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Abstract: This paper proposes a simplified design and hardware implementation of a digital maximum power point

tracking (MPPT) controller for a photovoltaic (PV) panel using PIC microcontroller 16F877A embedded technology.

The 3 most well-known algorithms, perturb & observe, hill-climbing, and incremental conductance, are considered and

analyzed from a practical implementation point of view. The control board was developed using simple circuits and

tested under resistive load conditions lower than the load of the maximum power point. The MPPT controller proved

its effectiveness, providing maximum power to the load under changing weather conditions.

Key words: Photovoltaic panel, maximum power point, maximum power point tracking, PIC 16F877A, perturb &

observe, hill-climbing, incremental conductance.

1. Introduction

Solar energy is among the most widely used renewable energy sources worldwide with a global installed capacity

reaching 100 GW [1]. This source is considered as one of the best and most promising of alternative energy

sources due to its natural availability and cleanliness [2,3].

Photovoltaic (PV) panels have a nonlinear voltage-current (I-V) characteristic with a unique point where

the power generated is maximum. This is known as the maximum power point (MPP) at which the PV system

operates at its highest efficiency. This point, located on the “knee” of the I-V curve, depends on the ambient

temperature, Tamb , of the panel as well as the irradiance of the sun, E, which changes during the day.

One of the first difficulties associated with the use of a PV panel is the nonperfect coupling between the

PV generator and the load [4]. One technological barrier that exists in this type of coupling is the problem of

transferring the maximum power of the PV generator to the load, which often suffers from poor adaptation.

The resulting operating point is then sometimes very far from the actual MPP. In other words, under these

conditions it becomes difficult to extract the maximum output power from the PV panel under all weather

conditions [5].

Consequently, a maximum power point tracking (MPPT) strategy is required to automatically find the

PV panel’s operating voltage that produces the maximum power output [6]. There has been extensive research

in this area and various methods exist in the literature, ranging from the simplest methods, such as perturb &

observe (P&O) and incremental conductance (IncCond), to more sophisticated and complex ones [7–9].
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The objective of static converters is to adapt the electrical energy from the PV panel to the load [10].

This adaptation can be achieved by inserting a DC-DC converter (chopper) controlled by a MPPT mechanism.

Figure 1 represents the basic configuration of a PV power system with a MPPT mechanism.
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Figure 1. Elementary components of a PV power system.

The aim of this work is to implement 3 MPPT algorithms (P&O, hill-climbing, and IncCond), using

a PIC microcontroller. The rest of the paper is organized as follows: Section 2 presents an overview of the

modeling of a PV generator and the influence of E and Tamb on the electrical characteristics I-V. Section 3

overviews the different types of MPPT algorithms considered in this paper. Section 4 describes the hardware

set-up of the various PV system components and the real-time programs that implement the MPPT algorithms

on the microcontroller. Section 5 presents the experimental results and discussions. Finally, the conclusions

and future actions are summarized in Section 6.

2. The PV generator model

The PV generator model is used to calculate the output power of the PV panels [11] under any temperature

and irradiance conditions. A solar cell equivalent electrical circuit can be represented by a single-diode model

as shown in Figure 2. The relationship between the cell terminal current I and voltage V is given by [12,13]:

R sh  

R s  ID Ish  

Iph  V

I 

Figure 2. Equivalent circuit of the PV generator.

I = Iph− ID

[
exp

(
V +Rs× I
m×KB×Tamb

q

)
− 1

]
− V +Rs× I

Rsh
(1)

It is known that the I-V characteristics (Figure 1) of a PV cell strongly depend on E and Tamb [14], so we will

look for the model that gives the mathematical relationship between them. The analysis begins with calculating

the module temperature Tm using the empirical model developed by Garcia and Balenzatgui [11,15] as follows:
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Tm = Tamb+
(NOCT − 20)E

800
(2)

The output power P is calculated based on the model developed by Skoplaki and Palyvos [16] as follows:

P = E ×A× ηTref (1−Bref (Tm− 25)) . (3)

3. Overview of MPPT algorithms

Several MPPT techniques have been reported in the literature. Examples can be found in [8,18,19]. The

P&O, hill-climbing, and IncCond methods are the most widely used because of their simplicity and ease of

implementation. The principles of these 3 algorithms are briefly summarized below.

3.1. Perturb and observe (P&O)

The P&O method is widely adopted for searching for the MPP because it is simple and requires only mea-

surements of the voltage (VPV ) and current (IPV ) of the PV panel. P&O operates by periodically perturbing

the control variable (say, voltage VPV ) and comparing the instantaneous powers PPV before and after the

perturbation [18,20,21]. If the change in output power dPPV increases, VPV is adjusted in the same direction

as in the previous cycle. If dPPV is negative, this means that the system is operating far from the optimal

point, and thus the perturbation size needs to be reduced in order to bring the operating point back to the

MPP [22]. Figure 3 shows the flowchart describing the implementation steps of the P&O algorithm.

  

Measure of: Vpv, Ipv 

Calculate: Ppvn= Vpv* Ipv 

Vref= Vref-∆V Vref= Vref+∆V  Vref= Vref-∆V Vref= Vref+∆V  

Yes         Vpvn Vpvn-1 No       No        Vpvn Vpvn-1          Yes 

No 

No                  Ppvn Ppvn-1 Yes 

Ppvn  Ppvn-1                                        Yes 

Ppvn-1 = Ppvn 

Vpvn-1 = Vpvn 

 
Figure 3. MPPT control algorithm based on P&O.
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3.2. Hill-climbing method

Similarly to P&O, the hill-climbing method [18,23] consists of moving the operating point on the I-V curve in

the direction in which the instantaneous power increases. In this case, the perturbation is applied to the duty

cycle, D, of the DC-DC converter. The switching D of the power converter keeps changing until the operating

power oscillates at the MPP [24,25]. A flow chart of the hill-climbing algorithm is shown in Figure 4.

 

Measure of: Vpv, Ipv 

Calculate: Ppvn= Vpv* Ipv 

Ppvn  Ppvn-1                                        Yes 

Ppvn Ppvn-1  

D n = Dn-1 +dD *slope 

Dn-1 = Dn 

Ppvn-1= Ppvn 

 

Complement the 

Signed of slope 

No 

Yes 

No 

Figure 4. MPPT control algorithm based on hill-climbing.

3.3. Incremental conductance (IncCond)

To find the MPP, this technique uses the knowledge of the conductance variation of the PV panel (G) and the

relative position of the operating point with respect to the MPP [26,27]. Consider the PV panel power curve

of Figure 5.

VMPP 

PMPP 

VPV 

PPV 

MPP 
 

 

MPPMP

 

Figure 5. PV power characteristic for different operating points.

The equation for PV panel power is:

Ppv = V pv × Ipv, (4)


dPpv
dV pv = d(V pv×dIpv)

dV pv
dPpv
dV pv = Ipv + V pv dIpv

dV pv
1

dV pv × dP pv
dV pv = Ipv

V pv + dIpv
dV pv

, (5)
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where

Ppv = Ppvn− Ppvn− 1, dV pv = V pvn− V pvn− 1, and dIpv = Ipvn− Ipvn− 1. (6)

The conductance G of the PV circuit is:

G = Ipv/V pv. (7)

Moreover, an elementary variation (increment) conductance can be defined by:

dG = dIpv/dV pv. (8)

The basic concept of the IncCond method consists of comparing the evolution of the power module (dPPV )

with respect to the voltage (dVPV ) to determine in which direction the perturbation should be applied in order

to shift the operating point towards the MPP (Figure 6) with reference to Figure 5. When the derivative of the

power is zero, the operating point coincides with the MPP. This leads to a positive gradient on the left of the

MPP and a negative gradient on the right of the MPP [25].

No 

No 

No 

Measure of: Vpv, Ipv 

dIpv = Ipvn -Ipvn-1 

dVpv = Vpvn -Vpvn-1 

Vpvn-1 = Vpvn 

                      Ipvn-1 = Ipvn 

Vref= Vref+∆V 

No 

Yes                 dIpv/dVpv > -Ipv/Vpv               dIpv > 0                            Yes                      

 dVpv = 0                                  Yes                  

Yes 

Return 

Vref= Vref-∆V Vref= Vref+∆V Vref= Vref-∆V 

Yes                                    dIpv/dVpv = -Ipv/Vpv               dIpv = 0                                              Yes       

No 

No 

Figure 6. MPPT control algorithm based on IncCond.
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The power gradients can be written as:

dPpv/dV pv = 0 at the MPP, (9)

dPpv/dV pv > 0 at t left of the MPP, (10)

dPpv/dV pv < 0 at the right of the MPP. (11)

4. Design and implementation of system

In this section, the design and implementation of the above MPPT algorithms on a PIC microcontroller is

described. This microcontroller-based MPPT has several advantages compared to its analog counterpart [28,29].

The system consists of 3 blocks: the control block, power block, and energy block.

4.1. The control block

This has 2 main parts; the first includes an analog current sensor from a shunt resistor and a voltage sensor

based on a voltage divider. The second part includes the control unit, a microcontroller that hosts the MPPT

control algorithms. After isolation and amplification, the control signal (duty cycle) is sent to the power block.

4.2. The power block

This consists of a DC-DC buck converter, based on IGBT BUP 314, ensuring the transfer of all of the power

extracted from the solar panel to a resistive load. The 80-W PV panel used in this study is shown in Figure

7. The buck converter is operated in continuous conduction mode (CCM) and the circuit parameters are L

= 600 µH, C1 = 2200 µF, PV input capacitor C2 = 200 µF, and a diode, D1, forms the static buck converter.

The value of inductor L was chosen to keep the converter operating in the CCM according to [30]:

L >
V pv

4× dIL× f
. (12)

Figure 7. PV module employed in the experiment.

4.3. The energy block

This provides a stabilized voltage at ±15 V and +5 V levels to the different parts of the control circuit including

the microcontroller, current sensor, and the optocoupler (type 4N25) used as the driver for the power switch to

ensure galvanic isolation between the power and the control units.

The circuit model implemented using Proteus PCB design software is shown in Figure 8.
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Figure 8. Complete wiring diagram of the prototype to achieve.

Figure 9a shows the actual experimental electronic cards of the power block of the digital MPPT controller

and Figure 9b shows the electronic cards of the control block and energy block.

(a) Electronic cards of the power block. (b) Electronic cards of the control block and energy block.

Figure 9. Practical realization of the electronic cards.
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5. Performance evaluations and results

The experimental tests presented were performed on 3 clear days in 2013 and under the following operating

conditions: a) direct coupling of the load on the panel without MPPT, b) with digital MPPT (DMPPT), and

c) with manual MPPT for extracting the MPP (manual adaptive load variation). The results are presented for

load R1 = 3.1 (Ω), which is less than the load of the MPP.

As discussed previously, the characteristic I-V shows that the maximum power generated depends strongly

on intensity E and Tamb . Therefore, we recorded measurements for P, E, and Tamb for each of the 3 of algorithms

studied (P&O, hill-climbing, and IncCond) and the results are presented in Tables 1–3 respectively.

Table 1. Experimental values extracted by P&O algorithm.

Time P with direct P with P at
η (%) E (w/m2) T (◦C)

(hh:mm) coupling (w) DMPPT (w) MPP (w)
10:10 18 43 43 100 672 35.6
11:20 25 54 54 100 809 39.3
15:45 12 40 41 97.5 546 39.5
16:11 9 35 35 100 466 35.5
16:30 6 31 32 96.8 404 34.5

Table 2. Experimental values extracted by hill-climbing algorithm.

Time P with direct P with P at
η (%) E (w/m2) T (◦C)

(hh:mm) coupling (w) DMPPT (w) MPP (w)
09:58 14 39 42 92.8 547 41.5
10:55 18 48 49 97.9 697 44.3
11:27 22 52 52 100 749 46.5
12:10 22 52 53 98.1 774 45.5
13:50 20 47 47 100 686 45.5

Table 3. Experimental values extracted by IncCond algorithm.

Time P with direct P with P at
η (%) E (w/m2) T (◦C)

(hh:mm) coupling (w) DMPPT (w) MPP (w)
13:05 27 54 54 100 774 39.3
13:55 22 53 53 100 835 41
14:25 21.5 54 54 100 772 42
14:46 18 50 50 100 715 45.5
15:12 15 45 45.5 98.9 645 45.5

The histograms of Figures 10–12 for these 3 methods show the difference between the power in the case

of direct coupling and the power recovered when applying digital MPPT control. This has also been compared

with the manual search for the MPP.

Figures 13a–13d illustrate the current and voltage (Upv, Ipv) of the PV generator and the current and

voltage of the load (Uch, Ich) for the cases of direct coupling and P&O-based MPPT. The duty cycle signal of

the converter in the case of the P&O algorithm is shown in Figure 14.
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Figure 10. Histogram of powers to P&O algorithm.
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Figure 12. Histogram of powers to incremental conductance algorithm.

The results of current and voltage of the PV panel and the load obtained by the hill-climbing algorithm

are shown in Figures 15a–15d. Figure 16 explains the duty cycle that controlled the DC-DC converter.

Finally, the same experiment is performed using IncCond control and the results are shown in Figures 17a–

17d. Figure 18 shows the duty cycle generated by the IncCond algorithm.
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Figure 13. Current and voltage of the studied system.
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Figure 14. The duty cycle of the P&O algorithm.

5.1. Interpretation and discussion of the results

The experimental results (Tables 1–3) and the histograms (Figures 10–12) clearly demonstrate the effectiveness

of the completed electronic card and the different methods used. With the digital MPPT the power delivered by
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 (a): Upv and Ipv with direct coupling       (b): Upv and Ipv with digital MPPT 
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Figure 15. Current and voltage of the study system.
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Figure 16. The duty cycle of the hill-climbing algorithm.

the PV generator is greater than the direct coupling with the load, so the presence of an adaptation between the

PV panel and load reduces the losses caused by the direct connection. However, IncCond control was the most

accurate and closest to the MPP compared to the hill-climbing and P&O methods and the results demonstrate

a higher tracking efficiency of almost 100% between manual MPPT and digital MPPT in each of the 5 stages
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of the experiment, where the tracking efficiency is defined as:

η(%) =
PDMPPT

PMPP
× 100 (13)

where PDMPPT represents the power reached by using the proposed DMPPT controller and PMPP is the

expected maximum power output at the MPP.

In Figures 13, 15, and 17, it can be seen that the buck converter operates in step-down voltage of the PV

panel and the voltage VPV stabilizes at 14.5 V. It can be noted that the load current operates in continuous

conduction mode with a ripple at 2 kHz.

Finally, due to the integration of the PWM control signal in the PIC, the duty cycle generated by the

digital MPPT (Figures 14, 16, and 18) have a frequency in the order of 2 kHz. If the VMPP desired is higher

than the VPV measured, we increment the duty cycle; if not, we decrease it according to the command used.

When adjusted in real time, this causes the operating point of the PV panel to oscillate around the MPP.

6. Conclusions and future actions

This paper presented a simplified design and implementation of an impedance matching stage using a DC-

DC buck converter supplying a resistive load controlled by a low-cost microcontroller. This circuit allows the

acquisition and processing of measured current and voltage signals and generates the appropriate control signals

(a) Upv and Ipv with direct coupling              (b) Upv and Ipv with digital MPP  

(c)  Uch and Ich with direct coupling              (d) Uch and Ich with digital MPPT 

 

 

Upv p
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Figure 17. Current and voltage of the study system.
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MPPT cycle 

TON 

TOFF 

Figure 18. The duty cycle of the incremental conductance algorithm.

for controlling the switching of the power unit designed primarily around the buck converter. Three popular

MPPT algorithms for extracting the maximum power of the photovoltaic panel, namely P&O, hill-climbing,

and IncCond, were considered.

MPPT control led to improved speed of response, better MPP search accuracy, and good control in the

presence of perturbations such as sudden variations of the illumination and temperature.

This work enables us to increase the cost-effectiveness of solar systems, as well as reducing the costs of

imports from abroad both for our scientific laboratory and for the local sector using this energy to develop

sustainable agriculture, such as photovoltaic pumping, irrigation, and domestic use.

Experiments with these prototypes on other PV installations (like the PV pumping available in our

laboratory) will be presented in future works.

Nomenclature
I output current
ID reverse saturation diode current
Iph photovoltaic current
KB Boltzmann constant (1.3854 × 10−23 J K−1).
m ideality factor.
NOCT nominal operating.
q charge of an electron (1.6021 × 10−19 C).
ηTref panel efficiency at the reference temperature.
A area of solar cell.
Bref power temperature-coefficient, in the range of 0.22–0.71 (%/K).
dIL ripple current in inductor L.
f switching frequency (Hz).
Rs series resistance (Ω).
Rsh shunt resistance (Ω).
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[17] Bücher K, Kleiss G, Dätzner D. Photovoltaic modules in buildings: performance and safety. Renew Energ 1998; 15:

545-551.
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