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Abstract: In this work, a novel approach is presented for the feature extraction step in hyperspectral image processing

to form more discriminative features between different pixel regions. The proposed method combines both spatial and

spectral information, which is very important for segmentation and classification of hyperspectral images. For comparison,

five different feature sets are formed using eigen decomposition of local covariance matrices of subcubes located around

a pixel of interest in the scene. Subcubes of neighbor pixels are obtained by a windowed structure to expose pattern

similarities. As a novel approach, local covariance matrices are computed in eigenspace and proposed feature sets are

created after this stage. Before the formation of feature sets in eigenspace, the original input space is transferred to

eigenspace by linear and nonlinear manner by principal component analysis (PCA) and its kernelized version (KPCA)

and they are used in the experiments comparatively. In the simulations, one hyperspectral scene with ground-truth and

one without ground-truth are used for the segmentation and classification tasks. Results of experiments are evaluated

with four different unsupervised learning algorithms for data without ground-truth and three different supervised learning

algorithms for data with ground-truth comparatively.

Key words: Hyperspectral imaging, remote sensing, segmentation, classification, covariance matrices, spectral spatial

information

1. Introduction

Hyperspectral remote sensing technology has a wide range of application fields from geoscience, chemistry,

forensic medicine, and military applications to space/planet research. Taking hundreds of contiguous and

narrow spectral bands from the visible to the infrared bands in the electromagnetic spectrum into account is

the main advantage of hyperspectral imaging [1]. Basically, hyperspectral imaging systems use measurements

obtained from special hyperspectral sensors to determine the contribution of different materials appear in the

imaging field with high spectral and spatial resolution.

Hyperspectral image pixels consist of brightness levels of multiple bands, which are also called spectral

signatures. The spectral patterns of these signatures can be used in both classification and clustering tasks.

Unsupervised classification or clustering/segmentation of hyperspectral images enables easier analysis of high-

dimensional data [2]. However, it must be considered that spectral signatures are also spatially coherent. Making

use of spatial information naturally improves the discrimination of pixels of interest.

Supervised classification algorithms need labeled samples (ground-truth, in remote sensing terminology)

for building a model in the training stage. The number and quality of these samples play an important
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ERGÜL and BİLGİN/Turk J Elec Eng & Comp Sci

role in getting good classification results. However, there are a limited number of labeled hyperspectral data

sets available to all researchers that can be used for the comparison of supervised learning based studies

in the literature. On the other hand, unsupervised classification algorithms do not need labeled samples.

Basically, unsupervised classification algorithms use the similarity of samples to form distinct clusters as much

as possible. Unsupervised and supervised classification of hyperspectral images is studied in the remote sensing

literature with increasing attention considering its high dimensional nature. Both supervised and unsupervised

classification algorithms suffer from high dimensionality of hyperspectral data. In the application of classification

and clustering algorithms, the challenge of dimensionality must be considered for accuracy and complexity [3].

The task of clustering is especially important in the absence of ground-truth information. Collection of

ground-truth information is expensive and time consuming. Hence, the realization of clustering/segmentation

tasks without label information brings important advantages in the analysis of hyperspectral images. A modified

k-means reclustering algorithm has been introduced for unsupervised classification of hyperspectral images [4].

In another work, a novel fuzzy c-means method using weighted cluster centers for unsupervised hyperspectral

image classification was used [5]. A neuro-fuzzy approach based on weighted incremental neural networks

for unsupervised hyperspectral image segmentation has been introduced in [6]. Unsupervised segmentation

of hyperspectral images using region growing type segmentation with modified phase correlation of spectral

signatures has been proposed in [7]. A multiobjective particle swarm optimization based clustering approach

has been proposed with different types of optimization criteria [8].

Supervised algorithms analyze the training data using ground-truth information to build a learning model

and this model can be used for mapping new samples in the scene. Kernel based classification algorithms such as

support vector machines (SVMs) are very popular in classification tasks in hyperspectral images [9]. Radial basis

functions, linear discriminant analysis, and SVMs have been combined for obtaining better classification results

in [10]. A relevance vector machine (RVM) has been used to classify hyperspectral image data and the results

have been compared with SVMs in [11]. Composite kernels have been studied for enhancing hyperspectral image

classification in [12]. Kernel sparse representation based models [13], semisupervised graph-based approaches

[14], semisupervised neural networks [15], and manifold learning-based studies [16] have been proposed for

efficient hyperspectral image classification in recent years.

Feature extraction is an essential step for reducing computational complexity and improving the separa-

bility of samples in hyperspectral image processing. Several linear and nonlinear studies have been presented

for this purpose in the literature. A wavelet and Fourier transformation based combined feature extraction has

been proposed for enhancement of spectral signal quality and extraction of hidden features from hyperspectral

images in [17]. The dyadic discrete wavelet transform has been introduced for feature extraction for dimension

reduction [18]. A learning vector quantization based neural paradigm of generalized relevance learning vec-

tor quantization method has been developed for feature extraction to improve classification performance while

keeping meaningful features [19]. Another proposed approach was a tensor extension of conventional supervised

manifold-learning-based dimension reduction of hyperspectral images [20]. An innovative spectral feature ex-

traction method called prototype space feature extraction (PSFE) was addressed with using only class spectral

information in [21].

As well as spectral features, spatial information provides an important information source for classification

and clustering tasks. There are many studies published about utilization of contextual or spatial information in

the literature. In [22], integration of spectral and spatial information has been studied using morphological

information and the original hyperspectral data together. In a similar work, spatial reclassification and
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mathematical morphological approaches have been investigated for accurate and precise classification results in

[23]. Results of a pixelwise SVM classification and the segmentation map, which were obtained by partitional

clustering method, have been combined using a majority voting scheme in [24]. An agglomerative hierarchical

clustering method was introduced in [25], which uses both spectral and spatial information for the aggregation

decision. A Bayesian framework has been proposed using a multinomial logistic regression algorithm for spectral

information and a multilevel logistic Markov–Gibbs random field for contextual information in [26]. Spectro-

spatial features have been extracted using Gabor textural filters for a SVM based classification in [27].

In this paper, we mainly propose a combined approach for using both spatial and spectral information

together. In line with this objective, local covariance matrices in eigenspace have been used to improve segmen-

tation and classification tasks of hyperspectral images. In our first preliminary study [28], we introduced the

use of local covariance matrices for integration of spectral and spatial information on the original input/sample

space. Then we found that the local covariance matrices yield better results in eigenspace when transformed

by principal component analysis (PCA) and kernel principal component analysis (KPCA) rather than original

spectral signatures in input space. With adding the ‘computation of local covariances in eigenspace’ idea in the

second preliminary study [29], segmentation of hyperspectral images has been addressed by using several clus-

tering methods. In this manuscript, the previous studies are extended to prove the capability of the proposed

approach using both supervised and unsupervised learning (classification and clustering) results in experiments

with different window sizes, which are used for the handling of spatial relationships.

In accordance with this purpose, two hyperspectral images are utilized for the evaluation of the proposed

feature extraction approaches in both the segmentation and classification tasks together. The first hyperspectral

scene is a part of an AVIRIS image from NASA, which was captured at a cuprite mining site in Nevada, USA,

and this scene is used in the evaluation of unsupervised segmentation experiments. The second scene is from a

reflective optics system imaging spectrometer (ROSIS) hyperspectral image from the University of Pavia, Italy,

and the scene is used in the evaluation of supervised classification results.

It must be noted that PCA and KPCA are exploited for two reasons: a) for transferring the original

input space to eigenspace in linear (with PCA) and nonlinear (with KPCA) manner, and they are used in the

experiments comparatively; b) for reducing computational complexity ‘in the computation of local covariances’

using different dimensions of transformed eigenspace (from dimension reduction perspective using 10, 20, and

30 bands/dimensions). Furthermore, different band sizes (10, 20, and 30 bands) and several windows sizes,

such as 3 × 3, 5 × 5, 7 × 7, and 9 × 9 are utilized to investigate correlations of surrounding neighbor pixels

within these windows. In addition, in the unsupervised segmentation part of this study, a more robust and

more stable segmentation validity measure, namely power of spectral discrimination (PWSD), is utilized [30].

Furthermore, a well-known Haralick feature (HF) descriptor [31] method is adopted to integrate spectral and

spatial features for comparison [32]. HFs are also extracted in the same window structure and size similar to

the proposed method and compared in tables. In the unsupervised segmentation stage, K-means (KM), fuzzy

C-means (FCM), Gustafson–Kessel clustering (GKC), and expectation maximization (EM) algorithms are used

with unlabeled data. In the supervised classification of labeled data, SVMs, kernel discriminant analysis (KDA),

and random forest (RF) methods are utilized for comparison.

This paper is organized as follows. Section 2 provides a brief introduction to the computation local

covariance matrices in eigenspace and explains the proposed feature extraction approach in this paper. Exper-

imental results are presented in Section 3. Finally, in Section 4, we conclude this paper with final remarks and

observations on this study.
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2. Spectro-spatial feature extraction in eigenspace

Integration of spectral and spatial information is a meaningful and useful strategy for accuracy increment in the

classification and clustering of hyperspectral images. In this manuscript, the use of local covariance matrices

for integration of spectral and spatial information on the eigenspace is introduced. Our previous preliminary

studies [28,29] proved that the local covariance matrices yield better results in eigenspace when transformed by

PCA and KPCA rather than original spectral signatures in input space.

2.1. Transferring hyperspectral data to eigenspace

As local covariance matrices yield better results in eigenspace, PCA and KPCA are mainly exploited for

transferring original input space to eigenspace in linear (PCA) and nonlinear (KPCA) manner and they

are used in the experiments comparatively. As well as the transferring issue, the advantage of dimension

reduction possibilities with PCA [33] and KPCA [34] methods are taken into account for reducing computational

complexity in the computation of local covariances. Because of the high dimensional nature of hyperspectral

images, which contains quite rich information in bands, the computational cost also increases depending on

the complexity of the machine learning algorithm in use. From the dimension reduction perspective, different

dimensions of transformed eigenspace are assessed for comparison (i.e., 10, 20, and 30 bands/dimensions in the

experiments).

2.2. Feature extraction with local covariance matrices

The proposed method with local covariance matrices enables the use of both spectral and spatial information

in a pixel neighborhood. Furthermore, it is intended to utilize covariance matrices for feature extraction in

eigenspace as a novel approach. Revealing the similarities between different image regions with using regional

covariance matrices (RCMs) was first proposed by Tuzel at al. [35]. RCMs were generally used for the purpose

of object recognition and texture classification. In previous works, RCMs were constructed using spatial location

information, color values in each plane of RBG images, and first and second derivatives in the x and y directions

of the images to find similar regions.

Hyperspectral images can be defined in two different ways: a) as a d -dimensional hypercube (height ×
width ×d), where d is the total number of bands in the hyperspectral image; b) if each pixel in a scene forms

a vector as a line of a matrix, a two-dimensional matrix can be obtained (X = {x1, . . . ,xn} ,xn∈Rd), where n

is total number of pixels in the scene.

Unlike the original study, in our work each pixel (not only regions) is evaluated with its neighbor pixels

using original spectral signature values. In this way, attempts are made to expose pattern similarities in pixel

localization. For this purpose, k × k size (k denotes pixel length of one side of square window structure)

windowed regions (i.e. B) are defined and CB covariance matrices are calculated for each pixel
(
xi ∈ Rd

)
,

taking m neighbor pixels (xy) into account (m = k × k) as in (7).

CB=
1

m−1

m∑
i=1

(xi−µB)(xi−µB)
T
, (1)

where µB represents mean spectral signature calculated from pixels in the region B . In (8), vB represents

eigenvectors, while λB represents eigenvalues that indicate the importance of eigenvectors with respect to

variance.
CBvB=λBvB (2)
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The obtained d× d covariance matrices provide discriminative features that can separate the pixel distribution

in B region from other pixel regions. By using this information, proposed feature sets are extracted for each

pixel to form new transformed spectral signatures. Eigenvalues and eigenvectors obtained from local covariance

matrices for each pixel are sorted in descending order and used for extraction of different feature sets. Local

covariance based feature extraction process steps are shown in Figure 1.

Figure 1. Local covariance based feature extraction process steps.

The proposed feature sets in this study can be given as follows:

2.2.1. Feature set (FS-1)

Only the first eigenvector corresponding to the biggest eigenvalue (i.e. vB) is chosen as new features for the

pixel of interest (i.e. region B).

feat(x,y)=vB; forλmax (3)

2.2.2. Feature set (FS-2)

A new feature vector is formed for the pixel of interest by summing of all eigenvectors (d
′
< d) at least 0.90%

confidence of corresponding eigenvalues and proportional to eigenvalues in the confidence range.

feat(x,y)=

d′∑
i=1

(
λB(i)∑

λB
· vB(i)

)
;

d′∑
i=1

λB(i)∑
λB

≥ 0.90 (4)

2.2.3. Feature set (FS-3)

This feature set is formed similar to the previous feature set (i.e. FS-2) but it comprises at least 0.95% confidence

of corresponding eigenvalues.

feat(x,y)=
d′∑
i=1

(
λB(i)∑

λB
· vB(i)

)
;

d′∑
i=1

λB(i)∑
λB

≥ 0.95 (5)
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2.2.4. Feature set (FS-4)

Vectors of new feature space are formed by summing all eigenvectors proportional with respect to the corre-

sponding eigenvalue.

feat(x,y)=

d∑
i=1

λB(i)/

d∑
j=1

λB (j)

 · vB(i)

 (6)

2.2.5. Feature set (FS-5)

All eigenvalues λB obtained in a surrounding windowed structure of a pixel constitute new features of the pixel

of interest.
feat(x,y)=λB (7)

Feature vectors feat(x,y) , which are obtained using proposed five feature extraction methods, are computed

for each pixel in the scene. Covariance matrices combine multiple correlated features in a natural way. Noisy

samples are also filtered out with the averaging operation by computation of covariance matrices [35]. It must

be noted that, in small window sizes, the local covariance matrix may not be full rank. Hence, the number of

eigenvectors corresponding to nonzero eigenvalues cannot be more than the number of pixels in the windowed

area. Nevertheless, there is a low probability to come across an almost identical spectral pixel signature in a

hyperspectral scene because of the large pixel coverage area in low resolutional hyperspectral sensors.

3. Experiments and results

In experiments, a part of the AVIRIS Cuprite-Nevada hyperspectral data, which will be called AVIRIS S4,

and the hyperspectral data of the ROSIS University area with provided ground-truth are used. The AVIRIS

Cuprite-Nevada hyperspectral data are provided by NASA and contain 224 spectral bands originally. After

discarding noisy bands caused by atmospheric effects, the band number is reduced to 198. The scene consists

of 256 rows/scene and 256 pixels/row and it does not contain any ground-truth information. Experimental

results are evaluated for 9, 10, 11, and 12 clusters by utilizing a spectral signature library, provided by the US

Geological Survey [36]. In Figure 2a, the 50th band of AVIRIS S4 hyperspectral image is shown.
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Figure 2. (a) 50th Band of the AVIRIS Cuprite S4 hyperspectral cube and (b) 75th rotated band of the ROSIS Pavia

University hyperspectral cube used in the experiments.

The PAVIA University hyperspectral image is obtained over the University of Pavia, Italy, by the

Deutschen Zentrum für Luft- und Raumfahrt (DLR, the German Aerospace Agency). It has 115 bands with
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a spectral coverage ranging from 430 to 860 nm. The ROSIS Pavia University hyperspectral scene has 610

rows/scene and 340 pixels/row. The original band number is reduced to 103 bands after removing water

absorption affected and excessively noisy bands. Nine classes are defined for the ROSIS Pavia University scene:

tree, asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow, and soil. There are 3921 training and

42,776 testing pixels available for this hyperspectral scene [37]. In Figure 2b, the 75th band of the ROSIS Pavia

University hyperspectral image is shown as an example.

It is necessary to determine an objective and statistical criterion for evaluating the performance of

unsupervised segmentation results and for comparing accuracies of different segmentation maps. For this

purpose, power of spectral discrimination (PWSD) is utilized, which was proposed in [30]. PWSD provides

an assessment criterion depending on two reference cluster centers for a particular pixel. PWSD is shown in

(14), where x is the vector of a pixel in the scene and si and sj are cluster representative vectors obtained by

averaging for each cluster.

Ω (si, sj ,x) = max

{
SAM(si,x)

SAM(sj ,x)
,
SAM(sj,x)

SAM(si,x)

}
(8)

SAM (spectral angular measure) represents a similarity measurement criterion.

SAM (x,y) = 1− cos−1


n∑
i=i

xiyi√
n∑

i=1

x2
i

√
n∑

i=1

y2
i

 (9)

For every pixel xi in the ith cluster, the PWSD is computed using the cluster representative si that the pixel

belongs to and the representative signatures of other clusters sj , (i ̸= j). Segmentation accuracy (SA) is the

mean of Ω values for each pixel as shown in (16), where c is total number of clusters.

SA (xi)=mean {Ω(si,sj ,x) |i,j= 1, . . . ,c,i ̸=j} (10)

By definition, the PWSD value is always bigger than one. It is assumed that the discrimination capability of

the segmentation technique increases with the increasing value of the SA criterion.

In the pattern recognition literature, there are some spatial feature extraction methods that aim to

reveal spatial similarities/dependencies between distant or local neighbor regions. In this study, the well-known

Haralick feature (HF) [31] descriptor method is adopted to integrate spectral and spatial features for comparison.

The Haralick method uses a gray-level co-occurrence matrix (GLCM) for feature extraction. As a part of this

study, GLCM matrices are formed with degrees of rotational direction of 0, 45, 90, and 135 for each band of

the hyperspectral scene in a local window structure. In this way, a compatible comparison can be realized

with the proposed local covariance feature extraction method. After obtaining GLCM matrices, a Haralick

feature descriptor is applied to compute contrast, entropy, standard deviation end energy values as features.

HFs are extracted from four different window sizes, which are defined as k × k(k = 3, 5, 7, 9) surrounding the

neighborhood of the center pixel. Hence, the Haralick based local feature extraction method is compared with

the proposed approach in terms of the same local spatial relations. HFs are extracted in the same window size

similar to the proposed method and the results are presented in the tables.

In order to get comparative results, KM, FCM, GKC, and EM algorithms are used for unsupervised

segmentation of hyperspectral data with no ground-truth. SVM, KDA, and RF methods are selected as
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supervised classification methods for hyperspectral data with ground-truth. In all unsupervised algorithms, the

error criterion is set to 0.0001 for termination condition and the weighting exponent of (mf ) fuzzy clustering

algorithms is set to 2. The radial basis kernel is chosen with SVM and KDA. The best parameter optimization

of kernel classifiers is accomplished by applying a 5-fold cross validation method. RF is an ensemble supervised

classifier method that consists of multidecision trees. The maximum number of trees is set to 100 in the
experiments.

Without applying any local covariance based feature extraction, evaluations of experimental results are

obtained after clustering and classification processes as shown in Table 1. Original and dimension reduced

bands with PCA and KPCA are presented for comparison. SA, namely mean of PWSD, measure is used for

the unlabeled AVIRIS S4 hyperspectral scene and overall accuracy (OA) measure is used for the labeled ROSIS

Pavia University hyperspectral scene to find segmentation and classification accuracies.

Table 1. AVIRIS Cuprite S4 hyperspectral scene SA results and ROSIS Pavia University hyperspectral scene OA results

for original bands and 10, 20, 30, and 40 band sizes obtained by PCA and KPCA.

AVIRIS Cuprite S4 SA results ROSIS Pavia University OA results (%)
KM FCM GKC EM SVM KDA RF

With original bands 1.064 1.059 1.036 1.059 78.857 77.560 71.524

10 Band
PCA 1.025 1.033 1.015 1.056 73.992 72.017 74.041
KPCA 1.066 1.057 1.083 1.064 72.660 74.348 66.480

20 Band
PCA 1.017 1.023 1.010 1.058 73.768 72.849 75.058
KPCA 1.072 1.034 1.074 1.058 77.161 78.539 70.675

30 Band
PCA 1.013 1.011 1.010 1.054 73.908 73.050 74.840
KPCA 1.073 1.028 1.070 1.052 80.538 80.938 72.936

40 Band
PCA 1.013 1.011 1.009 1.045 73.180 72.852 73.410
KPCA 1.065 1.028 1.069 1.051 79.285 79.380 72.460

PCA and KPCA are mainly utilized for dimension reduction before the proposed novel feature extraction

method with local covariance matrices. Experiments are performed on the hyperspectral scenes after dimension

reduction with 10, 20, and 30 bands. After passing from original input space to the eigenspace, local covariance

matrices are computed in a windowed structure. Several windows sizes, such as 3×3, 5×5, 7×7, and 9×9, are

defined for considering different correlations of surrounding neighbor pixels within these windows. Afterwards,

local covariance matrices are computed by taking all pixels within these windows and for every pixel in the

scene. Then eigen decompositions of obtained covariance matrices are made. Several feature sets (FS-1 to FS-5)

are composed using eigenvalues and eigenvectors as explained in Section 2.2.

The best SA results for the AVIRIS S4 hyperspectral scene are obtained by using 3× 3 window size out

of all other window sizes (i.e. 5× 5, 7× 7, 9× 9) in the experiments. Thus, all results for 3× 3 window size

are presented in Table 2 and the best SA result is 1.417 for 10 bands using FS-1 in this table. In all reduced

bands, KPCA gives the best SA results for KM, FCM, and GKC with FS-1. EM also produces higher results

with KPCA but it produces the best results for different feature sets (e.g., FS-3 for 20 bands and HF for 30

bands). Furthermore, decreasing of SA values can be observed from Table 2 as the number of reduced bands

increases for all segmentation methods. On the other hand, the best OA results for the ROSIS Pavia University

hyperspectral scene are obtained with 5 × 5 window size out of all other window sizes (i.e. 3× 3, 7× 7, 9× 9)

in the experiments. Hence, all results for 5× 5 window size are presented in Table 3 and the best OA is 90.73%

for 30 bands using FS-1 in the table. It can be seen from the Table 3 that KPCA gives the best OA results for

all classifiers but the best results for different reduced bands change arbitrarily with the feature set.
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Table 2. AVIRIS Cuprite S4 hyperspectral scene SA results with 3 × 3 window size and 10, 20, and 30 bands using

five different feature sets (FS-1 to FS-5) and Haralick features (HFs).

AVIRIS Cuprite S4

Segmentation methods
KM FCM GKC EM
PCA KPCA PCA KPCA PCA KPCA PCA KPCA

10 Band

FS-1 1.104 1.417 1.179 1.325 1.089 1.380 1.058 1.371
FS-2 1.101 1.224 1.177 1.179 1.040 1.215 1.050 1.208
FS-3 1.054 1.247 1.062 1.232 1.046 1.344 1.056 1.410
FS-4 1.100 1.217 1.178 1.177 1.086 1.207 1.049 1.165
FS-5 1.003 1.096 1.001 1.081 1.052 1.064 1.042 1.051
HFs 1.032 1.118 1.027 1.068 1.052 1.185 1.056 1.213

20 Band

FS-1 1.101 1.280 1.67 1.218 1.040 1.253 1.061 1.236
FS-2 1.101 1.200 1.166 1.160 1.038 1.188 1.058 1.190
FS-3 1.063 1.145 1.070 1.150 1.041 1.202 1.055 1.264
FS-4 1.091 1.189 1.166 1.167 1.096 1.198 1.057 1.159
FS-5 1.002 1.026 1.001 1.050 1.047 1.057 1.040 1.048
HFs 1.032 1.110 1.026 1.036 1.026 1.120 1.091 1.250

30 Band

FS-1 1.095 1.213 1.091 1.174 1.041 1.199 1.055 1.185
FS-2 1.092 1.189 1.099 1.155 1.039 1.180 1.037 1.157
FS-3 1.048 1.153 1.062 1.126 1.030 1.155 1.056 1.203
FS-4 1.081 1.197 1.099 1.167 1.038 1.191 1.045 1.158
FS-5 1.002 1.017 1.001 1.034 1.039 1.052 1.040 1.400
HFs 1.033 1.071 1.028 1.049 1.011 1.103 1.095 1.221

Table 3. ROSIS Pavia University hyperspectral scene OA results in percentage with 5 × 5 window size and 10, 20, and

30 bands using five different feature sets (FS-1 to FS-5) and Haralick features (HFs).

ROSIS Pavia University

Classification methods
SVM KDA RF
PCA KPCA PCA KPCA PCA KPCA

10 Band

FS-1 65.53 67.05 62.38 62.54 64.95 64.62
FS-2 64.33 75.76 73.17 75.10 64.13 76.39
FS-3 63.86 76.52 64.34 77.21 56.09 72.49
FS-4 64.23 76.69 73.62 75.00 64.02 77.23
FS-5 64.53 67.68 47.17 48.41 57.99 73.05
HFs 54.40 59.07 56.49 60.52 41.26 58.04

20 Band

FS-1 70.08 79.22 72.81 75.15 73.09 73.94
FS-2 74.46 79.21 72.91 77.54 71.70 77.15
FS-3 73.49 77.20 71.87 77.02 67.35 75.55
FS-4 71.92 77.17 73.06 77.18 72.59 76.56
FS-5 60.18 61.21 51.62 53.40 51.54 71.82
HFs 54.04 60.30 54.46 68.13 41.26 52.97

30 Band

FS-1 67.53 90.73 70.93 87.91 72.39 78.80
FS-2 71.82 88.13 71.94 84.91 72.10 82.16
FS-3 73.04 84.86 72.90 81.27 65.81 82.86
FS-4 69.77 85.76 71.49 83.82 71.70 82.80
FS-5 41.68 59.38 22.93 34.30 49.50 65.83
HFs 54.40 67.11 55.45 68.64 41.26 71.81

In Tables 2 and 3, extracted features with the proposed method produce better accuracies if compared

with Table 1. Note that FS-1 gives the best result in both segmentation and classification tasks. FS-1 is
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formed by only the first eigenvectors corresponding to the biggest eigenvalue. It can be inferred that in FS-1

eigenvectors that correspond to axes with lower variance do not contribute to the composition of the feature

set as in FS-2, FS-3, and FS-4.

Segmentation and classification maps could enable better visual assessment of obtained accuracies for

all methods. The results without using the proposed feature sets with original data and also using the HF

method are provided in Figures 3a–3d for visual comparison. Segmentation and classification maps of the two

hyperspectral scenes using the proposed approach are shown in Figures 4a–4d and Figures 5a–5c, respectively.

The best maps are generated with FS-1 for all segmentation and classification methods for comparison.
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Figure 3. AVIRIS Cuprite S4 segmentation maps obtained by (a) original data and (b) HF with using KM. PAVIA

Rosis University’s rotated classification maps obtained by (c) original data and (d) HF with using SVM.

For comparison, AVIRIS Cuprite S4 hyperspectral scene SA results are provided with respect to window

sizes for all bands using FS-1 with KM, FCM, GKC, and EM clustering methods in Figures 6a–6d and OA

results of the ROSIS Pavia University hyperspectral scene are plotted with respect to 3× 3, 5× 5, 7× 7, and

9× 9 window sizes for all bands using FS-1 with SVM, KDE, and RF classification methods in Figures 6e–6g.
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Figure 4. Segmentation maps obtained by 3 × 3 window size with FS-1 for (a) KM, (b) FCM, (c) GKC, (d) EM

clustering methods.

 

(a)
100 200 300 400 500 600

50

100

150

200

250

300

 

(b)  

 

(c)  

100 200 300 400 500 600

50

100

150

200

250

300

100 200 300 400 500 600

50

100

150

200

250

300

Figure 5. Rotated classification maps obtained by 5 × 5 window size with FS-1 for (a) SVM, (b) KDA, (c) RF

classification methods.
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Figure 6. AVIRIS Cuprite S4 hyperspectral scene segmentation accuracy results (in terms of SA) with respect to 3

× 3, 5 × 5, 7 × 7, and 9 × 9 window sizes for 10, 20, and 30 bands with (a) KM, (b) FCM, (c) GKC, and (d) EM

clustering methods using FS-1. ROSIS PAVIA University hyperspectral scene classification accuracy results (in terms of

OA) with respect to 3 × 3, 5 × 5, 7 × 7, and 9 × 9 window sizes for 10, 20, and 30 bands with (e) SVM, (f) KDE,

and (g) RF classification methods using FS-1.
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The samples in a windowed area (which constitute a small subcube) have typically similar statistical

distributions. Therefore, one variance value is generally calculated as the largest only for one dimension as

a result of the computation of local covariance. In this case, variances of other dimensions will be relatively

small or close to zero. This situation reveals that the data can be highly distinctive in only one dimensional

space in most cases. Thus, only one eigenvector corresponding to the largest variance has high capacity of

distinctiveness. Other eigenvectors that corresponds to relatively small or zero variances have low information

on the local data distribution. In most cases, it can be inferred that these eigenvectors totally consist of noise and

redundant information. Hence, taking these eigenvectors into account can reduce the separability of extracted

features. The samples projected by a nonlinear transform like KPCA are expected to be more separable, when

samples have nonlinear data distributions in the same windowed area particularly. In this case, the distribution

of samples in a windowed area in feature space produces relatively few larger variances compared to linearly

transformed samples.

4. Conclusion

In this paper, a novel feature extraction approach is proposed for utilization of both spectral and spatial

information of hyperspectral images using local covariance matrices. Spatial information is an important source

to achieve better segmentation and classification accuracies as well as spectral information. For this reason, local

covariance matrices are computed with neighbor pixels in a windowed structure to expose pattern similarities

in eigenspace. Experimental results show that integration of spectro-spatial features based on the proposed

approach led to the improvement of accuracies in all unsupervised and supervised classification algorithms.
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