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Abstract: This study aims to develop a novel version of bi input-extended Kalman filter (BI-EKF)-based estimation

technique in order to increase the number of state and parameter estimations required for speed-sensorless direct vector

control (DVC) systems, which perform velocity and position controls of induction motors (IMs). For this purpose,

all states required for the speed-sensorless DVC systems, besides the stator resistance Rs , the rotor resistance Rr ,

the load torque tL including the viscous friction term, and the reciprocal of total inertia 1/jT , are simultaneously

estimated by the novel BI-EKF algorithm using the measured phase currents and voltages. The effectiveness of the

proposed speed-sensorless DVC systems is tested by simulations under the challenging variations of Rs , Rr , tL , jT , and

velocity/position reference. Later, the state and parameter estimations of the novel BI-EKF algorithm are confirmed

with real-time experiments in a wide speed range. Finally, in both transient and steady states, a satisfactory estimation

and control performance that make this study unique are achieved.

Key words: Induction motor, extended Kalman filter, sensorless control, rotor-stator resistance estimation, load torque

estimation, inertia estimation

1. Introduction

The robustness of state estimations of induction motors (IMs) improves the performance of the speed-sensorless

control of IMs. For a speed/position control application of IMs with speed/position-sensorless, estimations of

the rotor angular velocity/rotor position and the flux are required; however, these estimations are negatively

affected by the variations in IM parameters, particularly the temperature and frequency-based variations of

stator (Rs ) and rotor (Rr ) resistances, as well as the unknown load torque (tL ). In the literature, two groups

of studies have been conducted utilizing the two-phase IM model for velocity estimation. The first group [1]

assumes a slower variation of velocity with respect to the electrical states, and then defines velocity as a constant

state that does not need the knowledge of tL , inertia (jT ), and total viscous friction coefficient (βT ), yet gives

rise to performance deterioration, especially in the transient state of the speed-sensorless control system. Unlike

the first group, in the second group of studies, as in [2], velocity is estimated as a state with the utilization

of the equation of motion in order to improve both the transient and the steady state performances of the

speed-sensorless control system. However, the equation of motion requires accurate knowledge of tL , jT , and

βT .
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ZERDALİ and BARUT/Turk J Elec Eng & Comp Sci

Recently, speed-sensorless studies as in [3–8] have been proposed. [3,4] are sensitive to Rr and Rs

variations, whereas [5,6] and [7,8] are easily affected by the Rs and Rr variations, respectively. In studies such

as [9–13], both Rs and Rr estimations were performed for a speed-sensorless control of IMs. However, the

results presented in [9–11], which take place in the first group of studies, are sensitive to load torque variations.

[12,13] are only applicable whenever the speed-sensorless control system is in steady-state, as declared by the

authors.

The literature also includes extended Kalman filter (EKF)-based solutions, investigated by the switch-

ing/braided EKF- [14–17] and the BI-EKF-based [18] studies. These studies conduct simultaneous estimations

of Rr , Rs , and tL , including the viscous friction term (βT × ωm) together with stator currents, ωm , and flux

estimations, by using the measured stator phase currents and voltages. In [14–18], the total number of estimated

states and parameters is 8. Later, [19] introduces a novel version of the BI-EKF algorithm-estimating stator

currents, rotor fluxes, Rr , Rs , ωm , and tL , including the viscous friction term (βT ×ωm) and 1/jT , in order to

increase the number of the estimated states and varying parameters, which is 9 in [19]. However, [19] tests the

effectiveness of the proposed estimation algorithm under the speed control of IM instead of using the position

control systems where the speed of IM is zero or ultra-low, and the inertia information or estimation is vital.

Moreover, [20] specifically aims to be capable of working in the field-weakening region; this type of operation

requires the speed control of IM beyond its base/nominal speed, and causes variations in Lm . Therefore, the

study in [20] simultaneously estimates Lm together with the estimations of stator currents, rotor fluxes, Rr ,

Rs , ωm , and tL , including the viscous friction term (βT × ωm) with the utilization of the novel version of the

BI-EKF technique introduced in [19].

The major contribution of this study is to present a novel version of the BI-EKF-based estimation

techniques, providing an increased number of state-parameter estimations and comparing it with its previous

version in [18] for speed-sensorless DVC systems, which carry out both velocity and position controls of IMs.

The novel BI-EKF-based estimator introduced in this study executes the simultaneous estimations of Rr , Rs ,

tL including the viscous friction term, 1/jT besides stator currents, ωm , and rotor flux, by assuming that

stator phase voltages and currents are available. From this point of view, it is the first known study in the

literature and an extended version of the study in [19] that does not include the speed-sensorless position control

system of the IM and its results. In addition, the comparisons made show the superiority of the proposed BI-

EKF algorithm in this study over the previous study [17]. The simulations are conducted under the step-like

variations of Rs , Rr , tL , jT , and velocity/position reference in order to show the validity of the proposed

BI-EKF-based speed-sensorless control systems. The obtained results confirm a satisfactory estimation and

control performance in both transient and steady states.

This paper is organized into six sections. Following the introduction in Section 1, Section 2 proceeds with

the derivation of the extended IM models developed for Rs&tL or Rr&γT estimations, together with all the

states required for the speed-sensorless DVC systems. Next, Section 3 explains the novel BI-EKF technique.

Section 4 presents two different speed-sensorless DVC systems established for velocity or position control of

IM, respectively. In Section 5, the simulation results are provided to demonstrate the effectiveness of the novel

BI-EKF algorithm and, hence, of speed-sensorless DVC systems. In Section 6, real-time experimental results

validate the state and parameter estimations of the novel BI-EKF algorithm. Finally, the conclusions are given

in Section 7.
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2. Development of extended IM models

In this study, two extended rotor flux-based IM models are established for BI-EKF-based estimations in order

to solve the simultaneous estimation problem of Rs , Rr , tL , γT =̂1/jT , and ωm , as well as isα , isβ , φrα , and

φrβ . For this aim, the extended models in discrete form, proposed in this study as Model 1 [14,15,17,18,20]

and Model 2 for the Rr and γT estimations, can be given (as referred to the stator stationary frame) in the

following general form:

xei(k + 1) = f
ei
(xei(k), ue(k)) + wi1(k)

= Aei(xei(k))xei(k) +Beue(k) + wi1(k)
(1)

Z(k) = hei(xei(k)) + wi2(k) (measurement equation)

= Hexei(k) + wi2(k)
(2)

Here i =1 or 2 represents each model, xei is the extended state vector for both models, f
ei

is the nonlinear

function of the states and inputs, Aei is the system matrix, ue is the control input vector, Be is the input

matrix, wi1 is the process noise, hei is the function of the outputs, He is the measurement matrix, and wi2

is the measurement noise. Subject to the general form in Eqs. (1) and (2), the matrices or vectors in the two

extended IM models can be represented as follows:

• Model 1: The extended IM model [14,15,17,18,20] developed for Rs and tL estimations (Model-Rs&tL).

xe1 = [ isα(k) isβ(k) φrα(k) φrβ(k) ωm(k) tL(k) Rs(k) ]T

Ae1=̂



1−
(

Rs(k)
Lσ

− L2
mRr

LσL2
r

)
T 0 LmRrT

LσL2
r

LmppTωm(k)
LσLr
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0 1−
(

Rs(k)
Lσ

− L2
mRr

LσL2
r

)
T −LmppTωm(k)

LσLr

LmRrT
LσL2

r
0 0 0

LmRrT
Lr

0 1− RrT
Lr

−ppTωm (k) 0 0 0

0 LmRrT
Lr

ppTωm (k) 1− RrT
Lr

0 0 0

− 3
2
Lm

Lr

pp

JT
Tφrβ (k)

3
2
Lm

Lr

pp

JT
Tφrα (k) 0 0 1 − T

JT
0

0 0 0 0 0 1 0
0 0 0 0 0 0 1


• Model 2: The extended IM model introduced for Rr and γT estimations (Model-Rr&γT ) in this study.

xe2 = [ isα(k) isβ(k) φrα(k) φrβ(k) ωm(k) γT (k) Rr(k) ]T

Ae2=̂



1−
(

Rs

Lσ
− L2

mRr(k)
LσL2

r

)
T 0 LmRr(k)T
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0 0 0 0 0 0 1
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ZERDALİ and BARUT/Turk J Elec Eng & Comp Sci

• In both models, Be , ue , He , and the coefficients are given by

Be =

[ T
Lσ

0 0 0 0 0 0

0 T
Lσ

0 0 0 0 0

]T
, ue = [ vsα(k) vsβ(k) ]

He =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
,

where jT is the total inertia of the IM and load; γT is defined as 1/jT ; ωm is the rotor angular velocity; pp is

the number of pole pairs; Lσ = σLs is the stator transient inductance; σ = 1− L2
m

LsLr
is the leakage or coupling

factor; Ls and Lr are the stator and rotor inductances, respectively; φrα and φrβ are the stator stationary

axis components of rotor fluxes; vsα and vsβ are the stator stationary axis components of stator voltages; isα

and isβ are the stator stationary axis components of stator currents; and T is the sampling time.

In Model-Rs&tL and Model-Rr&γT ,

• the main difference occurs due to the constant states Rs&tL in xe1 and Rr&γT in xe2 , respectively.

• w11 and w22 in Eq. (2) are equal, because they use the same measured state variables, isα and isβ .

3. Theoretical foundations of the novel BI-EKF algorithm

The BI-EKF algorithm in this study simultaneously estimates Rs , Rr , tL , γT , and ωm as well as φrα , φrβ ,

isα , and isβ by utilizing measured stator phase voltages and currents for a speed control application of IM.

Thus, it has priority over previous BI-EKF-based studies, as in [18], which estimates the same parameters and

states except for γT . In other words, the BI-EKF algorithm in this study estimates more parameters than other

EKF-based or past studies.

To describe this type of BI-EKF technique, conventional EKF equations can be given as follows:

F ei(k) =
∂f

ei
(xei(k), ue(k))

∂xei(k)

∣∣∣∣∣
x̂ei(k),ue(k)

(3a)

N i(k) = F ei(k)P i(k)F
T
ei(k) +Q

i
(3b)

P i(k + 1) = N i(k)−N i(k)H
T
e (Dξ +HeN i(k)H

T
e )

−1HeN i(k) (3c)

x̂ei(k + 1) = f̂
ei
(x̂ei(k), ue(k)) + P i(k + 1)HT

e D
−1
ξ (Z(k)−Hex̂ei(k)) (3d)

where F ei is the function used in the linearization of the nonlinear models (1). Q
i
is the covariance matrix

of the system noise, namely the model error. Dξ is the covariance matrix of the output noise, namely the

measurement noise. P i and N i are the covariance matrix of the state estimation error and extrapolation error,

respectively.

The BI-EKF algorithm (Figure 1) is finally established by considering the EKF equations (3a, 3b, 3c,

and 3d) and exploiting the three remarks [18] as follows:
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Figure 1. Flow chart of the novel BI-EKF algorithm.

Remark 1 Eqs. 3b, 3c, and 3d constitute the main body of the EKF algorithm.

Remark 2 The inputs of Eqs. 3b, 3c, and 3d, which must be changed for Model 1 or Model 2, are F ei , Q
i
,

and f̂
ei

because the elements of those matrices are calculated from each model.

Remark 3 The inputs of Eqs. 3b, 3c, and 3d, which must be the same for both models, are Dζ and He , due

to using the same measurements (isα and isβ) . Moreover, the dimensions of N i , P i and x̂ei are identical for

both models due to utilizing same-order models.

As demonstrated in Figure 1, the BI-EKF algorithm is constructed on a single-standard EKF algorithm,

consecutively using two different inputs calculated from Model-Rs&tL and Model-Rr&γT , respectively. Con-

sequently, it is called bi input EKF (BI-EKF). The consecutive operation of the two inputs is performed at

each sampling time (T ). During each T , the simultaneous estimation of the same group of states (isα , isβ ,

φrα , φrβ , and ωm ) is executed additionally with Rs&tL or Rr&γT , respectively. At the end of each T , the

estimated values of Rs&tL or Rr&γT are utilized as a constant parameter in the other input, whereas the

estimated values of isα , isβ , φrα , φrβ and ωm are updated to both inputs as initial values. Furthermore,

P i(k + 1) is stored as P i(k) for the usage of the next T .

Differently from the previous version of the BI-EKF algorithm, firstly reported in [18] and performing

simultaneously the estimations of isα , isβ , φrα , φrβ , ωm , tL , Rs , and Rr , the novel BI-EKF technique

introduced in this study provides a consecutive switching between two IM models with five states (isα , isβ ,

φrα , φrβ , and ωm) plus two constant states/parameters (“tL and Rs ” or “Rr and γT ”). For this reason, the

novel version of the BI-EKF algorithm is able to estimate concurrently isα , isβ , φrα , φrβ , ωm , tL , Rs , Rr ,

and γT , which also renders this study unique.
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4. Speed-sensorless DVC systems

In this study, the proposed BI-EKF algorithm is used in the combination of the two different speed-sensorless

DVC systems designed for either velocity or position control of IMs, respectively, in order to verify its effective-

ness. These speed-sensorless schemes are explained in the following sections.

4.1. Speed-sensorless DVC scheme for velocity control of IM

The block diagram of the novel BI-EKF-based speed-sensorless DVC system implemented in MATLAB Simulink

for the velocity control of IM is shown in Figure 2. Here θ̂rf is the field angle defined between the α -axis of

the stator stationary frame and the d -axis of the rotating frame; namely, the dq -frame is rotating at dθ̂rf/dt .

All controllers in the system are conventional PIs.

Figure 2. The novel BI-EKF-based speed-sensorless DVC of IMs.

4.2. Speed-sensorless DVC scheme for position control of IM

The proposed BI-EKF-based speed-sensorless DVC system developed for the position control of IM is illustrated

in Figure 3. Here the sliding mode controllers (SMCs), SMC1 and SMC2 , were previously developed in [17].

According to [17], the sliding manifolds σd and σq are defined for the field controller SMC1 and the position

controller SMC2 , respectively, as follows:

σd = |φ⃗r|ref − φrd (4a)

σq = (θ̇refm − θ̇m) + c(θrefm − θm) = ėq + ceq(c > 0) (4b)
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Figure 3. The novel BI-EKF-based sliding mode position control system.

To make SMC1 and SMC2 stable according to the Lyapunov theory, a positive definite Lyapunov function

[17] is selected as

V =
1

2
σ2
d +

1

2
σ2
q → V̇ = σdσ̇d + σqσ̇q (5)

By combining the power rate reaching law in [21] and the average-equivalent control law in [22], the control

laws for SMC1 and SMC2 are finally obtained in [17] as follows:

isd(k) = isd(k + 1) +
σd(k)− σd(k − 1)

k̄5T
+

kd |σd(k)|1/nd sgn(σd(k))

k̄5
(6a)

isq(k) = isq(k − 1) +
σq(k)− σq(k − 1)

k̄7T |φ⃗r|ref
+

kq |σq(k)|1/nq sgn(σq(k))

k̄7 |φ⃗r|ref
(6b)

(where kd > 0, kq > 0, 0 < nd < 1, 0 < nq < 1, k̄5 = Rr

L′
r

Lm , and k̄7 = 3
2

pp

JL

Lm

L′
r

)

5. Simulation results

In our simulations, the proposed estimation algorithm and the speed-sensorless drives shown in Figures 2 and

3 were tested with the rated parameters in the Table. The values in the Table are the same as in [14,17,18], so

that a reasonable comparison between the results in this study and those in [14,17,18] could be made.

Estimation and, hence, control performances are directly affected by the elements of the covariance matri-

ces (Qi , Pi , and Dξ), which are time-varying and calculated from the statistical features of the corresponding

noises in theory. From the application point of view, in this study it is assumed that:

• the values of Qi , Pi , and Dξ are constant, and Qi , Pi , and Dξ are in diagonal for reducing the

computational load.

4531
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Table. The induction motor parameters used in the simulations.

P [kW ] 3 Rsn [Ω] 2.283
f [Hz] 50 Rrn [Ω] 2.133
jTn [kg.m

2] 0.0183 Ls [H] 0.2311
βT [N.m/(rad/s)] 0.001 Lr [H] 0.2311
pp 2 Lmn [H] 0.22
V [V ] 380 nmn [rpm] 1430
I [A] 6.9 tLn [N.m] 20

• the first two values in the diagonal elements of Qi are equal to each other, since they are associated with

isα and isβ and have noise with the statistically same characteristic. The same idea is applied to the

elements of Qi associated with φrα and φrβ .

Considering the assumptions made for the covariance matrices, mathematically small values are initially

set into the covariance matrices; this means that the model and parameters of IM used in the EKF algorithm

are good enough to represent the real IM, and the measurements are well done. In general, the desired transient

and steady-state behaviors of the estimated states and parameters are obtained by regulating the elements of

Qi , whereas the rapid initial convergence of the EKF algorithm is tuned by the values of Pi . Thus, after very

few attempts to achieve desired estimation accuracy, the covariance matrices in the novel BI-EKF algorithm in

this study are easily determined with the trial-and-error method as follows:

Q1 = diag
{

10−9 10−9 10−9 10−9 10−7 10−4 10−5
}

Q2 = diag
{

10−9 10−9 10−9 10−9 10−7 10−2 10−5
}

Pi = diag
{

9 9 9 9 9 9 9
}

Dξ = diag
{

10−6 10−6
}

The design parameters used in the SMCs in Figure 3 are determined as follows:

kd = 0.015, kq = 0.010, nd = nq = 0.5, c = 17

In order to verify the BI-EKF algorithm, the simulations are conducted by using each speed-sensorless DVC

system, and are evaluated in the next two sections.

5.1. Simulation results and observations for the speed-sensorless velocity control system

In order to verify the novel BI-EKF algorithm with the speed-sensorless velocity control system in Figure 2, the

six different scenarios illustrated in Figure 4 are performed in simulations. These scenarios are orderly defined

for certain time intervals as follows:
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Figure 4. Variations of nref
m , the applied tL , Rs , Rr , and γT for performance test.

• Firstly, the novel BI-EKF algorithm is given a start with incorrect Rr = 0.5 × Rrn and γT = 0.5 × γTn

under tLn , Rsn , and jTn , by using only Model-Rs&tL (0 s ≤ t ≤ 0.5 s).

• Secondly, the consecutive operation of the novel BI-EKF algorithm starts at 0.5 s , then the IM speeds up

linearly to 1500 rpm and is kept constant at 1500 rpm (0.5 s ≤ t ≤ 3 s).

• Thirdly, jT is instantaneously increased to 2× jTn at 3 s ; namely, γT is reduced to 0.5× γTn while the

IM is running at 1500 rpm under tLn , Rsn , and Rrn (3 s ≤ t ≤ 4 s).

• Fourthly, Rr is stepped up to 2×Rrn at 4 s when the IM is operating at 1500 rpm under tLn , Rsn , and

γT = 0.5× γTn (4 s ≤ t ≤ 5 s).

• Fifthly, Rs is abruptly increased to 2×Rsn at 5 s (5 s ≤ t ≤ 6 s).

• Sixthly, tL is stepped down to 0.5 × tLn at 6 s while the IM is running at 1500 rpm under 2 × Rsn ,

2×Rrn , and 0.5× γTn (6 s ≤ t ≤ 7 s).

These scenarios are developed by incurring simultaneous changes to jT , Rr , Rs , and tL of the IM

shown in Figure 4, together with nref
m . The resulting estimation and control performances of the speed-

sensorless velocity control system under the above scenarios are presented in Figures 5 and 6. In these figures,

“ˆ” represents estimated state or parameter, and error signal e(.) is defined as the difference between the actual

and the estimated components.
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Figure 5. Simulation results of the novel BI-EKF-based

estimator and the speed-sensorless velocity control system.

Figure 6. Simulation results for the estimation and track-

ing errors.

Analyzing the estimation results and the control performance in all six scenarios, the following observa-

tions are made:

• Although the initial values of all estimated states and parameters are taken as zero, the estimations

beginning at 0 s and 0.5 s shown in Figures 5 and 6, converge to and track the actual ones.

• During 0 s ≤ t ≤ 0.5 s , the estimations are stable but include errors, as can be seen in Figure 6, since BI-

EKF performs the simultaneous estimations by using only Model-Rs&tL with the incorrect Rr = 0.5×Rrn

and γT = 0.5×γTn values, meaning that there is not enough information about both Rr and γT in Model-

Rs&tL . However, these errors quickly go to zero after the BI-EKF algorithm starts the consecutive
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Figure 7. Variations of θrefm , the applied tL , Rs , Rr , and γT for performance test.

operation based on Model-Rs&tL and Model-Rr&γT at every sampling time, which occurs at 0.5 s .

• In the time interval of 0.5 s ≤ t ≤ 3 s , γ̂T needs some time to reach the actual γT value (γT = 1/jT =

1/0.0183 = 54.64 (1/(kg · m2))), since R̂s and t̂L include the errors that occur due to the incorrect

Rr and γT values used in the estimation algorithm in the previous time interval of 0 s ≤ t ≤ 0.5 s . It

is also observed that γ̂T has a longer transient when ωm is linearly changed, as in this time period of

0.5 s ≤ t ≤ 3 s . In other words, the longer the linear variation in ωm , the longer the transient in γ̂T ,

because t̂L is defined as constant in Model-Rs&tL , even though it includes the simultaneous estimation

of tL + βTωm . However, t̂L and, hence, γ̂T quickly converge to their real values as ωm approaches its

steady-state value.

• The proposed BI-EKF algorithm is able to estimate the viscous friction term within t̂L . This fact can be

easily revealed by the calculations below for the time interval 3 s ≤ t ≤ 4 s in Figures 5 and 6:

ωm (∞) = ω̂m (∞) + eωm(∞) = 2π

(
1430− 0.03265

60

)
= 149.75

etL
(
= tL − t̂L

)
= −βTωm (∞)

−0.1496 = −0.001× 149.75

−0.1496 ∼= −0.1497

5.2. Simulation results and observations for the speed-sensorless position control system

In this section, two different groups of simulations are carried out. The first confirms the performance of the novel

BI-EKF algorithm via the speed-sensorless position control system under no load and rated load at constant

position (zero speed) as well as variations in Rr , Rs , and jT as shown in Figure 7 and Figures 8(a)–8(r), which
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show variations of θrefm &θ̂m ,
∣∣∣ ˆ⃗φr

∣∣∣& |φ⃗r|ref , tL&t̂L , Rr&R̂r , Rs&R̂s , γT&γ̂T , φrα&φ̂rα , φrβ&φ̂rβ , isα&îsα ,

enm = nm − n̂m , e|φ⃗r| = |φ⃗r|ref −
∣∣∣ ˆ⃗φr

∣∣∣ , etL = tL − t̂L , eRr = Rr − R̂r , eRs = Rs − R̂s , eγT = γT − γ̂T ,

eφrα = φrα − φ̂rα , eφrβ
= φrβ − φ̂rβ , and eisα = isα − îsα , respectively. For this purpose, as seen in Figure 7:

• Firstly, the novel BI-EKF algorithm is given a start with incorrect Rr = 1.3 × Rrn and γT = 0.5 × γTn

under tLn , Rsn , and jTn , using only Model-Rs&tL (0 s ≤ t ≤ 0.2 s).

• Then the successive operation of the novel BI-EKF algorithm begins at 0.2 s , and the IM is kept running

under rated parameters and tLn (0.2 s ≤ t ≤ 1.5 s).

• Next, jT is stepped down to 0.5 × jTn at 1.5 s . In other words, γT is stepped up to 2 × γTn while the

IM is running with tLn , Rsn , and Rrn (1.5 s ≤ t ≤ 3 s).

• Following the previous scenario, Rr and Rs are instantly increased to 2×Rrn at 3 s and 2×Rsn at 4 s ,

respectively (3 s ≤ t ≤ 5 s).

• Finally, the IM is instantly unloaded when it is operating with 2×Rsn , 2×Rrn , and 2×γTn (5 s ≤ t ≤ 6 s).

Considering the challenging scenarios above:

• It is observed that the proposed BI-EKF algorithm is able to handle the incorrect Rr and γT values in

the time intervals of 0 s ≤ t ≤ 0.2 s , because errors in all estimated states and parameters immediately

go to zero during 0 s ≤ t ≤ 0.2 s , as seen in Figures 8(a)–8(r).

• îsα , îsβ , φ̂rα , φ̂rβ , ω̂m , t̂L , R̂s , R̂r , and γ̂T converge real ones. Thus, θrefm and |φr|ref are

well-controlled by the speed-sensorless position control system.

• All the results obtained in this study are unique, according to the literature, because they are obtained

at constant position (zero speed). Especially during the time range of 5 s ≤ t ≤ 6 s , the dc condition

takes place, which is the worst case [16] for IM parameter and state estimations. However, the proposed

algorithm is able to estimate nine states and parameters in total without the utilization of the high

frequency signal injection methods stated in [16].

The second group of simulations is performed in order to show the superiority of the proposed BI-EKF

algorithm over the past study [17], which estimates all state and parameters as in this study, except for γT (or

1/γT ). To achieve this aim, the scenarios shown in Figure 9 are used, and the resulting estimation performances

are depicted in Figures 10(a)–10(o). Figure 10 illustrates the variations of θrefm &θ̂m in Figures 10(a) and 10(b),∣∣∣ ˆ⃗φr

∣∣∣& |φ⃗r|ref in Figures 10(c) and 10(d), tL&t̂L in Figures 10(e) and 10(f), Rr&R̂r in Figures 10(g) and 10(h),

Rs&R̂s in Figures 10(i) and 10(j), φ̂rα&φ̂rβ in Figures 10(k) and 10(l), eθm = θrefm − θ̂m in Figures 10(m) and

10(n), and γT&γ̂T in Figure 10(o). In this scenario, the proposed BI-EKF and the braided EKF in [17] start the

consecutive operation at 0.2 s and 0.5 s , respectively, and jT is stepped down to 0.5× γTn (or γT is stepped

up to 2 × γTn) at 1.5 s under tLn , Rsn , and Rrn for a constant position of the IM. Under this variation,

the estimation performance of the braided EKF algorithm in [17] gets worse, as seen in Figures 10(a)–10(o),

since the braided EKF algorithm does not take jT (γT )-estimation into account. On the other hand, the novel

4536
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BI-EKF algorithm shows very acceptable estimation performance under jT variation. These results request

jT -estimation together with the estimations of isα , isβ , φrα , φrβ , ωm , Rr , and tL for such a motion control

application, which involves the inertia variation. Note that the novel BI-EKF algorithm has the spikes on the

estimated states at the instant the consecutive operation begins, due to switching two unknown states (Rr&jT )

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 8. Simulation results of novel BI-EKF based estimator and the speed-sensorless position control system: (a)

variations of θrefm &θ̂m ; (b) variations of
∣∣∣ ˆ⃗φr

∣∣∣& |φ⃗r|ref ; (c) variations of tL&t̂L ; (d) variations of Rr&R̂r ; (e) variations

of Rs&R̂s ; (f) variations of γT&γ̂T ; (g) variations of φrα&φ̂rα ; (h) variations of φrβ&φ̂rβ ; (i) variations of isα&îsα ;

(j) variations of enm = nm − n̂m .
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(k) (l)

(m) (n)

(o) (p)

(q) (r)

Figure 8. Simulation results of novel BI-EKF based estimator and the speed-sensorless position control system: (k)

variations of e|φ⃗r| = |φ⃗r|ref −
∣∣∣ ˆ⃗φr

∣∣∣ ; (l) variations of etL = tL − t̂L ; (m) variations of eRr = Rr − R̂r ; (n) variations of

eRs = Rs− R̂s ; (o) variations of eγT = γT − γ̂T ; (p) variations of eφrα = φrα− φ̂rα ; (q) variations of eφrβ = φrβ − φ̂rβ ;

and (r) variations of eisα = isα − îsα .

in the BI-EKF algorithm differently from the braided EKF algorithm, where a single unknown state (Rr) is

switched.

6. Experimental results

In order to validate the novel BI-EKF algorithm in real time, the experimental setup shown in Figure 11 is

utilized as in [12]. The setup consists of:

• a squirrel cage type IM with the following specifications: 3-phase, 6-pole, 380 V , 5.9A , 2.2 kW , 22N.m ,

940 rpm , Rs = 3.03 Ω, Rr = 2.88 Ω, Lls = 0.0124 H , Lls = 0.0186 H , and Lm = 0.1843 H ,

γT = 1/jT = 0.056 = 17.85 (kg ·m2)−1 ;

• a Foucault brake with 30N.m driven for loading the IM by hand with the utilization of a step-like variable

dc source;
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Figure 9. Variations of θrefm , the applied tL , Rs , Rr , and γT for comparison test.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Comparative results for variations in jT : (a) and (b): variations of θrefm &θ̂m ; (c) and (d): variations of∣∣∣ ˆ⃗φr

∣∣∣& |φ⃗r|ref ; (e) and (f): variations of tL&t̂L .
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(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o)

Figure 10. Comparative results for variations in jT : (g) and (h): variations of Rr&R̂r ; (i) and (j): variations of

Rs&R̂s ; (k) and (l): variations of φ̂rα&φ̂rβ ; (m) and (n): variations of eθm = θrefm − θ̂m ; (o): variations of γT&γ̂T .

• a PC-based DS1104 controller board, processing floating-point operations at a rate of 250 MHz for

implementing the BI-EKF algorithm;

• an encoder with 5000 lines/rev and a torque transducer with 50N.m , which are only utilized for confirming

ωm (nm r/min) and tL estimations, respectively;

• LV100-400 and LA55-P/SP1 for measuring the phase voltages and currents, respectively;

• a manually adjustable three-phase array resistor connected in series to the stator windings of the IM for

generating variations in Rs and validating Rs -estimation.
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Figure 11. Experimental setup utilized for validating the novel BI-EKF algorithm.

6.1. Optimizing covariance matrices of the novel BI-EKF algorithm via genetic algorithm

As the number of estimated states and parameters in real-time are increased by EKF algorithms, determining

the elements of Qi and Dξ with a trial-and-error process becomes more difficult and may not give the best

estimation performance. Thus, the method in [23], which minimizes the fitness function defined as the mean

squared error between the real and estimated rotor angular velocities via a real coded genetic algorithm (GA)

for obtaining the elements of Q and Dξ , is used for Qi and Dξ in this study, with the assumption of

Pi = diag
{

9 9 9 9 9 9 9
}
. The optimal performance of the novel BI-EKF algorithm is obtained

with:

Q1 = diag
{

7.3130× 10−4 7.3130× 10−4 1.2512× 10−6 1.2512× 10−6

9.7980× 10−5 3.2150× 10−4 4.4677× 10−6
}

Q2 = diag
{

4.9933× 10−9 4.9933× 10−9 4.0625× 10−9 4.0625× 10−9

4.3568× 10−10 2.2058× 10−9 5.9206× 10−7
}

Dξ = diag
{

1 1
}

6.2. Real-time experimental results

With the help of the experimental setup shown in Figure 11 and previously used in [12], the proposed BI-

EKF algorithm-based states and parameter estimations are verified in real time, and the obtained results are

presented in Figure 12. Here tind represents the induced torque obtained from the torque transducer, and “ˆ”

refers to estimated state or parameter. Figure 12 consists of the following scenarios:

(i) Start-up: The IM and the proposed BI-EKF algorithm are given a start. The start speeds up from 0 rpm

to 952 rpm in 1 s , and is loaded from 0N.m to 17.5N.m . During 0 ≤ t ≤ 9.7 s , due to the externally

connected serial three-phase array resistor to the stator windings of 1.5 Ω, Rs is equal to Rsn + 1.5Ω,

and the consecutive operation begins at 2.07 s .

(ii) Velocity and load torque reversals: Since the input frequency of the ac drive is linearly changed from

50Hz to −50Hz and vice versa at 9.7 s and 31.9 s , respectively, the rotor angular velocity and thus the

load torque are reversed.
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Figure 12. Real-time experimental results of the novel BI-EKF algorithm.

(iii) Variations in Rs : Rs is stepped down to Rsn at 20.4 s by disconnecting the external three-phase array

resistor, and then Rs is instantly increased to Rsn + 2Ω at 46.6 s.

Inspecting the results obtained under the challenging scenarios above, it is observed that:

• all of the estimated states and parameters converge with real ones with very good precision;

• the proposed BI-EKF algorithm is able to perform estimations in a wide speed range, including zero
crossovers;
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• the estimations demonstrated in this study are in harmony with those presented in [18]. However,

differently from [18], this study also presents γ̂T .

In summation, the achieved results validate that the novel BI-EKF algorithm proposed in this study is

implementable in real-time and has satisfactory estimation performance.

7. Conclusion

In this study, a novel BI-EKF-based estimation technique is firstly introduced into the literature in order to

increase the number of estimated states and parameters presented in its previous version [18]. It is tested

with real time-experiments, in addition to a rotor flux oriented speed-sensorless DVC system developed for

either velocity or position control of IMs in simulations. In spite of its computational complexity, the novel

BI-EKF algorithm simultaneously estimates the stator stationary axis components of stator currents and rotor

fluxes, rotor angular velocity, load torque including the viscous friction term, stator and rotor resistance, and

the reciprocal of total inertia with the utilization of the measured stator phase voltages and currents. Thus,

it improves the performance of the speed-sensorless velocity and position control systems in both transient

and steady states. The simulations, including the challenging variations of stator and rotor resistances, load

torque, total inertia, and velocity/position reference, prove that the proposed speed-sensorless DVC systems

have superiority over the previous EKF schemes, as in [17,18]. The real-time experiments also confirm that

the proposed BI-EKF algorithm is realizable and able to estimate all the states and parameters with very good

accuracy. Moreover, differently from the study in [20], which estimates all the varying electrical parameters

(stator and rotor resistances and magnetizing inductance) as well as the estimations of stator currents and

rotor fluxes, rotor angular velocity, and load torque, including viscous friction term especially for working in the

field-weakening region, this study has focused on estimating all the varying mechanical parameters (load torque

with inclusion of viscous friction term and the reciprocal of total inertia), as well as the estimations of stator

currents and rotor fluxes, rotor angular velocity, and stator and rotor resistances for very low speed operations

that require correct inertia information.
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[6] Aydeniz MG, Şenol I. A Luenberger-sliding mode observer with rotor time constant parameter estimation in

induction motor drives. Turk J Electr Eng & Comp Sci 2011; 19: 901-912.

[7] Vicente I, Endemano A, Garin X, Brown M. Comparative study of stabilising methods for adaptive speed sensorless

full-order observers with stator resistance estimation. IET Control Theory Appl 2010; 4: 993-1004.

[8] Verma V, Chakraborty C, Maiti S, Hori Y. Speed sensorless vector controlled induction motor drive using single

current sensor. IEEE T Energy Conver 2013; 28: 938-950.

[9] Chang C, Liu C. A new MRAS-based strategy for simultaneous estimation and control of a sensorless induction

motor drive. J Chin Inst Eng 2010; 33: 451-462.

[10] Zhao L, Huang J, Liu H, Li B, Kong W. Second-order sliding-mode observer with online parameter identification

for sensorless induction motor drives. IEEE T Ind Electron 2014; 61: 5280-5289.

[11] Tajima H, Guidi G, Umida H. Consideration about problems and solutions of speed estimation method and

parameter tuning for speed-sensorless vector control of induction motor drives. IEEE T Ind Appl 2002; 38: 1282-

1289.

[12] Ha IJ, Lee SH. An online identification method for both stator and rotor resistances of induction motors without

rotational transducers. IEEE T Ind Electron 2000; 47: 842-853.

[13] Zhen L, Xu L. Sensorless field orientation control of induction machines based on a mutual MRAS scheme. IEEE

T Ind Electron 1998; 45: 824-831.

[14] Barut M, Bogosyan S, Gokasan M. Switching EKF technique for rotor and stator resistance estimation in speed

sensorless control of IMs. Energy Convers Manag 2007; 48: 3120-3134.

[15] Barut M, Bogosyan S, Gokasan M. Experimental evaluation of braided EKF for sensorless control of induction

motors. IEEE T Ind Electron 2008; 55: 620-632.

[16] Bogosyan S, Barut M, Gokasan M. Braided extended Kalman filters for sensorless estimation in induction motors

at high-low/zero speed. IET Control Theory A 2007; 1: 987-998.

[17] Barut M, Bogosyan S. Sensorless sliding mode position control of induction motors using braided extended Kalman

filters. In: IEEE 2007 International Symposium on Industrial Electronics; 4–7 June 2007; Vigo, Spain. New York,

NY, USA: IEEE. pp. 2268-2273.

[18] Barut M, Demir R, Zerdali E, Inan R. Real-time implementation of bi input-extended Kalman filter-based estimator

for speed-sensorless control of induction motors. IEEE T Ind Electron 2012; 59: 4197-4206.

[19] Barut M. Bi-input extended Kalman filter based speed-sensorless vector control of induction motors with the

estimations of rotor and stator resistances, load torque, and inertia. In: IEEE 2011 International Conference on

Modeling and Simulation of Electric Machines, Converters and Systems; 6–8 June 2011; Cergy-Pontoise, France.

New York, NY, USA: IEEE.

[20] Inan R, Barut M. Bi input-extended Kalman filter-based speed-sensorless control of an induction machine capable

of working in the field-weakening region. Turk J Electr Eng & Comp Sci 2014; 22: 588-604.

[21] Hung JY, Gao W, Hung JC. Variable structure control: a survey. IEEE T Ind Electron 1993; 40: 2-22.

[22] Sahin C, Sabanovic A, Gokasan M. Robust position control based on chattering free sliding modes for induction

motors. In: IEEE 1995 International Conference on Industrial Electronics, Control, and Instrumentation; 6–10

November 1995; Orlando, FL, USA. New York, NY, USA: IEEE. pp. 512-517.

[23] Shi KL, Chan TF, Wong YK, Ho SL. Speed estimation of an induction motor drive using an optimized extended

Kalman filter. IEEE T Ind Electron 2002; 49: 124-133.

4544

http://dx.doi.org/10.1049/iet-cta.2008.0506
http://dx.doi.org/10.1049/iet-cta.2008.0506
http://dx.doi.org/10.1109/TEC.2013.2273935
http://dx.doi.org/10.1109/TEC.2013.2273935
http://dx.doi.org/10.1080/02533839.2010.9671633
http://dx.doi.org/10.1080/02533839.2010.9671633
http://dx.doi.org/10.1109/TIE.2014.2301730
http://dx.doi.org/10.1109/TIE.2014.2301730
http://dx.doi.org/10.1109/TIA.2002.802893
http://dx.doi.org/10.1109/TIA.2002.802893
http://dx.doi.org/10.1109/TIA.2002.802893
http://dx.doi.org/10.1109/41.720340
http://dx.doi.org/10.1109/41.720340
http://dx.doi.org/10.1016/j.enconman.2007.04.026
http://dx.doi.org/10.1016/j.enconman.2007.04.026
http://dx.doi.org/10.1109/TIE.2007.911956
http://dx.doi.org/10.1109/TIE.2007.911956
http://dx.doi.org/10.1049/iet-cta:20060329
http://dx.doi.org/10.1049/iet-cta:20060329
http://dx.doi.org/10.1109/ISIE.2007.4374786
http://dx.doi.org/10.1109/ISIE.2007.4374786
http://dx.doi.org/10.1109/ISIE.2007.4374786
http://dx.doi.org/10.1109/TIE.2011.2178209
http://dx.doi.org/10.1109/TIE.2011.2178209
http://dx.doi.org/10.3906/elk-1208-31
http://dx.doi.org/10.3906/elk-1208-31
http://dx.doi.org/10.1109/41.184817
http://dx.doi.org/10.1109/IECON.1995.483461
http://dx.doi.org/10.1109/IECON.1995.483461
http://dx.doi.org/10.1109/IECON.1995.483461
http://dx.doi.org/10.1109/41.982256
http://dx.doi.org/10.1109/41.982256

	Introduction
	Development of extended IM models
	Theoretical foundations of the novel BI-EKF algorithm
	Speed-sensorless DVC systems 
	Speed-sensorless DVC scheme for velocity control of IM
	Speed-sensorless DVC scheme for position control of IM

	Simulation results
	Simulation results and observations for the speed-sensorless velocity control system
	Simulation results and observations for the speed-sensorless position control system

	Experimental results
	Optimizing covariance matrices of the novel BI-EKF algorithm via genetic algorithm
	Real-time experimental results

	Conclusion

