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Abstract:In this paper, five probability distribution functions are employed to fit the wind speed data from four different

geographical locations in the world in a preliminary analysis. These wind regimes are selected such that they represent

wide ranges of mean wind speeds and present different shapes of wind speed histograms. The wind speed data used for

modelling consist of 10-min average SCADA data from three US wind farms and hourly averages recorded at a weather

station in Canada. Out of the five, three functions, namely Weibull, Rayleigh, and gamma, which provide a better fit

to the data, are selected to carry out further analyses. This study investigates the ability of these functions to match

different statistical descriptions of wind regimes. Parameter estimation is done by the method of moments, and models

are evaluated by root mean square error and R square methods. The suitability of PDFs to predict the wind power

densities and annual energy production using manufacturers’ power curve data at three of the selected sites is analysed.

Power curves extracted from actual data of one wind farm using novel four- and five-parameter logistic approximations

are also introduced here for energy analyses.
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1. Introduction

Wind energy is clean, renewable, and one of the fastest growing alternative energy sources. However, the

intermittent nature of wind and increasing penetration of wind energy into power systems can have adverse

effects on the reliability and stability of power systems. With the increase in wind power installations all over

the world, development of models, methods, and computing tools that can help in minimising these adverse

effects has gained significance. Wind power production is highly dependent on the wind speed encountered at

a site. Accurate assessment of wind energy potential at a candidate site requires detailed knowledge of wind

characteristics of the location, and becomes a challenging task because of the highly unpredictable nature of

wind. A function that can represent the wind speed data conveniently is often required in several wind power

based applications [1]. Wind speed at a site varies randomly and its variation in a certain region over a period

of time can be represented by different probability distribution functions (PDFs). Two-parameter Weibull

distribution is the most commonly used and accepted distribution as it is found to be a fairly accurate PDF

for most of the wind regimes found in nature and also it is simple to use [2]. However, it is not suitable for

certain wind regimes, such as those having high frequencies of null winds and for short time horizons [3,4].

Another distribution Rayleigh PDF has also been used in many applications, owing to its simplicity and ability

of describing wind speed with sufficient accuracy when little detail is available about the wind characteristics of
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a site [5]. In [6,7] it has been noted that a three-parameter Weibull distribution can represent the wind speed

data more accurately than the two-parameter Weibull function because of the addition of a third parameter.

This additional location parameter establishes a lower bound, which is taken to be zero in the two-parameter

Weibull distribution; however, the parameter estimation in this method becomes difficult. A hybrid density

function that takes into account the null wind speeds was suggested by [8]. Mixture distributions have been used

to fit the bimodal shape of wind speed histograms [9–11]. A number of other PDFs have also been proposed

by various researchers to characterise wind speed frequency distributions; they include gamma, lognormal,

inverse Gaussian, beta, Burr, Wakeby, kappa, and hybrid distributions [12–16]. In [17], two flexible families

of distributions, the skewed generalised error and skewed t, have been proposed for the description of wind

speed. Both of these distributions were found to have the flexibility of accommodating the shape of the wind

speed data, which included some well-known distributions as special cases. In [16,18], different distribution

functions are analysed for their suitability in offshore applications and in [18] Johnson SE distribution has been

introduced for the first time. In [13], seven different distributions were analysed to identify suitable distribution

for an urban area and the Burr distribution recently applied to wind speed problems [12] was found suitable

for urban applications. Six probability density functions, namely Weibull, Rayleigh, gamma, lognormal, inverse

Gaussian, and maximum entropy principle (MEP) derived PDFs, were evaluated [19] using six goodness-of-fit

criteria for five representative sites in North Dakota. Statistical distributions have been analysed in the literature

for examining differences between the results for day and night, between various seasons, and for monthly and

yearly data [17,20]. The suitability of these distribution functions for a particular application depends upon a

number of factors such as the type of wind regime, availability of data, and recording intervals [3,16]. Moreover,

a number of methods for estimating the parameters of these distributions and model evaluation criteria are

given in the literature [1,21,22]. These methods have varying degrees of accuracy and complexity. Selection of

an appropriate PDF to characterise wind speed data is of critical importance during the planning and operation

stage of a wind based system and helps in improving the performance of the system. Further research is

therefore required for evaluating the applicability of various distributions to different wind regimes and wind

power problems. The selection of modelling methods and evaluation metrics is also crucial and should be given

due importance. This paper presents a critical evaluation of Weibull, Rayleigh, and gamma distributions to

describe four different wind regimes that characterise different statistical and geographical descriptions (Table

1). Additionally, the two-parameter lognormal and inverse Gaussian distributions are also fitted to the datasets

but are not used in further analyses. The three selected functions for the subsequent study are examined on the

basis of quality of fit using root mean square error (RMSE) and R square statistical indicators and prediction

of average annual wind power density (WPD) and annual energy production (AEP) for sites A, B, and C.

A number of PDFs have been used in the literature to represent wind speed data of selected locations

around the world. This study presents a new approach for analysis of PDFs compared to the earlier studies.

The wind data series included here has been measured at four different sites. These sites are selected such that
they characterise wide ranges of yearly mean wind speeds and present different shapes of histograms, so that

the suitability of the selected PDFs to describe the varying characteristics of wind speed data can be analysed.

Moreover, most of the previous studies evaluate the PDFs only on the basis of goodness of fit with the actual

data set. As these distributions will ultimately be used in wind energy applications it is not appropriate to

judge their suitability on the basis of goodness of fit parameters alone but it should also be examined how

successfully these distributions can be employed for a particular application. Although the traditionally used

Weibull and Rayleigh functions have been used for wind power potential evaluation of selected sites in some

4725



SOHONI et al./Turk J Elec Eng & Comp Sci

Table 1. Data for wind speed modelling.

Data set
Geographical features of sites Wind speed data description
Latitude and
Longitude

Altitude Mean SD Skewness TI Nulls

A 31.19◦N
102.24◦W

849.5 m 7.854 m/s 3.242 m/s 0.609 0.4255 -

B 33.84◦N
116.54◦W

140.6 m 2.392 m/s 1.96 m/s 2.296 0.8193 -

C 40.34◦N
105.51◦W

2625.2 m 11.728 m/s 8.685 m/s 1.06 0.7405 -

D 54.28◦N
112.97◦W

664 m 10.549 km/h 6.68 km/h 0.845 0.6113 54

SD: Standard deviation, TI: Turbulent intensity

studies [3,5,6,21], application and comparisons of other PDFs for wind energy assessment are also required by

the wind industry. The three selected functions are therefore analysed here on the basis of their ability to

predict the wind power potential and estimation of the energy at the selected sites. The earlier works compare

predicted AEPs using the fitted PDFs with those calculated by the time series data for the candidate sites. In

the study presented here, the data of actual energy being produced at wind farms A, B, and C are available;

hence it was possible to compare the predicted AEPs with the annual energy actually produced at the wind

farms. The energy assessment was done by using the manufacturer’s power curve of a Vestas V 90 turbine. Ten

turbines of this model are actually installed at each of these farms. Wake effect of the turbines is neglected.

The turbines in a wind farm may produce less power due to the wake effect and underperformance of some

turbines; therefore, instead of the manufacturer’s curve, using the power curve derived from the actual data of

wind farm can give better results in energy estimation [23]. Hence, in addition to the manufacturer’s curve,

power curves derived from the actual data of wind farm site A are also used for energy analyses. Novel four-

and five-parameter logistic approximations [4,24] for describing the power curve have been used in this study

to extract the power curves.

2. Data

Four sites that cover low, medium, and high mean wind speed ranges and represent different geographical

locations have been considered for modelling. Datasets A, B, and C are 10-min average wind speeds obtained

from SCADA (supervisory control and data acquisition system) data of NREL (National Renewable Energy

Laboratory) wind farms measured at 100 m height and the data set D is hourly wind speed averages recorded at

10 m height at Alberta (Canada) weather station. Each of the datasets covers a period of 1 year. Other details

of the wind speed data are given in Table 1. The corresponding 10-min average power output values recorded

by the SCADA system of the three wind farms (datasets A, B, C) are also utilised to calculate the actual

energy produced at these wind farms in the year. The mean wind speed m , standard deviation of wind speeds ,

turbulence intensity T , and skewness G have been calculated by using the following expressions [5,16,25,26]:

m =
1

N

N∑
i=1

vi (1)

s =

[
1

N − 1

N∑
i=1

(vi −m)
2

] 1
2

(2)
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T =
s

m
(3)

G =
1

N
×

N∑
i=1

(vi −m)
3

s3
(4)

where vi is the value of the ith wind speed and N is the number of wind speed records in the year.

3. Modelling methodology

Knowledge of wind characteristics of a site is required for wind resource assessment, cost optimisation studies,

energy assessment, and siting [27]. Several PDFs, parameter estimation methods, and model evaluation criteria

for wind speed modelling have been proposed in the literature. The modelling methodology is decided according

to the availability of data, the complexity of methods, and the desired accuracy.

3.1. Probability distribution functions

The following distributions are used in this study for modelling the wind speed. The PDFs and the expressions

used for parameter estimation of these distributions are given in Table 2.

Table 2. Expressions of statistical distributions and parameter estimation.

Distribution function PDF f(ν) Parameters

2 P Weibull [2,3] k
c

(
v
c

)k−1
exp

(
−v

c

)k
k =

(
s
m

)−1.086
c = m

Γ(1+1/k)

Rayleigh [28,32] 2v
c2 exp

(
−v

c

)2
k = 2 c = 2√

π
m

2 P gamma [20] vη−1

βηΓ(η) exp (−v/β) β = s2

m η = m2

s2

2 P lognormal [20] 1
vβ

√
2π

exp

[
− 1

2

(
ln(v)−α

β

)2
]

α = ln

[
m√

1+s2/m2

]
β =

√
ln

(
1 + s2

m2

)
2 P inverse Gaussian [32] β

2πv3 exp
[
−β(v−α)2

2vα2

]
a = m β = m3

s2

k - shape parameter, c - scale parameter, Γ- gamma function, α, β, η - parameters of distributions

3.1.1. Two-parameter Weibull distribution

The two-parameter Weibull distribution is the most widely used distribution in wind power applications. It

is a versatile PDF, is simple to use, and is found to be accurate for most of the wind regimes encountered in

nature. However, in some studies it is reported that it is not able to represent the wind speed data accurately

for certain applications, which include regimes with high frequency of nulls, low and high wind speeds, bimodal

distributions, and short time horizons [3,4,16].

3.1.2. Rayleigh distribution

Rayleigh distribution is a special case of Weibull distribution in which the shape parameter is taken as k = 2.

This function has also been used by many researchers due to its simplicity as there is only one parameter to be

evaluated and is useful when not much information about the site is available. Although found to be suitable

for some wind regimes [23], this function has less flexibility because it has a single model parameter.
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3.1.3. Two-parameter gamma distribution

The two-parameter gamma distribution has been used for wind speed modelling in some studies. Its applicability

to model low wind speeds is reported in [28].

3.1.4. Two-parameter lognormal distribution

The two-parameter lognormal distribution can be used if the variable is such that its logarithm has a normal

distribution and has been used in some studies to represent wind speed data [23].

3.1.5. Inverse Gaussian distribution

The inverse Gaussian distribution has been advocated as an alternative to the three-parameter Weibull distri-

bution in [29], for describing low probabilities of low wind speeds and because of the simplicity of parameter

estimation.

In this study, the two-parameter Weibull, Rayleigh, gamma, two-parameter lognormal, and inverse

Gaussian distributions are fitted to the wind speed data of the chosen sites. A detailed analysis of Weibull,

Rayleigh, and gamma PDFs for describing the four different wind regimes is carried out. These models are

assessed on the basis of goodness of fit criteria and their suitability for use in wind resource assessment and

energy prediction. The analyses have been carried out in MATLAB.

3.2. Parameter estimation

Several methods have been used in the literature to determine the parameters of various distributions, out

of which the graphical method, the method of moments, and the maximum likelihood method are the most

commonly used [21,22,30]. The graphical method has the advantage of simplicity and has been used extensively

in earlier studies. However, the accuracy of parameter estimation in this method is not good. The maximum

likelihood method has good accuracy and is more robust than the above method but it requires iterative methods

to obtain the parameter values. The method of moments equates a certain number of statistical moments of

the sample with the corresponding population moments. Thus if µk ’ = E[Xk’] is the kth moment about

the origin of a random variable X, and whenever it exists, the corresponding kth sample moment is given by

m
′

k = 1
n

n∑
i=1

xk
i ; then the estimator of µk by the method of moments is mk ’. This method is computationally

easy and provides explicit estimators of the parameters [31]. The method of moments has been selected in

this paper to calculate the parameters of the distributions as it has a fair degree of accuracy, the results are

consistent, and the calculation of parameters is simple [32].

3.3. Model evaluation

Before using a particular function for a particular application, it is important to determine whether it is able

to represent the actual wind speed distribution of the site appropriately. A visual comparison of the fitted

distribution with the histogram of sample wind speed is a commonly used and convenient method [23,32]. A

number of statistical indicators to measure the goodness of fit have been used in various works, which include

RMSE, R2 , chi square, Kolmogorov–Smirnov, and Anderson–Darling tests [3,6,18]. The performance evaluation

of these PDFs for estimation of wind energy potential is done in some studies. These works use manufacturers’

power curves for energy assessment [3,9,33]. In this paper, the fitted PDFs are superimposed on the wind

speed histograms of measured data and a visual comparison is done for a primary evaluation. The suitability
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of fit of the selected three functions is also evaluated on the basis of RMSE and R2 criteria and their ability

to predict the wind power potential and estimation of the energy at the selected sites. Energy evaluation has

been done here by using the power curve data from the manufacturers. Two power curve models derived from

the actual SCADA data of wind farm A are also used for estimation of annual energy. As the manufacturers’

curves are created under standard conditions [34–36] they may not represent the realistic conditions of the site

under consideration. In addition, the manufacturers’ curves are suitable for predicting the power output of a

single turbine of a specific type. In a big wind farm a number of turbines are spread over a wide area and

the power produced by turbines with identical specifications can differ [37] due to variation in wind speed and

direction encountered by different turbines and the wake effect of turbines, which causes reduced wind speeds

at the turbines that operate in the wake of other turbines. The difference in power outputs can also be due to

factors such as wear and tear, aging, and dirt or ice deposition on blades. Power curves derived from the actual

data of wind speed and power measured from the turbines can incorporate the actual conditions at the wind

farms. This study also compares the energies estimated using the manufacturer’s and derived power curves.

The criteria used to analyse the performance of these functions and the expressions used are given below.

3.3.1. Root mean square error

The RMSE between the actual probabilities and fitted probabilities is calculated by [3]

RMSE =

[
1

N

N∑
i=1

(pi − fi)
2

] 1
2

(5)

where pi and fi are the probability values of actual data and the fitted PDF respectively at the ith wind speed.

3.3.2. R2 (coefficient of determination)

The R2 between the actual data and fitted probabilities is calculated by [18]

R2 = 1−

N∑
i=1

(pifi)
2

N∑
i=1

(pip̄i)
2

(6)

where pibar is the mean of actual probability.

3.3.3. Wind power density (WPD)

The average power density for the year is calculated by [5]

WPD =
N∑
i=1

1

2
ρv3i f(vi) (7)

where f(vi) is the probability of wind speed at the ith speed value. The standard value of air density ρ is taken

as ρ = 1.225 kg/m3 [1]. The percentage error between the time series power density and that calculated by

the fitted PDF is calculated.
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3.3.4. Annual energy production

The energy calculations for data sets A, B, and C were carried out by using the manufacturer’s curve data for

a Vestas V 90 wind turbine. Ten turbines of this model are installed at each of these wind farms. The annual
energy production predicted for each turbine with these fitted distributions is calculated by

E =
N∑
i=1

Pif(vi)Ti (8)

wherePi is the power output of the turbine at ith wind speed obtained from the manufacturer’s curve data and

Ti is the hours for which the wind blows at the ith hour. The annual energy Ep predicted for ten turbines of

these wind farms is then calculated (wake effect is neglected). The actual annual energy Ea produced in the

wind farms is calculated from the 10-min averaged power output recorded by the SCADA system at the wind

farms and the percentage error between annual energy calculated from these fitted PDFs and the actual annual

energy produced is calculated.

In addition to the manufacturers’ curve data, energy estimation is also done by extracting power curves,

using the four-parameter logistic (4PL) and five-parameter logistic (5PL) approximations. The 4PL approxi-

mation is given by [34]

P = d+
(a− d)

1 +
(
v
c

)b (9)

The 5PL approximation is given by [24]

P = d+
(a− d)(

1 +
(
v
c

)b)g (10)

where a is the minimum asymptote, b is the hill slope, c is the inflection point, d is the maximum asymptote of

4PL and 5PL functions, and g is the asymmetry factor of the 5PL function. The parameters of these functions

are obtained using the least squares method by genetic algorithm optimisation using MATLAB.

4. Results and discussion

Figure 1 shows five PDFs, namely the two-parameter Weibull, Rayleigh, gamma, two-parameter lognormal,

and the inverse Gaussian, fitted to the wind speed values of dataset A. Graphically it can be observed that the

Weibull PDF yields the best fit. The Rayleigh and gamma distributions match the histogram to a lesser degree,

whereas the two-parameter lognormal and the inverse Gaussian functions provide the poorest fits. Similarly,

these five PDFs were also fitted to other wind regimes and it was observed that the two-parameter lognormal

and the inverse Gaussian functions performed worst for all of the selected datasets; therefore, they were not

used for further analyses. Figures 2 to 5 show the histograms of wind speeds at the four sites and the fitted

Weibull, Rayleigh, and gamma PDFs superimposed on them. It can be seen from the figures that these sites

present different shapes of histograms. The parameter values obtained for these distributions and the fitting

accuracies based on RMSE and R2 criteria are given in Table 3. It can be seen that both statistical indicators

gave similar results in all cases. The Weibull PDF gives the least fitting error for datasets A and D. This is

also verified from Figures 2 and 5 that for sites A and D the Weibull PDF is fitting best to the actual data. It

is worthwhile noting here that site A characterises a good and site D a moderate mean wind speed value. The

statistical tests show that the two-parameter gamma distribution is the best fit for dataset B, which is a site
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Figure 1. Histogram of dataset A fitted with Weibull,

Rayleigh, gamma, two-parameter lognormal, and inverse

Gaussian PDFs.

Figure 2. Histogram of dataset A fitted with Weibull,

Rayleigh, and gamma PDFs.
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Figure 3. Histogram of dataset B fitted with Weibull,

Rayleigh, and gamma PDFs.

Figure 4. Histogram of dataset C fitted with Weibull,

Rayleigh, and gamma PDFs.

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Wind speed (m/s)

P
ro

b
ab

il
it

y

Dataset D

 

 

Histogram of wind speeds

Rayleigh

Weibull

Gamma

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Wind speed (m/s)

P
o

w
er

 o
u

tp
u

t 
(M

W
)

 

 

Actual
4 PL
5 PL

Figure 5. Histogram of dataset D fitted with Weibull,

Rayleigh, and gamma PDFs.

Figure 6. Power curves extracted from actual wind speed

and power curve data site by four- and five-parameter

logistic approximations.

with very low mean wind speed, and also for dataset C, which has a high mean wind speed value. However, the

Weibull PDF also gives fairly accurate results for both sites. The Rayleigh PDF gives a very poor performance

for site C and it is a poor fit for the other three sites also. These results also show that the Weibull PDF

was the best fit for sites A and D, which have a lower value of skewness coefficient, and the gamma PDF was

best for sites B and C, which have higher skewness values. The performance of these three PDFs for assessing

the wind energy potential of the three wind farm sites was also analysed and the results are summarised in
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Table 4. The Rayleigh PDF produced the maximum error among the three PDFs for all the sites and produced

significant errors in wind power assessment for sites B and C. Overall, the Weibull and gamma PDFs resulted

in less WPD and AEP errors. These three PDFs, namely Weibull, Rayleigh, and gamma, are ranked on the

basis of four different evaluation criteria for the three sites in Table 5. It can be seen that the gamma function

produced the least WPD and AEP errors for site A among the three functions, whereas Weibull was ranked

number 1 based on RMSE and R2 criteria. It can be said that evaluating these distribution functions based

on the goodness of fit criteria alone is not sufficient. These criteria should be used for identifying suitable

distributions before a detailed analysis is done. As these fitted PDFs are used for different applications by the

wind industry, the performance of these PDFs for specific applications like wind power prediction should also

be evaluated. The results show that there is an underestimation of power density in general. The percentage

errors mostly show an overestimation of energy, which might be due to the wake effect and underperformance

of some turbines in the wind farm. The power curves derived from actual data of the wind farm using 4PL and

5PL approximations are shown in Figure 6. Energy assessments using the manufacturer’s curve and derived

power curves are compared in Table 6. It is worthwhile noting here that the curves derived from the actual

data of this site result in remarkably less errors in energy assessment compared to the manufacturer’s curve.

This might be due to consideration of the wake effect and other site specific factors in the derived curves that

are not accounted for in the manufacturer’s curve.

Table 3. Comparison of Weibull, Rayleigh, and gamma PDFs.

Data set

Type of distribution function

Weibull Rayleigh Gamma

Parameters RMSE R2 Parameters RMSE R2 Parameters RMSE R2

A k = 2.529
c= 8.849

0.0027 0.9954 k = 2
c = 8.859

0.0112 0.9244 β = 1.422
η = 5.523

0.0061 0.9779

B k= 1.241
c= 2.564

0.0127 0.9722 k = 2
c = 2.698

0.0292 0.8537 β = 1.605
η = 1.489

0.0101 0.9823

C k= 1.385
c= 12.846

0.0042 0.9574 k = 2
c = 13.229

0.0124 0.6365 β = 6.432
η = 1.823

0.0039 0.9636

D k= 1.641
c= 11.785

0.0032 0.9805 k = 2
c = 11.89

0.0065 0.9191 β = 4.233
η = 2.49

0.0053 0.9468

Table 4. Comparison of Weibull, Rayleigh, and gamma PDFs for wind power density and energy assessment.

Data
set

Time
series
WPD
(w/m2)

Actual
AEP
(Gwh)

Type of distribution function

Weibull Rayleigh Gamma
AEP
(Gwh)
and %
error

WPD
(w/m2)
and %
error

AEP
(Gwh)
and %
error

WPD
(w/m2)
and %
error

AEP
(Gwh)
and %
error

WPD
(w/m2)
and % error

A 471.91 81.98 92.87
13.28%

464.23
–1.62%

93.97
14.61%

566.23
19.98%

88.91
8.45%

477.41
1.16%

B 35.86 5.67 6.16
8.65%

31.33
–12.61%

2.07
–63.46%

15.99
–55.38%

6.392
12.73%

32.83
–8.45%

C 3039.42 107.56 120.77
12.28%

2860.16
–5.89%

153.18
42.41%

1885.02
–37.98%

119.07
10.75%

2843.16
–6.45%
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Table 5. Ranking of Weibull, Rayleigh, and gamma PDFs based on four different criteria for sites A, B, and C.

Site PDF RMSE R2 WPD AEP

A

Weibull 1 1 2 (–) 2 (+)
Rayleigh 3 3 3 (+) 3 (+)
Gamma 2 2 1 (+) 1 (+)

B

Weibull 2 2 2 (–) 1 (+)
Rayleigh 3 3 3 (–) 3 (–)
Gamma 1 1 1 (–) 2 (+)

C

Weibull 2 2 1 (–) 2 (+)
Rayleigh 3 3 3 (–) 3 (+)
Gamma 1 1 2 (–) 1 (+)

(+) shows an overestimation and (–) shows an underestimation

Table 6. Comparison of AEPS from manufacturers’ curve and 4PL and 5PL power curve approximations derived from

SCADA data site A.

Actual

AEP

(GWh)

Type of

distribution

Manufacturer’s
curve

4 PL curve 5 PL curve

AEP
(GWh)

% error AEP
(GWh)

% error AEP
(GWh)

%
error

81.98

Weibull 92.87 13.28% 85.2 3.92% 85.84 4.7%
Rayleigh 93.97 14.61% 87.42 6.63% 88.02 7.36%
Gamma 88.91 8.45% 80.85 1.37% 81.66 0.39%

5. Conclusion

This paper presented a novel approach for analysing wind speed probability distribution functions based on their

suitability to describe wind regimes with different statistical features and their capability of assessing wind energy

potential for these sites. This study also introduced four-parameter and five-parameter logistic approximations

to derive power curves from SCADA data of a wind farm for use in energy analyses. Five probability distribution

functions were initially fitted to wind speed samples selected from four different topographical locations. A

detailed analysis of two-parameter Weibull, Rayleigh, and gamma distributions was then carried out. For each

selected location the most suitable distribution to describe the wind speed data was identified. The Weibull

distribution was found the best option for two sites with moderate values of mean wind speeds and the gamma

distribution performed best for low and high wind speed sites. The Weibull function fitted well to wind speed

data with less skewness, whereas data that presented highly skewed histograms were represented better by the

gamma function. These two distributions also gave good results for assessing the wind energy potential of these

sites. The Rayleigh function was not suitable for any of the selected locations. Choice of appropriate function

for describing wind speed frequency distribution is a crucial requirement. With the growth of the wind power

industry all over the world, most of the high wind speed areas with flat terrains have been exploited. Recently,

sites with low and medium wind speeds, complex terrains, urban environments, and offshore areas are being

identified for wind power installations. Further research should focus on the applicability of various functions

to match the wind speed encountered in these areas, so that maximum utilisation of the wind potential can be

ascertained.
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