decoding.

2.1.2. Star new transform (StarNT)

StarNT transformation [16], which was proposed by Sun et al. has a variable length code structure similar to

that of LIPT. Both algorithms use a radix 52 alphabet (a–z, A–Z) and words of higher occurrence are coded

using shorter codewords. As for the usage of a star (*), in the earlier transformations it would denote the

beginning of a codeword but in starNT it implies that the following word does not exist in the dictionary. This

change was adapted in order to reduce the size of the transformed intermediate file and will help lower the

encoding/decoding time of the backend compressor. To encode, starNT uses a dictionary, where the first 312

words (the most frequently occurring words in English) appear at the top in decreasing order of their frequencies

and the remaining words are sorted according to their lengths. The alphabet adapted is [a . . . z , A . . . Z].

2.1.3. Word replacement transformation (WRT)

The word replacement transform (WRT) [17] has been proposed by Skibinski et al. and is a variation of

the starNT with some improvements like capital conversion, word ordering, q-gram replacement, and end-of-

line (EOL) coding. Details of capital conversion, dictionary ordering, q-gram replacement, and EOL coding

techniques have been well explained in [17] and [34]; hence interested readers are referred to these sources for

further details.

2.2. Semistatic word-based byte-oriented preprocessors

In semistatic preprocessors, using bytes instead of bits may slightly worsen the compression ratio; however, both

the encoding and decoding processes will speed up. Byte-oriented preprocessors also provide the flexibility to

carry out a direct pattern search on the compressed text since they are self-synchronized codes. Subsections

2.2.1.–2.2.3. below provide details on the end-tagged dense coding, (s, c)-dense coding, and restricted prefix

byte coding (RPBC) techniques.

2.2.1. End-tagged dense codes

End-tagged dense coding (ETDC) [7] is a word-based byte-oriented compression method. To compute the

codeword of each source word, ETDC uses a semistatic model that is simply the vocabulary ordered by frequency.

The first 128 words in the vocabulary are given one byte codewords. Words in positions 128 to 128 + 1282 - 1

are assigned two-byte codewords and the three-byte codewords are given to the remaining words. ETDC has

4468
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been inspired from the tagged Huffman code [35], and has been obtained through a very simple change. Rather

than marking the beginning of each codeword the most important bit of every byte has been used to mark their

end. Hence whenever a given byte is the last byte of a codeword the highest bit is set to 1; otherwise it must

be set to 0. In ETDC the flag bit is enough to ensure that the code is a prefix code regardless of the contents

of the other 7 bits. Therefore, there is no need to use Huffman coding over the remaining 7 bits.

2.2.2. (s,c)-Dense codes (SCDC)

(s, c)-Dense coding [8] is a more sophisticated variant of word-based byte-oriented text compressors. End-tagged

dense codes use 128 target symbols for the bytes that do not end a codeword (continuers), and the remaining

128 target symbols for the last byte of the codeword (stoppers). An (s, c)-dense code on the other hand adapts

the number of stoppers and continuers to the word frequency distribution of the text, so that s values are used

as stoppers and c = 256 - s values as continuers. SCDC assigns one-byte codewords from 0 to s-1 to the first

s words of the vocabulary. Words in positions s to s + sc - 1 are sequentially given two-byte codewords.

Three-byte codewords are for words from s+sc to s + sc + sc2 -1 The encoding and decoding algorithms are

the same as those of ETDC. One only needs to change the 128 value of stoppers and continuers by s and c ,

respectively.

2.2.3. Restricted prefix byte coding (RPBC)

Restricted prefix byte coding (RPBC) was first proposed in [9]. Unlike the (s, c)-dense codes, which use an

infinite tuple of numbers, RPBC uses a length-N finite tuple, where the numbers in the tuple refer to the initial

digit ranges in the radix-R code. We say that the code is restricted since v1 + v2 + · · · + vN ≤ R . Under

RPBC, the first byte of each codeword is used to describe the length of the codeword and additional bytes use

the remaining code space. For example, while encoding with N=4, (v1, v2, v3, v4 ), the code has v1 one-byte

codewords, Rv2 two-byte codewords, R2v3 three-byte codewords, and R3v4 four-byte codes. It is required that

v1 + Rv2 + R2v3 + R3v4 ≤ n, where n represents the cardinality of the source alphabet.

3. METEHAN 190 (M190)

The proposed preprocessor, M190, uses 1–3-byte-long codewords while encoding text documents. Each codeword

is composed of characters that are drawn from an extended, 190-character-long alphabet. The value 190 was

obtained as follows. Due to their high frequencies, space and punctuation marks deserve to be coded using the

shortest codewords (1-byte). However, since this does not result in any compression, M190 administers encoding

to only words, and space and punctuation characters are left as they are (uncoded). From the 256-character

extended-ASCII set, this would leave only 191 classified otherwise. In addition, anticipating that some words

that we need to encode may not be in the dictionary, the 127th ASCII character was reserved for encoding of

such words. Hence, a total of 190 characters would remain. With three bytes and the extended character set,

it is possible to represent up to 6,858,999 different words.

The M190 dictionary (M190DICT) contains 178,343 words and is 1.56 MB in size. M190DICT has been

compiled using Webster’s Unabridged dictionary, some text files from the Project Gutenberg, a name dictionary,

various computer transcriptions, and various Internet sources. The sources in compilation sum up to 46.24 MB.

The dictionary has been created as follows. The compiled text file is scanned sequentially and words are ordered

based on their occurrence frequencies. The dictionary is then created by sorting the frequencies in descending
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order and writing one copy of each word in a text file at the position dictated by this ordering. Besides the

regular words, M190DICT also contains some characters or short abbreviations. These come about due to the

use of various computer transcription files while compiling the dictionary. M190DICT also includes all upper

and first letter uppercase versions of certain words since M190 does not use modified capital conversion.

The basic order of processing for the M190 preprocessor can be summarized as follows: (i) encoding

represents punctuation marks and separators as they are, (ii) unknown words are escaped with the 1-byte 127th

ASCII character, and represented in plain form; similarly, the end of an unknown word is also marked with

the 127th ASCII character, (iii) words in the dictionary are given a codeword depending on their rank using a

radix-190 number; the alphabet used by the M190 preprocessor is provided in Figure 1. Note that it is possible

to redesign M190DICT to include non-English words from other languages; however, this expansion in the

dictionary would lead to slower encoding.

Figure 1. Ordered Character Set

3.1. Encoder for M190

The M190 encoder does not replace the space and punctuation characters and would only administer word

encoding. A word for M190 starts when an alphanumeric character is read and ends when a space character

or a punctuation character is encountered in the sequential scanning. Words that are not in the dictionary are

coded by placing a flag before and after writing the words into the encoded file. The flag used by M190 is the

127th ASCII character. Encoding for M190 starts by scanning a text file and every time a word is encountered

its position in the dictionary is determined. If this value is in the range 1–189, one character (1-byte) that

corresponds to this word’s position is selected from the ordered extended alphabet as the codeword (please refer

to Figure 1). If the word’s position is in the range 190–36,099, two characters from the alphabet are used. For

words with position values in the range 36,099–6,858,999, the encoder uses three characters.

3.2. Decoder for M190

Given a codeword, the task of the decoder is to generate a position in the dictionary based on the characters

that make up the codeword and output the actual word corresponding to this position. For example, if the

codeword to decode is ABE, then the position could be computed as shown in Figure 2.

Figure 2. Calculating the position in dictionary.
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3.3. Encoder/decoder example

This section demonstrates M190’s encoding/decoding processes using the proverb ”he who hesitates is lost”.

If we assume that the proverb is in a text file and the encoder is scanning it for words, every time a word is

encountered its position in the dictionary (line number) is determined. As shown in Table 1, the word ”he”

is at position 36 and ”who” is at position 129. Position values for spaces and punctuations (the full stop) are

not needed because the encoder does not map these characters to codewords. When the position of the word

to encode is less than 190, only one character from the extended alphabet will be used as the codeword. For

positions in the range 190–36,099 the codeword would contain two characters. For example, the word ”he”,

which is at position 36, will be encoded using the ’a’ symbol and the word ”lost”, which is at position 1019,

will be coded as ‡5. In the decoder block, the codeword ’7’, which is one-byte long, must have a position value

that equals 1900× (position of character in extended alphabet). This value is 7 and it corresponds to the word

”is” in the dictionary.

Table 1. Codeword assignment for words in a proverb.

Space Space Space Space Punctuation
proverb he who hesitates is lost .
line number 36 - 129 - 102,860 - 7 - 1019 -

codeword a Ã ˆ ã 2 7 ‡5 .

4. Performance evaluation

In this section we compare the compression effectiveness of some well-established preprocessors and M190. Bit-,

byte-, or word-based preprocessing algorithms have been evaluated in concatenation with PPAs such as PPMD

and PPMonstr. During experiments PPMD with order-4 and PPMonstr with order-8 and memory limit of 256

MB was assumed. The compression effectiveness is given in terms of BPC and is computed using (2):

BPC =
Compressed file size (bytes)

Original file size (bytes)
× 8 (2)

Table 2 provides a list of the corpora, preprocessing algorithms, and PPAs that have been used in this study. For

each entry in the table there is a web address from which the source codes can be downloaded. Executable files

for encoder and decoder blocks of M190 can be downloaded from the web address also provided in Table 2. We

would like to point out that M190 does not use a separate dictionary file but instead it embeds the dictionary

into the code in order to speed up the encoding/decoding processes. Note that when dynamic memory allocation

functions are used and the dictionary is embedded into the code using a preclassified form there would be no

need for gigantic nested loops and temporary variables and this would help lower the encoding and decoding

times.

The first two experiments analyze the frequency of punctuation characters in the aggregate text file called

CALGARY.TXT [36] and also provide distribution of character types (punctuations/space/other) for text files

and computer transcriptions selected from the Calgary, Gutenberg, and Canterbury corpora. Results from

the first experiment show that, among the 31 punctuation characters depicted, only 14 have a percentage of

occurrence above 0.1% and 2 are 1% or above. Results of the second experiment are given in Table 3. For the

13 text files and 3 computer transcriptions, the percentage of punctuation characters plus the space characters

would fluctuate from 21% to 43% depending on the file. Note that, among the tested files, the percentage of

punctuation plus space characters is highest for computer transcriptions, namely progc, progl, and progp.
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Table 2. Corpora and source codes used in experiments.

Corpora

Calgary corpus http://corpus.canterbury.ac.nz/descriptions/

Gutenberg http://www.promo.net/pg/

Canterbury http://corpus.canterbury.ac.nz/descriptions/

Pizza and Chili http://pizzachili.dcc.uchile.d/texts/nlang/

Preprocessing algorithms

StarNT https://code.google.com/p/starnt/source/

M190 http://faraday.ee.emu.edu.tr/eaince/downloads.html

WRT4.6 http://www.ii.uni.wroc.pl/ inikep/research/WRT/WRT46.zip

ETDC http://vios.dc.fi.udc.es/codes/files/etdc.tar.gz

SCDC http://vios.dc.fi.udc.es/codes/files/scdc.tar.gz

Standard postprocessing algorithms

BZIP2 bzip2 under 7zip
PPMD http://compression.ru/ds/

PPMonstr http://compression.ru/ds/

Other

mPPM http://www.infor.uva.es/ jadiego/download.php

Table 3. Distribution of character types in each file.

FILE Punctuations Spaces Remaining
(%) (%) (%)

bib 9.70 17.99 72.31
book1 4.51 18.49 76.99
book2 6.11 16.93 76.97
news 9.83 17.61 72.56
paper1 8.82 16.65 74.53
paper2 4.31 16.92 78.77
progc 16.11 24.37 59.51
progl 20.28 23.59 56.13
progp 14.73 28.31 56.96
1musk10 4.67 18.68 76.65
alice29 5.59 21.89 72.51
anne11 4.00 19.39 76.61
asyoulik 4.01 21.07 74.92
bible 3.02 19.68 77.30
dickens 4.26 18.84 76.90
lcet10 4.28 17.83 77.89

Tables 4 and 5 provide compression effectiveness of LIPT, StarNT, WRT, M190, ETDC, SCDC, and

RPBC when they are used prior to PPMD and PPMonstr. Experiments consider only a subset of the Calgary

corpus [29]. Note that column five of Table 4 provides results for the Universal Processor of Abel and Teahan

[37] concatenated with (PPMD+)[23]. The Universal preprocessor does not require an external dictionary

and is known to work for all languages that are Latin based. The last column of Table 4 has been reserved

for compression results with mPPM [28]. Since mPPM first maps words into two-byte codewords and then

encodes the codewords using conventional PPM (two-stage compressor), the authors chose to compare it in

this table with results obtained from other preprocessors concatenated with PPMD. A quick look at Table

4 indicates that M190+PPMD, WRT+PPMD, and StarNT+PPMD are the three best performing methods.

Their respective average BPCs are 1.87, 1.92, and 1.93. Table 5 provides BPC values for M190+PPMonstr and
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other preprocessors such as LIPT, StarNT, WRT, ETDC, and SCDC in concatenation with PPMonstr. Again

M190+PPMonstr, WRT+PPMonstr and StarNT+PPMonstr provide better compression in comparison with

the other methods. Their respective BPCs are 1.61, 1.65, and 1.80. This implies that M190+PPMonstr has

respective gains of 2.42% and 10.6% over WRT+PPMonstr and StarNT+PPMonstr.

Figures 3 and 4 provide grouped bar graphs for the data presented in Tables 4 and 5. They have been

provided to show the degree to which each source file can be compressed by the competing preprocessors when

each preprocessor is used prior to PPMD or PPMonstr. It can be seen from Figure 3 that when the postprocessor

is PPMD, M190 attains lower BPC values while compressing ′bib′ , ′news′ , ′paper1′ , ′paper2′ , ′progc′ , ′progl′ ,

and ′progp′ and WRT is good for ′book1′ and ′book2′ .
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Figure 3. Comparison of preprocessors plus PPMD and stand-alone mPPM using files from the Calgary corpus.

Similarly with PPMonstr as the PPA, M190 gets lower BPCs for ′bib′ , ′news′ , ′paper1′ , ′paper2′ ,
′progc′ , and ′progl′ . On the other hand, WRT excels in compressing ′book1′ and ′book2′ . For ′progp′ BPC

values for M190 and WRT are identical. Note that results for ETDC and LIPT have been excluded from
Figures 3 and 4 since ETDC has the highest average BPC among the semistatic methods and LIPT among the

dictionary-based methods.

Tables 6 and 7 provide BPC results for text files from the Gutenberg [30] and Canterbury [31] corpora

when preprocessors are concatenated with PPMD and PPMonstr. During experiments WRT and M190 would

provide the two highest compression gains. When the postprocessor is PPMD, average BPC values for WRT,

M190, and StarNT are respectively 1.87, 1.88, and 1.89. This shows that WRT+PPMD has 1.07% shorter

compressed-file size than StarNT+PPMD and 0.53% shorter compressed-file size than M190+PPMD. Similarly,

when the postprocessor is PPMonstr, the respective average BPC values are 1.66, 1.68, and 1.75. This implies

that StarNT+PPMonstr has 3.55% longer compressed-file size than M190+PPMonstr, and M190+PPMonstr

has 1.81% longer compressed-file size than WRT+PPMonstr. It has been stated in [17] that, while compiling

the dictionary for WRT, a training corpus of 3 GB has been taken from Project Gutenberg. This explains the
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Table 5. Comparison of preprocessors when they are concatenated with PPMonstr.

FILE SIZE LIPT StarNT WRT4.6 WRT4.6 M190 ETDC SCDC RPBC
+ + + + + + + +
PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr

(bytes) BPC BPC BPC BPC BPC BPC BPC BPC
(Aspell dict) (M190 dict)

bib 111,261 1.81 1.63 1.46 1.51 1.32 2.04 2.04 2.03
book1 768,771 2.19 2.07 1.90 1.90 1.95 2.34 2.34 2.33
book2 610,856 1.91 1.72 1.58 1.59 1.62 1.94 1.94 1.93
news 377,109 2.14 2.05 1.91 1.86 1.76 2.48 2.47 2.46
paper1 53,161 2.08 2.00 1.80 1.85 1.82 2.59 2.57 2.57
paper2 82,199 2.28 1.97 1.82 1.81 1.80 2.44 2.42 2.42
progc 39,611 2.24 2.04 1.94 1.88 1.84 2.72 2.69 2.68
progl 71,646 1.59 1.33 1.23 1.19 1.19 1.61 1.59 1.59
progp 49,379 1.64 1.41 1.27 1.25 1.22 1.59 1.56 1.56
Av BPC 1.99 1.80 1.66 1.65 1.61 2.20 2.18 2.17

bi
b

bo
ok
1

bo
ok
2

ne
w
s

pa
pe
r1

pa
pe
r2

pr
og
c

pr
og
p

pr
og
l

0

0.5

1

1.5

2

2.5

3

3.5

1
.
3
2
,

1
.
9
5
,

1
.
6
2
,

1
.
7
6
,

1
.
8
2
,

1
.
8
,

1
.
8
4
,

1
.
1
9
,

1
.
2
2
,1

.
5
1
,

1
.
9
,

1
.
5
9
, 1
.
8
6
,

1
.
8
5
,

1
.
8
1
,

1
.
8
8
,

1
.
1
9
,

1
.
2
5
,

1
.
6
3
,

2
.
0
7
,

1
.
7
2
,

2
.
0
5
,

2
,

1
.
9
7
,

2
.
0
4
,

1
.
3
3
,

1
.
4
1
,

2
.
0
4
, 2

.
3
4
,

1
.
9
4
,

2
.
4
7
,

2
.
5
7
,

2
.
4
2
, 2
.
6
9
,

1
.
5
9
,

1
.
5
6
,

2
.
0
3
, 2

.
3
3
,

1
.
9
3
,

2
.
4
6
,

2
.
5
7
,

2
.
4
2
, 2
.
6
8
,

1
.
5
9
,

1
.
5
6
,

Source Files

B
it
s
P
e
r
C
h
a
ra
c
te
r
V
a
lu
e
s

M190+PPMonstr WRT4.6+PPMonstr StarNT+PPMonstr SCDC+PPMonstr RPBC+PPMonstr

Figure 4. Comparison of preprocessors plus PPMonstr using source files from the Calgary corpus.

lower BPC values when WRT is using the Aspell dictionaries. It is expected that better training would lead

to enhanced compression gains. Note that the data provided in Table 7 have been plotted in Figure 5 and

show how each source file is compressed by the preprocessor plus PPMonstr pair. The data in Table 6 were not

plotted since BPC values with PPMD as postcompressor were lower.

The paper also compares dictionary-based preprocessors, WRT and M190, against the byte-oriented

semistatic methods (SCDC and RPBC) using seven medium-to-large size text files. The first four files, which

had names wealthnations, warpeace, big and dickens, were from Project Gutenberg and had sizes of 2.12, 4.23,

6.3, and 30 MB. The files named english50 and english200 were taken from the Pizza and Chili corpus. WSJ100

text file, which is 100 MB in size, was taken from the TREC Project archives and this is the only text file not

related to Project Gutenberg. Figure 6 provides a comparative bar graph that shows the BPCs attained by
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Table 6. Compression effectiveness of preprocessor + PPMD while using files from the Gutenberg and Canterbury
corpora.

Source FILE SIZE LIPT StarNT WRT4.6 WRT4.6 M190 ETDC SCDC RPBC

+ + + + + + + +

PPMD-o4 PPMD-o4 PPMD-o4 PPMD-o4 PPMD-o4 PPMD-o4 PPMD-o4 PPMD-o4

(bytes) BPC [15] BPC BPC BPC BPC BPC BPC BPC

(Aspell dict) (M190 dict)

Gutenberg 1musk10 1,349,139 1.85 1.82 1.72 1.80 1.84 2.03 2.03 2.02

Gutenberg anne11 587,051 2.04 2.01 1.91 2.00 2.03 2.27 2.26 2.25

Canterbury alice29 152,089 2.06 2.00 1.90 1.96 1.96 2.37 2.35 2.34

Canterbury asyoulik 125,179 2.35 2.24 2.24 2.20 2.21 2.77 2.75 2.74

Canterbury lect10 426,754 1.86 1.78 1.72 1.76 1.75 2.07 2.06 2.05

Large bible 4,047,392 1.57 1.47 1.46 1.48 1.50 1.52 1.52 1.52

Av BPC 1.96 1.89 1.83 1.87 1.88 2.17 2.16 2.15

Table 7. Compression effectiveness of preprocessor + PPMonstr while using files from the Gutenberg and Canterbury
corpora.

Source FILE Size LIPT StarNT WRT4.6 WRT4.6 M190 ETDC SCDC RPBC

+ + + + + + + +

PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr PPMonstr

(bytes) BPC BPC BPC BPC BPC BPC BPC BPC

(Aspell dict) (M190 dict)

Gutenberg 1musk10 1,349,139 1.83 1.70 1.56 1.64 1.68 1.84 1.83 1.83

Gutenberg anne11 587,051 1.98 1.88 1.71 1.81 1.85 2.09 2.08 2.08

Canterbury alice29 152,089 1.99 1.87 1.70 1.76 1.80 2.19 2.17 2.17

Canterbury asyoulik 125,179 2.21 2.12 1.98 1.94 1.98 2.53 2.51 2.51

Canterbury lect10 426,754 1.77 1.68 1.52 1.55 1.55 1.88 1.88 1.87

Large bible 4,047,392 1.58 1.32 1.25 1.26 1.28 1.34 1.33 1.33

Av BPC 1.89 1.75 1.62 1.66 1.68 1.98 1.97 1.96
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Figure 5. Comparison of preprocessors plus PPMonstr using source files from the Gutenberg and Canterbury corpora.

the algorithms considered when they are concatenated with PPMonstr. The average BPCs for SCDC, RPBC,

M190, and WRT are respectively 1.50, 1.50, 1.45, and 1.42. Clearly, both WRT and M190 achieve higher

average gains than the semistatic methods. For the 100 MB WSJ100 file, which is not from the Gutenberg

Project Library, the BPC difference between WRT and M190 is 0.01. This corresponds to a difference of 105

KB in compressed file sizes. Also note that as the file sizes grew the difference between dictionary-based and

semistatic methods would become less significant. However, since most of the time the files one would like to
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exchange are smaller than 200 MB, it is fair to say that for small to moderately large files the dictionary-based

methods would outperform the semistatic byte-oriented methods.

Finally, Figure 7 provides the encoding and decoding times and speeds for various preprocessors and

some well known PPAs. Time measurements are in seconds and are obtained as ensemble average values for 10

runs using a 2.5 GHz Intel core i5 CPU supported by 3 GB of RAM. Speed measurements are in megabytes

per second. The source files used in the experiments are the same as in Table 1 of [38]. Encoding/decoding

times depicted in subplot 7-(a) show that M190 has smaller encoding time than WRT, RPBC, PPMD-o4,

and PPMonstr but is approximately 6.7% slower than BZIP2. When static dictionary-based preprocessors are

compared with semistatic byte-oriented preprocessors, we see that both WRT and M190 need four times as

much encoding time. As for decoding, M190 is faster than PPMonstr, requires the same time as PPMD-o4,

and is 0.01 seconds slower than both BZIP2 and WRT. ETDC and SCDC have the least decoding time in

comparison with the other algorithms. It is clear from subplot 7-(b) that techniques requiring less time have

the highest speed values.

5. Summary and conclusions

The paper has proposed a new preprocessor called M190 that can help improve overall compression when it

is used prior to well-known PPAs. Experimental results have shown that while compressing source files from

the Calgary, Canterbury, and Gutenberg corpora, M190 and WRT (two static word-based preprocessors) can

always attain higher compression in comparison to the semistatic byte-oriented methods: ETDC, SCDC, and

RPBC. With the Calgary corpus, M190 would outperform all preprocessors including WRT regardless of the

postcompressor it is coupled with. For six medium-to-large-size files from Project Gutenberg, the Pizza and

Chili corpus, and WSJ archive, both M190 and WRT would again provide lower average BPCs in comparison

to semistatic byte-oriented methods. Among themselves, WRT would outperform M190 for Project Gutenberg
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Figure 7. Comparison of encoding/decoding (a) times, (b) speeds.

related files and for WSJ100, which is not Project Gutenberg related, the difference between M190 and WRT is

marginal. Finally, in all three experiments ETDC and SCDC have the lowest encoding and decoding times. To

conclude, the proposed M190 preprocessor has simple logic, it can provide good compression gains in comparison

to other state-of-the-art preprocessors, and it also has an acceptable time complexity.
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