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Abstract: In this paper, we propose a novel nonlinear clipping detector based on the second-order Volterra filter for

an acoustic echo canceller (AEC). Since the performance of the conventional AEC algorithm drastically deteriorates

when nonlinear clipping occurs, the adaptive filter pauses adaptation during the nonlinear clipping periods to avoid

unwanted divergence. These nonlinear clipping periods are detected in our method using the magnitude spectrum of the

quadratic Volterra filter in lower frequency ranges. Through extensive computer-based simulation results considering an

acoustic room environment and various clipping levels, it is found that the proposed approach is effective in detecting

the nonlinear clipping periods and improving AEC performance compared to the conventional AEC algorithm.
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1. Introduction

An acoustic echo often occurs because of acoustic coupling between a loudspeaker and microphone. Since this

echo can significantly degrade the conversational quality between speakers, an acoustic echo canceller (AEC)

eliminating acoustic echo from the microphone input is essential in mobile and electronic devices [1]. To date,

much work has been conducted to develop a high-performance AEC. Acoustic echo cancelling is performed by

adaptively modeling the echo path impulse response and subtracting an estimated echo from the microphone

input [2–4]. Since most AECs utilize an acoustic echo assuming that acoustic replica is linearly dependent on an

input signal of the loudspeaker, many adaptive filter algorithms are suitable to model a linear signal including

the normalized least mean squares (NLMS), sign least mean squares (LMS), recursive least mean squares (RLS),

proportionate NLMS (PNLMS), affine projection algorithm (APA), and the soft decision method [5,6]. However,

the nonlinear characteristic of the amplifier and loudspeaker leads to nonnegligible nonlinear distortion [7], which

cannot be sufficiently cancelled by the conventional linear AEC algorithms [8]. Because a nonlinear clipping

input is detected as an uncorrelated noise by the AEC, the linear adaptive filter diverges in the nonlinear clipping

period. This divergence phenomenon decreases the performance of the AEC not only in the nonclipping period

but also in the clipping period. Therefore, a nonlinear clipping detector can be beneficial to detect the nonlinear

clipping period and prevent linear filter divergence for a robust AEC.

In this paper, we present a nonlinear clipping detector to identify nonnegligible nonlinear distortion

periods using a portion of the second-order Volterra filter [9–11], which efficiently characterizes speaker distortion

[12,13]. Thus, the nonlinear clipping detector pauses the linear adaptive filter activity during the nonlinear

clipping period so that the linear filter is updated only for the linear echo signal, which is the first approach
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of detecting nonlinear clipping periods without a priori clipping information. It is similar to the double-talk

detector, which freezes adaptive filter during the presence of near-end speech [14], but the nonlinear clipping

detector operates during the presence of clipping periods and reduces irreducible error and improves speech

quality, which is clearly different from the double-talk detector. We review the conventional AEC system in

Section 2 and describe the proposed nonlinear clipping detector in Section 3. In Section 4, test environments

and computer simulation results are described, while conclusions are drawn in Section 5.

2. Review of an acoustic echo canceller

Acoustic echo cancelling is performed based on a finite-duration impulse response (FIR) adaptive filter and is

shown in Figure 1. A microphone input y(n) is given as the sum of a near-end signal s(n), an ambient noise

signal n(n), and an echo signal d(n):

Figure 1. Block diagram of the conventional acoustic echo canceller.

y(n) = s(n) + n(n) + d(n) (1)

where an echo signal d(n) occurs when a far-end signal passes through an acoustic impulse response. Adaptive

filter modeling utilizes an acoustic room impulse response and forms a replica d̂(n) of the echo signal d(n):

d̂ (n) = hT
1 (n)x (n) , (2)

where h1 (n) = [h1,0 (n) , h1,1 (n) , · · · , h1,N1−1 (n)]
T is a (N1×1) coefficient vector, and x (n) = [x (n) , x (n− 1) ,

· · · , x (n−N1 + 1)]T is a (N1×1) far-end input vector. T represents the vector transpose. When this estimated

echo signal d̂(n) is subtracted from the microphone input y(n), the error signal is given as

e (n) = y (n)− d̂ (n) , (3)

where the error signal of the AEC e(n) is used to update the coefficients of the adaptive filter h1(n) in order

to model the realistic acoustic impulse response. To update these coefficients, the normalized least mean square

(NLMS) algorithm is used in this paper. This NLMS-based adaptive filter algorithm is a widely used method

because of its relative simplicity and good performance [1–5]. Indeed, adaptation of these coefficients according

to the NLMS is performed such that

h1 (n+ 1) = h1 (n) +
µ1

Px(n) + β
x (n) e (n) , (4)
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where µ1 is a constant step-size to control adaptive filter convergence, β is a stabilization factor to ensure

filter stability, and Px(n) is the power of the far-end input vector x(n). However, the conventional linear AEC

algorithm based on the NLMS scheme is not sufficient to eliminate the nonlinear clipping echo unlike the linear

acoustic echo [8], as shown in Figure 2. During the nonlinear clipping period, the conventional AEC algorithm

results in irreducible echo because of divergence of the NLMS adaptive filter used. Accordingly, we devise a

way to prevent the adaptive filter from diverging in order to achieve a robust AEC technique in the following

section. It has some advantages in that speech quality can be increased compared to the conventional AEC

algorithm.
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Figure 2. Output of the conventional NLMS adaptive filter for acoustic echo canceller during linear and nonlinear

clipping period.

3. Proposed nonlinear clipping detector for AEC

In this section, we introduce a basic concept of the second-order Volterra filter in order to implement the

nonlinear clipping detector in a framework of the AEC algorithm as shown in Figure 3. The Volterra filter is

originally identical to a generalized Taylor series representation of a function with memory; hence, the Volterra

filter is able to characterize a wide range of nonlinear systems [11]. Specifically, the second-order Volterra filter

consists of linear and quadratic filters, and its output can be represented as

Figure 3. Block diagram of the nonlinear clipping detector based on the second-order Volterra filter for acoustic echo

canceller.

y (n) =

N1−1∑
i=0

h1 (i)x (n− i) +

N2−1∑
i=0

N2−1∑
j=0

h2 (i, j)x (n− 1)x (n− j), (5)
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where x(n) denotes input signal, y(n) represents output signal, and N1 and N2 denote the memory length

of the linear (h1) and quadratic (h2) Volterra filters, respectively. The quadratic Volterra filter models the

nonlinear characteristic when the linear Volterra filter cannot sufficiently cancel the echo signal from an unknown

microphone input. We use the quadratic Volterra filter to classify the nonlinear clipping periods from the

microphone input signal. This nonlinear clipping cannot be modeled by a linear filter such as moving average

(MA), autoregressive moving average (ARMA), etc. [7,8]. As an example, the magnitude spectrum of the

quadratic Volterra filter utilized during the nonlinear clipping and nonclipping periods is shown in Figures 4(a)

and 4(b), respectively. In the case of the nonlinear clipping period, the magnitude spectrum of the quadratic

Volterra filter is significantly increased in the lower frequency ranges compared to that of the nonclipping period.

The magnitude spectrum of the quadratic Volterra filter is obtained by

H2,n (m1,m2) = F2D {h2 (n)} , (6)

where

h2 (n) =

 h2(0, 0) · · · h2(0, N2 − 1)
...

. . .
...

h2(N2 − 1, 0) · · · h2(N2 − 1, N2 − 1)

 (7)

Here F2D represents the (M ×M) two-dimensional discrete Fourier transform (2-D DFT), H2,n(m1m2) de-

notes 2-D DFT of the quadratic Volterra filter h2(n), and 0 ≤ m1m2 ≤ M − 1. Based on the low frequency

boosting characteristics of the quadratic Volterra filter, we classify the nonlinear clipping period in the unknown

microphone input. For this, we use the summation of the magnitude spectrum from the quadratic Volterra filter

in lower frequency ranges as an indicator. If this indicator is higher than a constant threshold, we classify this

period as a nonlinear clipping period. As a result, the decision rule is devised by

M/2+υ∑
m1=M/2−υ

M/2+υ∑
m2=M/2−υ

|H2,n(m1,m2)|
1

0
η, (8)

where ν is a summation range factor of the magnitude spectrum of the quadratic Volterra filter and η denotes

a given threshold. The nonlinear clipping detector is efficiently implemented by comparing the summation of a

portion of the quadratic Volterra filter coefficient matrix with the constant threshold. By using this nonlinear

clipping detector, we can obtain information of the nonlinear clipping periods in the microphone input signal.

This nonlinear clipping detector information not only informs the linear filter to prevent filter updates at the

nonlinear clipping periods, but also controls the overdriven amplifier. Notice that the quadratic Volterra filter

is not used to cancel the acoustic echo but is only employed for the nonlinear clipping detector. As in Figure

4, the quadratic Volterra filter should be updated adaptively in order to model the nonlinear behavior from

the output of the AEC algorithm. Moreover, the linear filter coefficients are updated to minimize error caused

by subtracting the estimated echo from the unknown microphone input. However, the quadratic Volterra filter

coefficients are adjusted in order to minimize the irreducible error, which cannot be achieved using a linear

filter. For this reason, the sign LMS algorithm is adopted to adjust the quadratic Volterra filter coefficients

such that
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Figure 4. Frequency response of the quadratic Volterra filter: (a) Frequency response of the quadratic Volterra filter

during the nonlinear clipping period, (b) Frequency response of the quadratic Volterra filter during the nonclipping

period.

h2 (n+ 1) = h2 (n) + µ2x2 (n) sgn [e (n)] , (9)

where

x2 (n) =

 x2 (n) · · · x (n)x (n−N2 + 1)
...

. . .
...

x (n−N2 + 1)x (n) · · · x2 (n−N2 + 1)

 (10)

and

sgn (a)=


1, a > 0
0, a = 0
−1, a < 0

. (11)

4. Simulation and results

In order to measure the performance of the proposed nonlinear clipping detector based on a second-order

Volterra filter for AEC, we carried out objective tests under various acoustic environments. In the experiments,

the parameters were set as follows: N1 = [64, 128, 256, 512], µ1 = 0.3, β = 1.0, N2 = [64, 128, 256, 512], and

µ2 = 0.3. For these tests, 20 sentences, which were sampled at 8 kHz and represented in 16-bit format from two

male and two female speakers, were used to construct speech data files. Uncontaminated and nonclipped speech

was used for the far-end signal. The near-end signal was artificially obtained by the following procedures. The

clean far-end signal was normalized and amplified to various volumes than normalized signal where out of range

from −215 to 215 corresponding to the nonlinear clipping and truncated by ±215 . Next the nonlinear clipping

far-end signal was passed through a room impulse response [15]. This room impulse response was designed to

model a small office room having a size of 5×4×3m3 . Here the location of speaker and microphone were set as

0.5 m, 2 m, 1.5 m and 3.5 m, 2 m, 1 m, respectively. From these conditions, simulated room impulse response

4853



PARK and CHANG/Turk J Elec Eng & Comp Sci

was generated as shown in Figure 5. Lastly, the volume of the room impulse response’s output was decreased by

as much as 3.5 dB in a mobile communication environment [14]. When employing the algorithm, all tests were

conducted in a single-talk situation. For the purpose of objective assessments, we compared the performance of

the proposed method and the conventional NLMS AEC algorithm. The performance of the proposed algorithm

was measured in terms of echo return loss enhancement (ERLE) and speech attenuation (SA) [14]:
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Figure 5. Simulated room impulse response (reverberation time = 200 ms).

ERLE (n) = 10 log10

[
E
[
y2 (n)

]
E [e2 (n)]

]
(12)

SA =
1

N

∑
10 log10

[
E
[
s2(n)

]
E [e2(n)]

]
, (13)

where n is the sample index in the discrete-time domain, E[·] denotes the expectation operator, N is the

number of samples during the nonlinear clipping periods, and s2(n) denotes the power of the clean far-end

speech component in the output signal power e2(n). Actually, ERLE was used only in the nonclipping period

for measuring the performance of the acoustic echo cancellation and SA was used only in the nonlinear clipping

period in order to assess the signal degradation performance. In Figure 6, an example of the AEC including

the nonlinear clipping detector is represented. Figure 6(a) illustrates the microphone input and Figure 6(b)

shows the summation of the magnitude spectrum of the quadratic Volterra filter coefficients in lower frequency

ranges in conjunction with a constant decision threshold of 0.005. The result of the nonlinear clipping decision

was compared with the manual marking of the nonlinear clipping period as shown in Figure 6(c). This figure

illustrates that this proposed decision rule can be used as the nonlinear clipping detector. Furthermore, Figure

6(d) shows ERLE and SA results of the proposed method compared to the conventional NLMS method. The

result of the ERLE test shown in Figure 6(d) indicates that the proposed nonlinear clipping detector based

on the second-order Volterra filter well preserves the speech signal from the nonlinear clipping phenomenon

during the nonlinear clipping periods compared to the conventional NLMS method. Given the various clipping

levels, overall results for the ERLE and SA scores were averaged to yield the final mean score results, which
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Table. Comparison of ERLE and SA score in various clipping levels and filter lengths.

N1, N2 = 64 N1, N2 = 128 N1, N2 = 256 N1, N2 = 512
Clipping
Level (dB)

Method ERLE
(dB)

SA
(dB)

ERLE
(dB)

SA
(dB)

ERLE
(dB)

SA
(dB)

ERLE
(dB)

SA
(dB)

15
Conventional 8.08 7.60 11.89 10.56 22.11 15.62 22.51 15.67
Proposed 9.20 7.04 13.38 10.32 23.45 15.17 23.69 15.07

16
Conventional 7.44 6.05 10.38 8.59 21.09 14.58 21.40 14.29
Proposed 7.83 5.83 11.44 8.16 22.91 13.65 22.60 13.37

17
Conventional 6.09 4.81 8.66 7.14 19.72 13.40 19.73 12.76
Proposed 6.72 4.55 10.00 6.37 21.23 12.91 21.39 12.12

18
Conventional 4.86 3.79 6.95 5.18 18.02 11.51 18.21 10.79
Proposed 5.46 3.91 8.11 5.15 19.40 11.34 19.07 10.64

19
Conventional 3.97 2.64 5.47 3.92 16.21 10.49 16.42 9.66
Proposed 5.03 2.24 7.08 3.24 17.64 9.69 17.24 9.64

20
Conventional 3.49 2.19 4.35 2.79 14.49 9.05 14.71 8.04
Proposed 3.82 1.78 5.38 2.37 15.79 8.79 16.04 7.35
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Figure 6. Performance comparison of the proposed algorithm and the conventional method based on ERLE test: (a)

Microphone input waveform, (b) Summation of the magnitude spectrum of the quadratic Volterra filter coefficients in

lower frequency ranges and the decision threshold, (c) Nonlinear clipping detector result (down) compared to the manual

mark (up), (d) Results of the ERLE test of the proposed algorithm and the conventional AEC algorithm.
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are shown in the Table. From the Table, it is evident that the proposed AEC employing a nonlinear clipping

detector based on a second-order Volterra filter yielded a higher ERLE and lower SA at various clipping levels

and filter lengths compared to the conventional technique. From this, we conclude that the proposed algorithm

is superior to the previous scheme at all of the tested clipping levels.

5. Conclusions

In this paper, we have proposed a new nonlinear clipping detector for an AEC based on the second-order

Volterra filter. The proposed nonlinear clipping detector for the AEC is composed of two parts in which the

conventional AEC and the quadratic Volterra filter are used to eliminate linear components of acoustic echo

and characterize the nonlinear clipping periods, respectively. For characterizing the nonlinear behavior of the

unknown input signal, the quadratic Volterra filter is updated in order to minimize the estimation error of the

conventional AEC by using the sign LMS algorithm. The summation of lower frequency ranges of the quadratic

Volterra filter coefficients, which is higher than a constant threshold, is employed as an indicator freezing the

adaptive filter of the conventional AEC during nonlinear clipping periods.

The performance of the AEC including the nonlinear clipping detector was superior to that of the

conventional AEC in objective tests of signal distortion and echo cancellation during the nonlinear clipping

period. However, this algorithm demands high computational cost because adaptation of the second-order

Volterra filter needs many more operations than the adaptive linear filter does. Therefore, we further need

to study the frequency-domain second-order Volterra filter-based nonlinear clipping detector for decreasing

computational complexity.
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