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Abstract:Harmonic distortion in electrical power systems is responsible for several technical problems. Harmonic load

flow (HLF) methods have been employed in order to predict and solve many of the problems from a deterministic point

of view. Moreover, methods based on probability theory have been developed to deal with the uncertainties in power

systems and the random nature of harmonics. Unfortunately, since many of these methods are based on linearized

models or some simplifying assumptions, they do not have acceptable accuracy. This paper proposes the use of an

efficient sampling method, median Latin hypercube sampling, combined with an improved kernel density estimator, in

Monte Carlo simulation for probabilistic HLF calculation. The proposed method has been applied to the well-known

IEEE 14-bus harmonic test system to evaluate the harmonic probability density functions of output random variables.

The simulation results clearly show that it guarantees a reasonable execution time as well as acceptable accuracy.

Key words: Kernel density estimator, median Latin hypercube sampling, Monte Carlo simulation (MCS), probabilistic

harmonic load flow, probability density estimation

1. Introduction

Harmonic distortion is a growing concern in power systems that could lead to some technical problems. Many

studies have been done on this issue [1,2]. Harmonic load flow (HLF) evaluation is a powerful approach that has

been developed increasingly on a deterministic basis in order to predict and mitigate many of the problems caused

by harmonics [3]. However, a power system operates with many uncertainties, such as the random nature of loads

and the inherent variability of network configuration. Thus, probabilistic HLF (PHLF) studies are essential to

deal with these uncertainties. Moreover, in recent international harmonic standards and recommendations such

as IEC 1000-3-6 and the European Standard EN 50160, interest is devoted to percentile and maximum value

evaluation [4,5]. Thus, knowledge of all of the harmonic probability density functions (PDFs) is necessary for

standard application.

It is worthwhile to point out that correlation exists between loads due mainly to common environment

and social factors; in the operation of a power system, a group of generators is controlled to meet the load area

and this means that generation/generation and generation/load correlations also should be taken into account

[6]. Hence, the probabilistic methods that can inherently handle the correlated variables are of huge interest.

PHLF methods can be classified into three categories: Monte Carlo simulation (MCS), analytical methods,

and approximate methods. MCS is widely employed in power system analyses to model uncertainties. In this
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method, random number generators are used to assign specific probability distributions to certain parameters

in order to reflect the PDF of the random variables. Then repeated simulations with the obtained random

values are performed [7]. MCS is known as an accurate approach that is independent of the system dimension;

however, its execution may be computationally intensive [8]. The second group of PHLF methods is the

analytical methods. In [9], a network was modeled using the bus impedance matrix at each harmonic order.

For harmonic sources, the amplitude and the phase angle variations were also taken into account. Several

approximate methods were presented in [7,10] in order to approximate the true PDFs of the voltage and current

harmonics. These approaches are as follows:

• The Gram–Charlier and Edgenworth series approaches

• Pearson’s approach

• Johnson’s approach

Summarizing these approaches, in the Edgenworth and Gram–Charlier approaches the true PDF is

approximated using a series of the derivative of the normal PDF. The biggest problem in this approach is

related to the choice of the most appropriate number of series terms to be employed. The Pearson approach

is based on a particular family of PDFs (called a system of distributions) used to approximate the true PDFs.

The Johnson approach is based on the choice of a proper transformation to convert a given PDF into another

known form. This approach requires knowing only the first four moments of the PDF to be approximated [7].

Although analytical and approximate methods are computationally efficient, since they are based on linearized

HLF equations, they do not have acceptable accuracy; as the variance of the input random vector variables

increases, the accuracy degrades [7].

Random sampling (RS) is commonly used in MCS to check the accuracy of the analytical and approximate

PHLF methods. Latin hypercube sampling (LHS) is a sampling technique that provides a much more efficient

way of sampling random variables compared with RS. Recently, MCS with LHS was employed to deal with the

probabilistic load flow problem [11,12]. However, the correlations between input variables were not considered

in [11].

It was proved in [13] that using nonparametric density estimators can bring many benefits to statistical

analyses and Monte Carlo computational methods; the application of nonparametric density estimation based

on a diffusion method to solve PHLF problems was proposed in [14]. However, the RS method was used, which

is rather conservative. Here the main objective is to utilize a kernel density estimator, as the most popular one,

in PHLF studies.

In this paper, a new method using LHS combined with an improved kernel density estimator for PHLF

calculation is presented. The aim is to obtain the PDFs of output variables for each harmonic of interest. Since

the proposed method utilizes MCS in its implementation and overcomes its main drawback, which is a high

computational burden, it has several advantages, which are outlined as follows:

• Since MCS is applied to the nonlinear HLF equations and there is no need to use linearized HLF equations

or make any simplifying assumptions, a good level of accuracy can be achieved.

• Its implementation is easy, even for a complex system.

• It has the ability to handle correlated variables.
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• Since it uses a nonparametric density estimator to plot the PDFs of PHLF results, there is no need to

make any assumptions about which density family the data are generated from; moreover, great flexibility

to plot the PDFs is obtained.

• Since it utilizes LHS, as an efficient sampling method, it is possible for MCS to get an accurate simulation

result with a rather small simulation size.

The paper is organized as follows: Section 2 is allocated to introducing the LHS, as the sampling method,

very briefly. Section 3 explains the improved kernel density estimator as the employed nonparametric density

estimator. Section 4 presents the proposed PHLF. Afterwards, the obtained results for the IEEE 14-bus

harmonic test system are presented in Section 5 and conclusions are given in Section 6.

2. Latin hypercube sampling method

RS refers to the traditional technique for using random or pseudorandom numbers to sample from a probability

distribution. Because it relies on pure randomness, any given sample value may fall anywhere within the range

of the input distribution. A problem that sometimes arises is that some points are clustered closely, while other

intervals within the space get no samples. In RS, new sample points are generated without taking into account

the previously generated sample points and there is no need to know beforehand how many sample points are

needed.

LHS divides the cumulative curve into equal intervals and selects one sample from each interval. Median

LHS (MLHS) uses the median value of each interval while random LHS (RLHS) selects a random point within

each interval. The effect is that each sample is constrained to match the input distribution very closely.

The procedure of LHS is divided into two main steps: sampling and permutation. For a problem with several

independent input random variables, permutation is needed and its objective is to induce the desired correlations

between samples of different input random variables. More detailed information about LHS can be found in

[11,12,15]. The MLHS method has been used in this paper.

LHS requires less memory and computation time than RS, which makes simulations converge much

faster. In LHS, one must first decide how many sample points to use. LHS ensures that the ensemble of random

numbers is representative of the real variability, whereas RS is just an ensemble of random numbers without

any guarantees.

3. Improved kernel density estimator

Let X1 ,...,XN represent a random sample of data taken from an unknown univariate density function f(x).

The aim is to estimate f(x) with the kernel density estimator, which is defined as follows:

f̂ (x;h) =
1

Nh

N∑
i=1

k

(
x−Xi

h

)
, (1)

where k is the kernel function, which could be a range of functions, and h > 0 is called the bandwidth. A

literature survey shows that choosing the kernel function is not of great importance, but appropriate choice of

the bandwidth is very crucial in order to obtain a good estimate [16]. In this paper, the Gaussian kernel density

estimator has been used, which is:

f̂ (x; t) =
1

N

N∑
i=1

ϕ (x,Xi; t), (2)
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where ϕ(x,X; t) = 1/
√
2πt exp(−(x −Xi)

2/2t) is a Gaussian PDF with
√
t as the bandwidth [13]. Since the

bandwidth is the only unknown parameter in Eq. (2), much research has been carried out in order to choose

the optimal one [13,17–21]. One of the most widely used criteria to determine the optimal choice is the mean

integrated squared error (MISE), which is given as follows:

E
∥∥∥f̂ − f

∥∥∥2 = E

∫ (
f̂(x)− f(x)

)2

dx, (3)

where f and f̂ are the unknown and estimated densities, respectively. Here E denotes the expected value

[13]. For the sake of simplicity, the first-order asymptotic approximation of the MISE, denoted by approximate

MISE (AMISE), was used in [13], which is given by the following equation:

AMISE
{
f̂
}
(t) =

1

4
t2 ∥f ′′∥2 + 1

2N
√
πt

, (4)

where ∥f ′′∥ =
∫
(f ′′(x))

2
dxdenotes the second derivative of the unknown density f . The asymptotically optimal

value of t (topt) could be obtained by minimizing the AMISE, which is as follows [13]:

topt = (2N
√
π ∥f ′′∥2)−2/5. (5)

Neither the AMISE nor the topt formulas are able to be used directly since the second derivative of the

unknown density f is involved. In [13], a new algorithm, called the improved Sheather–Jones (ISJ) method,

was introduced and an improved plug-in bandwidth selection method was presented. This method completely

avoids the normal reference rules [22] that have adversely affected the performance of plug-in methods. It has

been shown that by using the ISJ method, the optimal estimation of ∥f ′′∥ could be achieved, and thus the

performance of the estimator could be improved significantly. For more details of the ISJ method, interested

readers are referred to [13].

4. Proposed PHLF

The implementation of the proposed method has a two-step computational procedure. In the first step, a few

trials of MCS have been computed for each harmonic of interest using the Newton–Raphson method for HLF

calculation. The second step is density estimation using the results obtained in the first step. Each of these

steps has some substeps. The algorithm can be summarized as follows:

Step 1: MCS

Substep 1-1: Set the number of MCS trials: N; it has been found by the authors that to implement the

first step in PHLF applications, excellent and accurate results could be obtained by 400

trials in MCS. Higher values of Monte Carlo trials did not change the accuracy of the results

significantly, but only increased the computational burden of this step.

Substep 1-2: Set the harmonic order, h , to one.

Substep 1-3: Generate a sampling matrix for probabilistic input variables using the MLHS method (sam-

pling and permutation procedures as mentioned before).
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Substep 1-4: Calculate the HLF via the Newton–Raphson method. If the HLF calculation converges, store

output variables of interest.

Substep 1-5: Repeat the previous substep until the number of trials reaches the specified value of N.

Substep 1-6: Increase the harmonic order, h , by one and repeat substeps 1-3 to 1-5 for each harmonic

until all harmonics of interest are included.

Step 2: Density estimation

Substep 2-1: Estimate ∥f ′′∥ using the ISJ method, which was mentioned in [13] in detail.

Substep 2-2: Calculate the optimal bandwidth using Eq. (5).

Substep 2-3: Plot PDFs of the output variables using Eq. (2) as the final estimator.

The flowchart of the proposed PHLF method has been shown in Figure 1.

5. Case study

In this section, the proposed PHLF method is tested on the well-known IEEE 14-bus harmonic test system in

order to demonstrate its accuracy and effectiveness. This system has 14 buses, 3 synchronous generators, and

15 transmission lines [23]. The single-line diagram is shown in Figure 2 and the deterministic parameter values

of the test system were reported in [23]. Moreover, the probabilistic data of uncertain parameters describing

linear loads and synchronous generators are given in Table 1.

The generators, linear loads, lines, transformers, and harmonic filters (all single-tuned) have been modeled

according to the recommendation in [23]. There are also two nonlinear loads: a twelve-pulse high-voltage direct

current (HVDC) terminal modeled as two six-pulse bridge rectifiers and an SVC that consists of harmonic filters

and a TCR. It was discussed in [23] that the HVDC terminal and the TCR can be modeled as two and one

harmonic current sources, respectively. In this paper, in order to model the uncertainties involved in these

loads, they have been modeled as a set of harmonic current sources with different amplitudes and phases. It

has been assumed that these amplitudes and phases have a Gaussian PDF. The deterministic values specified

in [23] have been assigned to their means (µ) and the standard deviation (σ) is assumed to be σ = 0.05µ . The

correlation coefficients between different input variables are shown in Table 2. It should be noted that, in this

table, PLi and QLi represent active and reactive powers of the load at bus i, respectively. Moreover, PGi and

QGi represent the generation of active and reactive powers at bus i, respectively. The synchronous generator

at bus 1 is considered as the slack bus.

To validate the performance of the proposed method in PHLF studies, the results have been compared

with the MCS results with 10,000 trials for each harmonic order with regards to both accuracy and execution

time criteria. This number has been found to be sufficient to produce minimum variation of results. Since the

MCS is used just for the aim of accuracy comparison, no attempt has been carried to optimize the number

of MCS trials. In order to assure the accuracy of MCS results with this number of trials, as an example,

the convergence of MCS results for the ratio of mean to standard deviation (STD) values of the voltage total

harmonic distortion (THD) values at bus 13 is shown in Figure 3.

Results for the 11th harmonic as well as voltage THD values are shown here, although similar results can

be obtained for the other harmonics. Figures 4–6 depict the probability densities obtained from the proposed
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Figure 1. Flowchart of the proposed method.
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Figure 2. Single-line diagram of IEEE 14-bus harmonic test system.

Table 1. Input nodal probabilistic data.

Normal distributions
Bus-bar Active power Reactive power

Number Type Mean (MW)
Standard

Mean (MVar)
Standard

deviation deviation
1 PV 232.4 0.09
2 PV 40 0.09
2 PQ 21.70 0.09 12.70 0.092
3 PQ 94.20 0.100 19.00 0.105
4 PQ 47.80 0.110 –3.90 0.097
5 PQ 7.60 0.050 1.60 0.050
6 PQ 11.20 0.060 7.50 0.063
11 PQ 3.50 0.095 1.80 0.095
12 PQ 6.10 0.076 1.60 0.086
13 PQ 13.50 0.105 5.80 0.095
301 PQ 59.505 0.05 3.363 0.05
302 PQ 59.505 0.05 3.363 0.05
Discrete distributions
Bus-bar Active power Reactive power
Number Type Value (MW) Probability Value (MVar) Probability

9 PQ

13.4 0.10 7.5 0.10
19.6 0.15 11 0.15
30.2 0.3 17 0.3
34.8 0.25 19.6 0.25
37.3 0.2 21 0.2

Uniform distributions
Bus-bar Active power Reactive power
Number Type Lower Upper Lower Upper

band (MW) band (MW) band (MVar) band (MVar)
10 PQ 6.3 11.7 4.06 7.54
14 PQ 11.06 18.75 3.71 6.29
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Table 2. Correlation coefficients between different input variables.

PG1 PG2 PL11 QL11 PL12 QL12 PL13 QL13

PG1 1 0.3 0.2 0.17 0.3 0.26 0.4 0.36
PG2 0.3 1 0.15 0.12 0.25 0.22 0.35 0.32
PL11 0.2 0.15 1 0.8 0.4 0.36 0.3 0.26
QL11 0.17 0.12 0.8 1 0.38 0.33 0.27 0.22
PL12 0.3 0.25 0.4 0.38 1 0.79 0.2 0.17
QL12 0.26 0.22 0.36 0.33 0.79 1 0.16 0.12
PL13 0.4 0.35 0.3 0.27 0.2 0.16 1 0.81
QL13 0.36 0.32 0.26 0.22 0.17 0.12 0.81 1
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Figure 3. Convergence of MCS results for voltage THD values.

method and the MCS. Per unit 11th-order harmonic voltage magnitude at buses 8 and 13, 11th-order harmonic

voltage angle at buses 3 and 6, and voltage THD values at buses 7 and 12 are shown in Figures 4–6, respectively.
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Figure 5. Probability density of 11th-order harmonic voltage angle at buses 3 and 6.
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Figure 6. Probability density of voltage THD at buses 7 and 12.

Assuming that f̂(x) is the estimated PDF via the proposed method and f(x) is the PDF calculated by

the MCS method, the MISE, which was given by Eq. (3), has been used as a criterion in order to measure

the accuracy of the proposed method. The mean and STD values for per unit fifth-order harmonic voltage

magnitude and angles as well as voltage THD values of different buses have also been calculated. Assuming

that µ and σ are the estimated mean and STD values obtained by the proposed method and µMCS and σMCS

are the exact mean and STD values obtained by the MCS, the errors for the mean and the STD values are,
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respectively, defined as [8]:

εµ =
100 |µMCS − µ|

µMCS
[%] , (6)

εσ =
100 |σMCS − σ|

σMCS
[%] . (7)

A selection of the MISE, mean, STD, εµ , and εσ values calculated via the MCS and the proposed method is

shown in Table 3. Assuming that the MCS execution time is equal to 1 pu, using a 2.66-GHz, Core i5 system

with 4 GB of RAM, the time taken for the proposed method is 0.03 pu.

Table 3. A selection of the MISE, mean, STD, εµ , and εσ values calculated via MCS and the proposed method.

ITEM Bus MISE

Mean
εµ

STD
εσ

MCS
Proposed

MCS
Proposed

method (%) method (%)

11th-order 6 4.847020E-04 0.001991 0.001985 0.30 0.000486 0.000494 1.64
harmonic 9 1.755486E-04 0.003812 0.003795 0.45 0.000969 0.001007 3.99
voltage 13 1.534349E-04 0.002014 0.002009 0.25 0.000535 0.000550 2.65
magnitude (pu) 14 1.098144E-04 0.002545 0.002550 0.20 0.000957 0.000982 2.64
11th-order 1 6.122528E-08 –100.604 –97.825 2.76 82.15540 84.53970 2.90
harmonic 2 3.218804E-07 –100.350 –97.851 2.49 82.45578 84.48468 2.46
voltage angle 4 1.502178E-06 –102.349 –99.721 2.57 80.18294 82.55213 2.95
(degree) 5 4.617401E-07 –101.891 –98.956 2.88 79.81038 82.57877 3.47

Voltage
8 7.298488E-07 1.805928 1.810626 0.26 0.080060 0.080479 0.52

THD (%)
10 1.449857E-07 1.266763 1.289077 1.76 0.714229 0.710217 0.56
11 2.670748E-07 0.772897 0.784313 1.48 0.404166 0.408592 1.10
12 9.422565E-07 0.379890 0.380157 0.07 0.156324 0.153504 1.80

6. Conclusion

Harmonic distortion in power systems could lead to serious problems that justify the development of models

to study them. Sampling-based models seem to be an interesting alternative for PHLF calculations. In this

paper, a new method for PHLF calculation using an efficient sampling method, called MLHS, combined with

an improved kernel density estimator has been presented. The proposed method aims at obtaining the PDFs

of the output variables for each harmonic of interest. Unlike analytical and approximate methods, this one is

immune to errors caused by simplified methods based on linearized models. Its implementation is easy and it

can handle the correlation between uncertain input variables. In order to demonstrate the effectiveness of the

proposed method, it has been applied to the well-known IEEE 14-bus harmonic test system. The results of the

proposed method were compared with those of MCS. The simulation results clearly show that it represents a

very good compromise between accuracy and computational efforts to obtain the PDFs.
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