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Department of Computer Engineering, Faculty of Computer and Information Sciences, Sakarya University,

Sakarya, Turkey

Received: 03.04.2014 • Accepted/Published Online: 08.10.2015 • Final Version: 06.12.2016

Abstract: The artificial bee colony (ABC) algorithm is a metaheuristic search method inspired by bees’ foraging

behaviour. With its global search ability in scout bee phase, it can easily escape from local optimum traps in the

problem space. Therefore, it is good at exploration. The migrating birds optimization (MBO) algorithm is another recent

metaheuristic search method. It simulates birds’ V flight formation, which minimizes energy consumption during flight.

The MBO algorithm achieves a good convergence to the global optimum by using its own unique benefit mechanism.

That is, it has a good exploitation capability. This paper aimed to combine the good exploration property of the ABC

algorithm and the good exploitation property of the MBO algorithm via a sequential execution strategy. In the proposed

method, firstly, the ABC algorithm runs. This enables solutions to escape from local optimum traps and orientates

them to the region in which the global optimum exists. Then the MBO algorithm runs. It performs a good convergence

to the global optimum. In the proposed method, some variants of the ABC algorithm and some other well-known

optimization algorithms were tested via benchmark functions. It was seen in the experiments that the proposed method

gave competitive benchmark test results considering both success rates and convergence performances.

Key words: Migrating birds optimization algorithm, artificial bee colony algorithm, sequential execution, cooperation

of algorithms, metaheuristics

1. Introduction

Solving a problem that includes many parameters is a critical issue in terms of optimization. Finding the global

optimum of a complex problem may be too difficult or even impossible for the experts, even if the scientific

definitions and constrains of the problem are determined using clear mathematical formulas. The additional

constraints of the real world sometimes make problems much more complex. For example, in production systems,

producers may be obliged to reduce consumption of a specific material from time to time due to its unavailability

or a lack of inventory. In these cases, one or more parameters of the corresponding problem may need to be

fixed to certain values. Thus, it is most probably impossible to reach the global optimum for this problem.

Therefore, some other suboptimal solutions are searched for via algorithms for these cases.

Metaheuristic algorithms are designed to solve a wide range of optimization problems, including those

with many parameters in industry and services, in areas ranging from finance to production management and

engineering. The prefix meta represents that these algorithms are high level heuristics, and they are generally

applied to problems for which there is no specific method for solving [1]. Philosophically, they do not have to

∗Correspondence: hasanmakas@gmail.com

4935
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adapt to the problem system in any depth. More simply, metaheuristics are interested in neither the structural

appearance of the problem system nor its design purpose. Therefore, they are not problem specific and can be

applied to all of the problems that need optimization. Although problem specific complete methods give more

optimal solutions, they need exponential computation times for the worst problem cases. Hence, metaheuristics,

which are approximate methods, have been getting more and more attention over the last 20 years in order to

solve both combinatorial and numerical optimization problems [2].

Metaheuristics can be defined as iterative methods that mimic the exploitation and exploration behaviours

of some agents. Most of them are neighborhood search methods that are inspired by nature. They constitute a

large and important class among improvement algorithms. A metaheuristic explores the problem space globally

and searches in the neighborhoods of the existing solutions locally to get new and better solutions. There should

be a fine balance between local intensive exploitation and global exploration [3]. If an optimization algorithm

is good at exploration but poor at exploitation, it can escape from local optimums successfully but it cannot

achieve a good convergence to the global optimum. On the other hand, if an optimization algorithm is good at

exploitation but poor at exploration, it is weak at escaping from local optimums. Therefore, it has a low chance

of finding a global optimum if the corresponding problem has many local optimums. However, if it manages to

escape from local optimums, it can perform well at converging towards a global optimum.

Some of the most popular metaheuristic algorithms that have been introduced by researchers so far

are as follows. The genetic algorithm (GA) [4], the simulated annealing (SA) algorithm [5], the tabu search

(TS) algorithm [6], the ant colony optimization (ACO) algorithm [7], the particle swarm optimization (PSO)

algorithm [8], the differential evolution (DE) algorithm [9], the harmony search (HS) algorithm [10], the monkey

search (MS) algorithm [11], the ABC algorithm [12], the firefly algorithm (FA) [13], the intelligent water drops

(IWD) algorithm [14], the cuckoo search (CS) algorithm [15,16], the bat algorithm (BA) [17,18] and the MBO

algorithm [19]. In parallel with these studies many researchers have developed new methodologies based on the

existing algorithms, such as modified hybrid forms [20–32] and parallel running methods [33–38], with the aim

of getting better optimization performances.

Normally, the ABC algorithm is good at exploration, but poor at exploitation [39–51]. Conversely,

the MBO algorithm is good at exploitation, but needs to be enhanced in exploration [33]. In this study, we

proposed a sequential execution methodology for the ABC and MBO algorithms to perform better optimization

by balancing their exploration and exploitation characteristics. More simply, we combined the good exploration

property of the ABC algorithm and the good exploitation property of the MBO algorithm.

Using 10 different benchmark test functions in experiments, we tested how well the proposed method

achieves optimization, and we compared its test results with the results of the MBO, ABC, GA, PSO, and

DE algorithms and 3 variants of the ABC algorithm. The paper is organized as follows. Section 2 gives

the theoretical backgrounds of the ABC and MBO algorithms, describes the proposed method, introduces

experimental setups, and explains the philosophy of benchmark test performance evaluation. Section 3 gives

the experimental results and discusses them. Section 4 concludes the whole study and proposes future work.

2. Methods and background

2.1. The ABC algorithm

The ABC algorithm is inspired by bees’ foraging behaviours. Possible solutions of the optimization problem

are represented by food sources and the fitness of each solution is represented by its nectar amount. Half of

the colony is considered to be employed bees and the remaining half of the colony is considered to be onlooker
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bees [52]. Each of the employed bees is assigned to 1 different food source. Therefore, the total number of food

sources is equal to half of the colony size. There are 3 calculation phases in iterations as seen in Figure 1 [53]:

employed bee phase, onlooker bee phase, and scout bee phase.

Initialize food source positions 

Calculate nectar amounts 

Generate neighborhoods to 

employed bees’ food sources 

Selection  

N 

Y 

Are all onlooker 

bees processed? 

Generate neighborhood 

to the food source that 

onlooker bee selected 

Calculate nectar amounts 

Memorize position of 

the best food source 

Determine food sources whose 

nectars are abandoned  

Generate random sources for 

abandoned food sources 

N 

Y 

Are termination 

criteria met? 

Last food sources 

Calculate nectar amounts 

Initialization

Employed bee 

phase

Onlooker bee 

phase

Scout bee 

phase

Checking 

termination 

criteria

Figure 1. Flow diagram of the artificial bee colony algorithm [53].

At the beginning of the algorithm, it generates randomly distributed initial solutions to food sources by

using

xij = xmin
j + rand.

(
xmax
j − xmin

j

)
, (1)

where xij is the position of the ith solution in the jth dimension, xmin
j and xmax

j are the minimum and maximum

limit values for the jth dimension and rand is a uniform random number ranging from 0 to 1. After completing

the food source initialization, the algorithm phases are run until the termination criteria are met.

In the employed bee phase, employed bees try to improve their solutions by generating new neighbor

solutions via

x̂ij = xij + φ · (xij − xkj) , (2)
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where xij is the position of the ith solution in the jth dimension, k is a randomly selected index value different

from i , xkj is the position of the kth solution in the jth dimension, ϕ is a random number ranging from –1

to 1, and x̂ij is a generated new neighbor position in the jth dimension for the ith solution. If the generated

neighbor x̂ij exceeds a predefined space limit for the problem, it is shifted to the limit value exceeded. This

shifting operation is also valid for all of the algorithms given in this paper. The fitness value of a source is

Fitnessi =

{
1/(1 + fi), fi ≥ 0
1 + abs (fi) , fi < 0

, (3)

where fi and Fitness i are cost and fitness values of the ith source, respectively. A greedy selection based on

fitness values is employed for the selection between existing food sources and generated sources. Then selection

probabilities by onlooker bees for updated sources are calculated by

pi = Fitnessi

/
SN∑
j=1

Fitnessj , (4)

where pi is the selection probability by onlooker bees for the ith source and SN is the total number of food
sources.

In the onlooker bee phase, onlooker bees make their selections depending on the corresponding pi

probabilities by using a probabilistic selection mechanism, such as roulette wheel. Each onlooker generates

a neighborhood to its selection by using Eq. (2), and it makes a greedy selection between the selected source

and generated new source in order to improve its selection.

A failure counter is used for each source during implementations. The failure counter of the corresponding

source is increased by 1 if no improvement is achieved after completing a neighborhood creation. Otherwise, it

is set to zero. In the scout bee phase, whenever a failure counter exceeds a predefined limit value, the employed

bee of that source is transformed into a scout bee. A scout bee makes a global search to find a new food source

via Eq. (1). Then it is retransformed into an employed bee, and the corresponding failure counter is set to zero.

The limit value for the failure counters is an important issue to be focused on. It can be determined by using

Eq. (5) which depends on the problem dimension and the colony size [53].

FCLimit = SN ∗D, (5)

where SN is the total number of food sources, which is equal to half the colony size, and D is the problem

dimension.

2.2. The MBO algorithm

The MBO algorithm is inspired by the V flight formation of birds like in Figure 2. A V shaped flight style gives

rise to induced drag reduction. Therefore, it is an effective formation for birds to save energy [19]. Researchers

have reported that each bird can achieve a reduction in induced drag as large as 65% in a V-shaped flight

formation consisting of 25 members. This induced drag reduction results in a range increase of about 70% [54].
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Figure 2. A typical V flight formation of birds.

The bird in Figure 3 is shown in the direction of flight. When the birds are in flight, a pair of vortices is

created due to their wing movements as seen in Figure 3 [19,54]. Accordingly, trailing tip vortices from the left

and the right wingtips rotate in clockwise and counterclockwise directions respectively [19,54]. Vortices create

downwash and upwash regions for the birds flying behind. Since downwash increases the induced drag on a

wing in flight, it is undesirable. However, upwash is beneficial since it decreases the induced drag on a wing in

flight. For this reason, all of the birds except for the leader tend to locate in upwash regions of vortices, and

they form a V-shaped formation. Thus, they get the benefit of upwashes and reduce their energy consumption.

As a result, the leader bird in a V formation expends the most energy and the others get upwash benefit coming

from the birds in front [19]. The parameters of the MBO algorithm are given in Table 1 and its flow diagram

is given in Figure 4.

Figure 3. Upwash and downwash regions generated by trailing tip vortices [19,54].

Table 1. Parameters of the migrating birds optimization algorithm.

Parameter Description
n Number of solutions (flock size)
k Total number of neighbor solutions to be considered (inverse of the speed)
x Number of neighbor solutions to be shared with the next solution (upwash benefit)
m Number of tours to change the leader
K Maximum iteration or tour number

By sharing solutions, the MBO algorithm simulates the benefit mechanism in a real bird flock. Firstly, the

population is initialized by using Eq. (1). After completing initialization, one of the solutions is chosen as leader

and all of the solutions are placed in a hypothetical V formation arbitrarily. Starting with the first solution,

which corresponds to the leader bird, and progressing on the lines towards the tails, the MBO algorithm aims

to improve each solution by using its neighbor solutions [19].
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Figure 4. Flow diagram of the migrating birds optimization algorithm.

An improvement of the leader bird is performed in the second step. To do this, k neighbors are generated

and their fitness values are calculated. The method given in Eq. (2) can be used for neighborhood creation.

After creating the neighbors, if the fitness of the best neighbor solution is better than the fitness of the leader,
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the position of this neighbor solution is assigned to the leader solution to improve its quality. Then 2x unused

best neighbor solutions are shared with 2 birds in the second row.

Improvements of the other birds are performed in the third step. For each bird in turn, (k−x) neighbor

solutions are generated, and their fitness values are calculated. These generated neighbors, and x unused

best neighbors coming from the bird in front, are combined to get kneighbors for the corresponding bird.

Among these k neighbor solutions, if the fitness of the best neighbor solution is better than the fitness of the

corresponding bird, the position of this neighbor solution is assigned to the corresponding solution to improve

its quality. Then x unused best solutions are shared with the next bird. One iteration ends after completing

improvement trials for all of the birds. Calculations in first 2 steps show that the leader bird spends the most

energy (the most neighborhood creation), but the birds in other positions get a benefit from the birds in front

(neighborhood sharing) and spend less energy.

In the fourth step, if the leader bird completes a predefined number of iterations (m), then it is thought to

be tired and changed. Changing the leader is performed by shifting it to the end of one side of the hypothetical

V formation and assigning the second solution at that side to the leader position. It should be noted that if

the leader changing operation is performed on one side (e.g., left leg of V formation), the next leader changing

operation should be performed on the opposite side (e.g., right leg of V formation). We chose m = 10 as

recommended in [19]. Steps from step 2 to step 4 are repeated until the predefined termination criteria are

satisfied. The algorithm stops and gives its best solution as the resulting overall solution.

Parameters k and x have significant effects on algorithm performance. Therefore, they should be tuned

appropriately. Parameter k is inversely proportional to flock flight speed. For small values of k , the flock is

assumed to be flying at higher speeds. Higher speeds enable the algorithm to reduce the overall execution time.

This is advantageous for low dimensional problems. However, if the parameter k is increased, the search depth

of the algorithm increases. For high dimensional problem cases, although the execution time increases,k may

need to be increased in order to get better solutions. The parameter x represents upwash benefits of trailing

tip vortices in a real bird flock. The benefit mechanism of the MBO algorithm is defined as the number of

good neighborhoods coming from the predecessor solution. High values of x may cause solutions to be more

similar. A premature convergence may then happen [19]. In our implementations, we chose x = 1 to prevent

the algorithm from premature convergence, and we chosek = 3 to reduce the algorithm execution time. The

MBO algorithm makes k+ (population size – 1) × (k – x) fitness calculations for 1 cycle. On the other hand,

the total number of fitness calculations for 1 cycle in other algorithms is equal to the population size. Therefore,

the total number of fitness calculations for the MBO algorithm by using our k and x choices is approximately

equal to 2 times that for the other algorithms. Hence, we set total number of iterations in the MBO algorithm

to half of that in other algorithms in order to make a fair comparison between the algorithms.

2.3. Proposed method

Exploitation and exploration are 2 important properties of an optimization algorithm and there should be a fine

balance between them. As given in Table 2, the exploration characteristic determines how well an algorithm

performs the global search. On the other hand, the exploitation characteristic determines how well it performs

a search on local regions and how close it can converge to minimums.

Logically, if an algorithm is good at exploitation it can converge to optimal points as many times as

possible. Diversity of the population is reduced during these convergences. That is, the members of population

become more similar. However, some suboptimal points may be converged upon instead of a global optimal.
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Table 2. Exploration and exploitation balance in an optimization algorithm.

Exploration Exploitation Algorithm characteristic
Good Good Firstly, it finds the global optimum region easily. Then it performs

a good convergence to the global optimum point as desired. Its
performance is generally independent from initial population and
problem characteristics.

Good Poor It finds the global optimum region easily, but it cannot perform a
good convergence to the global optimum point. Its performance is
generally independent from initial population and problem char-
acteristics.

Poor Good It may not able to find the region including the global optimum. If
it finds global optimum region, it can perform a good convergence
to the global optimum. Its performance is highly dependent on
the diversity of initial population.

Poor Poor It is not wanted and not meaningful for an optimization algorithm.

Unfortunately, for these cases, the algorithm cannot escape from local optimum traps. Some algorithms have

several methods to prevent themselves from reaching this desperate situation. For instance, the GA uses

mutation and the ABC algorithm uses scout bees to escape from local optimums. Both mutation and scout

bee applications force the algorithm to perform random global exploration and to increase population diversity.

Thus, the algorithm gets a new chance to escape from local optimums.

The ABC algorithm is easy to implement and has few parameters. These are population size and

maximum iteration cycle. It is good at exploration owing to the use of scout bees for food sources whose

nectars are abandoned. That is, if a solution cannot be improved anymore, improvement trials on it are

stopped and a random search is performed.

On the other hand, the MBO algorithm gives competitive results to optimization problems and has 2

important parameters to be tuned for successful optimizations. These are k and x as mentioned in Section 2.2.

Briefly, parameter k is related to local search depth and parameter x is related to benefit usage rate. In short,

there is no powerful mechanism that supports or controls a randomized global search in the MBO algorithm.

In our proposed method, it is aimed to use the good characteristics of the ABC and MBO algorithms

sequentially. Since we used the ABC and MBO algorithms sequentially, we called this method the sequential

ABC and MBO (SABCMBO) algorithm. The method is illustrated in Figure 5, schematically. The reason

why the ABC algorithm is used firstly is that even if the ABC algorithm cannot perform a good convergence

to the global optimum, it manages to direct the initial solution set to the region in which the global optimum

exists. After the ABC algorithm completes the optimization, the MBO algorithm uses the resultant solution

set as its initial solution set. Since the MBO algorithm does not lose time (iterations) in exploring to find the

region which includes the global optimum, it directly carries out convergence to the global optimum. To sum

up, the ABC algorithm finds the region nearest to the global optimum and the MBO algorithm performs a

good convergence to the global optimum. We used the same ABC and MBO parameters in experiments for the

SABCMBO method. Experimental results given in Section 3 show that SABCMBO algorithm has competitive

success rates in comparison with the ABC and MBO algorithms.

Initial 

solution set

ABC 

Algorithm Middle 

solution set

MBO 

Algorithm Final 

solution set

Figure 5. Schematic representation of the sequential artificial bee colony and migrating birds optimization method.

4942
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2.4. Benchmark functions and performance evaluation

A function that has only 1 optimum in the region to be searched is called unimodal. Otherwise, it is called

multimodal. The performance of an optimization algorithm on a benchmark function depends on this charac-

teristic of the benchmark function. We used 2, 5, 10, 30, and 50 dimensional versions of some unimodal and

multimodal benchmark functions to test the optimization performances of the algorithms. These benchmark

functions are given in Table 3.

Table 3. Benchmark functions used in experiments (n : problem dimension, C: characteristic, U: unimodal,

M: multimodal).

Function Definition
Ranges & Global

C
parameters minimum

Sphere [55] f1(x) =
n∑

i=1

x2
i [–5.12,5.12]n 0 U

Rastrigin [56] f2(x) = 10n+
n∑

i=1

[
x2
i − 10 cos(2πxi)

]
[–5.12,5.12]n 0 M

Axis parallel
f3(x) =

n∑
i=1

(i · x2
i ) [–5.12,5.12]n 0 U

hyper ellipsoid

Griewank [57] f4(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1 [–600, 600]n 0 M

Michalewicz
f5(x) = −

n∑
i=1

sin (xi)
[
sin
(

i·x2
i

π

)]2m
[0,π]n (m = 10)

–1.801 (n= 2)

M

[58]
–4.687 (n= 5)

:

Alpine [59] f6(x) =
n∑

i=1

|xi sin (xi) + 0.1xi| [–10,10]n 0 M

Step [60] f7(x) =
n∑

i=1

(|xi + 0.5|)2 [–100,100]n 0 U

Schwefel [61] f8(x) =
n∑

i=1

[
−xi sin

(√
|xi|
)]

[–500,500]n –418.9829n M

Ackley [62]
f9(x) = −a exp

(
−b ·

√
1
n

n∑
i=1

x2
i

)
− exp

(
1
n

n∑
i=1

cos (cxi)

)
+ a+ exp(1)

[–32. 8, 32. 8]n

0 Ma = 20,

b = 0.2,

c = π

Schawefel f10(x) = max { |xi| , 1 ≤ i ≤ n} [–100,100]n 0 U

It was aimed to make fair comparisons among the metaheuristics by using the same initial populations.

Therefore, 100 different initial populations were created for each dimension by using Eq. (1), and they were

stored in files. Each algorithm was executed 100 times for each dimension of each benchmark function. A new

initial population from the stored files was selected for each execution. The algorithm parameters used in the

implementations are given in Table 4, and average cost values of the final results from executions are given in

Tables 5–9.
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Table 4. Algorithm parameters.

Problem dimensions: 2 5 10 30 50
Error tolerance 0.005 0.01 0.011 0.5 0.6
Approximate fitness calculation 24,000 96,000 210,000 714,000 1,216,000
MBO Flock size (n) 15 31 41 101 151

Nb. to be considered (k) 3 3 3 3 3
Nb. to be shared (x) 1 1 1 1 1
Max cycle (K) 750 1500 2500 3500 4000

ABC Colony size (n) 16 32 42 102 152
IABC Max cycle (K) 1500 3000 5000 7000 8000
BSFABC
GBGABC Colony size (n) 16 32 42 102 152

C constant 2 2 2 2 2
Max cycle (K) 1500 3000 5000 7000 8000

PSO Swarm size (n) 15 31 41 101 151
Acceleration coef. (c) 1.494 1.494 1.494 1.494 1.494
Max velocity limit (Vmax) 1 1 1 1 1
Decreasing inertia (w) 0.9 → 0.4 0.9 → 0.4 0.9 → 0.4 0.9 → 0.4 0.9 → 0.4
Max cycle (K) 1500 3000 5000 7000 8000

DE Swarm size (n) 15 31 51 101 151
Amplification const. (F) 0.7 0.5 0.3 0.2 0.2
Crossover constant (CR) 0.4 0.4 0.4 0.4 0.4
Max cycle (K) 1500 3000 5000 7000 8000

GA Population size (n) 16 32 42 102 152
Mutation rate (CR) 0.05 0.05 0.05 0.05 0.05
Max cycle (K) 1500 3000 5000 7000 8000

SABCMBO ABC part Colony size (n) 16 32 42 102 152
ABC part cycle (K1) 750 1500 2500 3500 4000
MBO part flock size (n) 15 31 41 101 151
Nb. to be considered (k) 3 3 3 3 3
Nb. to be shared (x) 1 1 1 1 1
MBO part cycle (K2) 375 750 1250 1750 2000

GA - genetic algorithm. PSO - particle swarm optimization algorithm. DE - differential evolution algorithm. ABC –

artificial bee colony algorithm. MBO – migrating birds optimization algorithm. SABCMBO – sequential artificial bee

colony migrating birds optimization algorithm. IABC - improved artificial bee colony algorithm. GBGABC - global best

guided artificial bee colony algorithm. BSFABC - best so far artificial bee colony algorithm.

By using calculated average cost values, average absolute errors were calculated for the functions having a

global minimum whose cost value is zero (except for f5 and f8), and average relative errors were calculated for

the functions having a global minimum whose cost value is not zero (f5 and f8). Averages of these calculated

errors were used as a performance indicator.

Reasonable tolerance values were determined depending on the problem dimensions, and these are given

in Table 4. The error of each execution was compared with the corresponding tolerance value. Optimizations

were assumed to be successful for errors lower than the determined tolerance values. The total numbers of
successful optimizations among 100 executions were given as success rates in Tables 5–9. The averages of these

success rates were used as another performance indicator in percentages.
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3. Results

The PSO, DE, GA, MBO, and ABC algorithms and 3 modified versions of the ABC algorithm were used in

benchmark function tests. ABC variants are improved ABC (IABC) [51], global best guided ABC (GBGABC)

[40], and best so far ABC (BSFABC) [50]. The benchmark function test results are given in Tables 5–9.

The mean cost, mean error, and mean success rate values achieved by the algorithms for 2, 5, 10, 30, and

50 dimensional benchmark functions in these tables were calculated by using the methods mentioned in the

previous section. The approximate fitness calculations mentioned in Section 2.2 are also given in Table 4 for

each dimension. The results can be summarized as follows.

Figure 6. Success rate percentages of the algorithms over problem dimensions.

• The MBO algorithm achieves good convergence performance by using its own unique benefit mechanism.

Its performance is highly competitive for unimodal benchmark functions, but it needs more exploration for

multimodal benchmark functions. It is vulnerable to falling into local minimums for these functions. Data

given in Tables 5–9 prove this fact. Its success rates are low for high dimensional multimodal functions

because the number of local minimums increases proportional to the problem dimension. Flock size (n),

neighborhood to be considered (k), neighborhood to be shared (x), and iteration (K) values used are

given in Table 4 for each dimension.

• The ABC algorithm generally performs reasonable optimizations by giving high success rates. It has a

good exploration characteristic that emerges in the scout bee phase. Although it finds reasonably optimal

solutions to benchmark functions in all dimensions, it cannot achieve good convergences to the global

minimums as desired. Therefore, its exploitation capability needs to be improved. Colony size (n) and

iteration (K) values used are given in Table 4 for each dimension.

• The IABC, GBGABC, and BSFABC algorithms have characteristics similar to the ABC algorithm but

improved. Their parameters for each dimension are given in Table 4.

• The PSO algorithm gives good optimization results for unimodal benchmark functions in all dimensions.

Its exploitation property is good. However, results for the multimodal functions are not good. This is

caused by its weak exploration property and its dependence on initial population quality. Population size

(n), acceleration coefficient (c), inertia weight (w), maximum velocity limit (Vmax), and iteration (K)

values used are given in Table 4 for each dimension.

• Since there is a fine balance between exploration and exploitation capabilities of the DE algorithm, it

achieves reasonable optimizations in all dimensions. Population size (n), amplification constant (F ),

crossover rate (CR), and iteration (K) values used are given in Table 4 for each dimension.

• Focusing on mean error values, the solution quality of the GA can be said to be lower than the others.

Both its exploration and exploitation capabilities are at a medium level. Thus, it falls into local minimums
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Figure 7. An example to show the convergence in artificial bee colony, migrating birds optimization, and sequential

artificial bee colony and migrating birds optimization algorithms.
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Figure 8. Average optimization performances of the algorithms on 30D functions.

for some high dimensional functions, and it cannot converge to global minimums as desired. Population

size (n), mutation rate (CR), and iteration (K) values used are given in Table 4 for each dimension.

• The SABCMBO method has good characteristics both in exploration and in exploitation. Figure 6

summarizes the success rate distributions of the algorithms over problem dimensions. SABCMBO has

competitive high success rates in all dimensions. It uses the powerful exploration capability of the ABC

algorithm in the first half of its iterations. Hence, it directs the population towards the region in which the

global minimum exists. Then it uses the good exploitation capability of the MBO algorithm to perform

stable convergence in the second half of the iterations. Although success rate stabilities of the other

algorithms change depending on parameter selection, SABCMBO keeps its success rate stable as seen in

Figure 6. Total iterations of the ABC part (K1) and total iterations of the MBO part (K2) given in

Table 4 are selected to get determined the approximate fitness calculation.

• Consequently, the SABCMBO method has high success rates and better convergence capacity. Figure 7

proves this fact graphically. This figure summarizes an experimental comparison between the ABC, MBO,

and SABCMBO algorithms. In this small experiment, swarm sizes were 20 for the ABC algorithm and

the ABC part of the SABCMBO algorithm, and 11 for the MBO algorithm and the MBO part of the

SABCMBO algorithm. Since the number of fitness calculations per iteration in the MBO algorithm is

approximately 2 times that in the ABC algorithm (for the parameters k = 3 and x = 1), the swarm size of

the MBO algorithm was defined as approximately half of that in the ABC algorithm to get equal number

of fitness calculations for a fair comparison. This experiment was performed on a 2 dimensional Griewank

function, and the algorithms were run for 30 iterations. The positions of the population members after

iterations 1, 5, 15, 25, and 30 are shown in Figure 7. Although the Griewank function problem space is

defined in the range of [–600, 600] for all dimensions, all members shift towards the global minimum at

(0,0) by improving their fitness values. Red positions on graphs represent the best positions that have

been achieved by the populations so far. It is clearly seen that the algorithms are successful in moving

the population members towards the global minimum. Analyzing the SABCMBO method in detail, it

is clearly seen that SABCMBO directs most of the members towards the region including the global

minimum via the ABC optimization method. Then it performs good convergences for these members

using the MBO method. The graphs at the bottom row zoom to the region in the range of [–0.15, 0.15]

for all dimensions. The best position achieved by the population in the SABCMBO method is closer to

global minimum than that in the ABC and MBO algorithms. Finally, 1 member by the ABC algorithm,

4 members by the MBO algorithm, and 9 members by the SABCMBO method could be collected inside

the zoomed region. This simple experiment supports the main motivation of this study.
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• In giving the convergence characteristics, Figure 8 shows the optimization performances of the algorithms

on 30 dimensional unimodal sphere and multimodal Alpine functions. Cost vs. iteration graphs in Figure

8 were obtained by averaging the cost vs. iteration trends of executions in experiments. It can be seen

in the graphs that the ABC algorithm performs a reasonable optimization, but it goes into saturation

for the selected unimodal function and cannot manage a good convergence. On the other hand, the

MBO algorithm falls into local minimums for the selected multimodal function. Combining the good

characteristics of the ABC and MBO algorithms, the SABCMBO algorithm performs a preoptimization

in the ABC optimization step; then it performs a quick convergence in the MBO step.

4. Conclusions and future work

Exploration and exploitation are 2 important issues for an optimization algorithm. If an algorithm is good at

exploration, it can escape from local optimum traps and have more chance to move its solutions towards the

global optimum. In addition to good exploration characteristic, if it is good at exploitation, it can make a good

approach to the global optimum. Considering these optimization facts, in this study, it was possible to combine

the good characteristics of the ABC and MBO algorithms by establishing a sequential execution cooperation.

In the SABCMBO algorithm, first the population is directed to the region in which the global optimum exists

using the ABC optimization; then a good convergence to the global optimum is achieved using MBO. In short,

the good exploration property of the ABC algorithm and the good exploitation property of the MBO algorithm

are used sequentially to find the global optimum point.

If initial populations stack around local optimums, algorithms having weak exploration capability gener-

ally tend to these local optimums instead of the global optimum. The sequential cooperation mechanism in our

proposed method eliminates this negative effect of the initial population. Half of the predefined approximate

fitness calculations are performed by the ABC part and the remaining half is performed by the MBO part.

Therefore, total execution time is kept constant in our proposed method.

Similarly, a parallel cooperation mechanism may be tried as a future work to get better optimization

performance, both in terms of success rate and convergence.
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[12] Karaboğa D. An idea based on honey bee swarm for numerical optimization. Technical Report TR06. Erciyes

University, Engineering Faculty, Computer Engineering Department, 2005.

[13] Yang XS. Firefly algorithm. In: Yang XS, editor. Nature - Inspired Metaheuristic Algorithms. United Kingdom:

Luniver Press, 2010. pp. 81-90.

[14] Shah-Hosseini H. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm.

International Journal of Bio-inspired Computation 2009; 1: 71-79.
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