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Abstract: The alternating direction method has been used widely in the power systems field for solving the multiarea

dispatch problem. However, experience with applications has shown that the convergence rate of the alternating direction

method depends significantly on the selection of the penalty parameter of the linear consistency constraint. Typically,

it is difficult to obtain the optimal penalty parameter in advance. In this paper, for the purpose of solving this problem,

we propose centralized and distributed self-adaptive penalty parameter strategies that allow the value of the penalty

parameter to increase or decrease based on the information from each iteration. Simulation results illustrate that the

proposed centralized and distributed self-adaptive methods are superior to the traditional alternating direction method

in terms of robustness and convergence rate.
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1. Introduction

The objective of economic dispatch (ED) is to allocate generator output economically while meeting various

physical constraints, such as power balance and limits on variables [1,2]. The modern power system is composed

of distributed subnetworks interconnected by tie-lines. Generally, each subnetwork has an independent energy

management system (EMS), so it is necessary to propose effective strategies to solve the multiarea economic

dispatch (MAED) problem in distributed computing environments [3,4].

The MAED problem can be described as a separable convex programming problem with linear consistency

constraints. The augmented Lagrangian relaxation (ALR) method is widely used to cope with linear consistency

constraints. Compared with the classic Lagrangian relaxation (CLR) method, a significant advantage of ALR is

that it ensures the convex property of the objective function and has better convergence performance. However,

ALR also brings some new challenges, for instance destroying the separable property of the objective function.

Plenty of methods have been proposed to solve the nonseparable quadratic term that was introduced by

the ALR method. In 1980, Cohen proposed the auxiliary problem principle (APP) to decompose a centralized

problem into subproblems and coordinate these subproblems [5]. In 1992 the APP was first employed to deal

with the daily generation scheme optimization problem [6]. Since then, the APP has been widely applied to the

multiarea dispatch problem [7,8]. Another powerful decomposition method, the alternating direction method

(ADM), which was proposed by Gabay and Mercier, has been widely used to solve the multiarea dispatch

problem [9,10].
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Roughly speaking, the APP is a nonlinear Jacobi iterative method, and ADM is a nonlinear Gauss–Seidel

iterative method. This means that the computation of the APP for the current iteration only takes advantage of

the information of the last iteration. By contrast, the ADM method incorporates the new iterative information

that has been generated in the current iteration. Therefore, the ADM method is expected to have a better

convergence performance [11].

In addition, experience with applications illustrates that the choice of the penalty parameter for linear

consistency constraints has a significant influence on the convergence performance of the APP and ADM. In

this paper, taking advantage of the concept of balance that was proposed by He et al. [12], we propose two novel

self-adaptive penalty parameter strategies for the ADM method. For different test systems with a variety of

penalty parameters, simulation results testify that the proposed strategies are correct and effective, in addition

to having strong robustness in terms of the selection of penalty parameter.

2. Problem formulation

2.1. Centralized economic dispatch formulation

The aim of ED is to allocate generator output economically while satisfying various physical constraints. The

corresponding mathematical formulation for a centralized ED problem can be expressed as follows [13]:

min F (x)

subjectto : g (x) ≤ 0

h (x) = 0

(1)

where F (x) is an objective function and denotes total fuel cost; x is the vector of control and state variables,

including the real power output of the generating unit and tie-line power flow between different areas. The

function h(x) represents power balance constraints; g(x) denotes tie-line power flow constraints and generator

capacity constraints.

2.2. Duplication of variables

First let us start with the simplest case, a two-area ED problem, and then Eq. (1) can be expressed as follows:

min f1 (xI1, y) + f2 (xI2, y)

subjectto : g1 (xI1, y) ≤ 0

h1 (xI1, y) = 0

g2 (xI2, y) ≤ 0

h2 (xI2, y) = 0

(2)

where f1 and f2 represent the total fuel cost in area 1 and area 2, respectively. xIidenotes real power output

of generating units in area i ; ydenotes tie-line power flow between two areas. Then {gi , hi}represents the

corresponding constraints for area i .

It is clear that {g1 , h1 }and {g2 , h2 }are coupled. Taking advantage of the concept of duplication of

variables [14], y can be duplicated as y12 and y21 and a new consistency constraint, y12−y21 = 0, is introduced

to the problem of Eq. (2). Then an equivalent form of the problem of Eq. (2) can be expressed as follows:
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min f1 (x1) + f2 (x2)

subjectto : x1 ∈ Ω1, x2 ∈ Ω2

A12x1 +B12x2 = 0

(3)

where

x1 = (xI1, y12) , x2 = (xI2, y21)

Ω1 = {x1 |h1 (x1) = 0, g1 (x1) ≤ 0}
Ω2 = {x2 |h2 (x2) = 0, g2 (x2) ≤ 0}
A12x1 +B12x2 = y12 − y21

(4)

A12 and B12 are given constant matrices.

Similarly, by denoting Aijxi +Bijxj = 0 for the consistency constraint between area i and area j , and

using the concept of duplication of variables, a general formulation for the N -area economic dispatch problem

can be expressed as follows:

min
n∑

i=1

fi (xi)

subjectto : xi ∈ Ωi, i = 1, 2, · · · , n
Aijxi +Bijxj = 0, i, j = 1, 2, · · · , nandj > i

(5)

2.3. Traditional alternating direction method for MAED problem

In this section, the traditional ADM method for solving the MAED problem is presented. The key concept is

addressing the consistency constraint Aijxi + Bijxj = 0. Taking advantage of the ALR method, the MAED

problem shown in Eq. (5) can be transformed into the following optimization problem:

min
n∑

i=1

fi (xi) +
n∑

i=1

n∑
j=i+1

(
−λT

ij (Aijxi +Bijxj) +
cij
2 ∥Aijxi +Bijxj∥2

)
subjectto : xi ∈ Ωii = 1, 2, · · · , n

(6)

where λij and cij are the Lagrangian multiplier and the penalty parameter for consistency constraint Aijxi +

Bijxj = 0. The Euclidean norm of vector x will be denoted with ∥x∥ , i.e. ∥x∥ =
√
xTx ; the superscript T

denotes the transposition of corresponding vector.

In addition, the optimization problem of Eq. (6) is equivalent to solving a saddle-point problem via the

following iterative scheme:

(
xk+1
1 , · · · , xk+1

n

)
= argmin


n∑

i=1

fi (xi) +

n∑
i=1

n∑
j=i+1

(
−λT,k

ij (Aijxi +Bijxj) +
cij

2
∥Aijxi +Bijxj∥2

)
|xi ∈ Ωi, i = 1, 2, · · · , n


(7)

λk+1
ij = λk

ij − cij
(
Aijx

k+1
i +Bijx

k+1
j

)
, i, j = 1, 2, · · · , nandj > i (8)

where the superscript k is the iteration index.
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Now, using the ADM method to cope with the nonseparable quadratic term
cij
2 ∥Aijxi +Bijxj∥2 , which

is described in Eq. (7), the iterative scheme of ADM for solving the saddle-point problem of Eqs. (7) and (8)

can be expressed as follows [9]:

Step 1. Compute

xk+1
m = min

{
fm (xm) +

∑
i=m

n∑
j=m+1

(
−λT,k

ij Aijxi +
cij
2

∥∥Aijxi +Bijx
k
j

∥∥2)
+

m−1∑
i=1

∑
j=m

(
−λT,k

ij Bijxj +
cij
2

∥∥Aijx
k+1
i +Bijxj

∥∥2) |xm ∈ Ωm

}
,m = 1, 2, · · · , n

(9)

Step 2. Lagrangian multiplier updating

λk+1
ij = λk

ij − cij
(
Aijx

k+1
i +Bijx

k+1
j

)
, i, j = 1, 2, · · · , nandj > i (10)

Step 3. Check the stop criterion. If∥∥Bijx
k+1
j −Bijx

k
j

∥∥ < η,
∥∥λk+1

ij − λk
ij

∥∥ < ηi, j = 1, 2, · · · , nandj > i (11)

then stop;
(
xk+1
1 , xk+1

2 , · · · , xk+1
n

)
is the solution of the problem of Eq. (6). If not, k = k+ 1. If k>kmax , the

ADM iterative scheme fails to converge with maximum iteration kmax , then stop. If not, go to Step 1.

3. Self-adaptive ADM (SADM) for MAED problem

3.1. Centralized self-adaptive ADM (CSADM)

A great number of applications have demonstrated that if the chosen penalty parameter for the consistency

constraint is too small or too large, then the ADM iterative scheme needs more iterations to reach the optimum

solution. Meanwhile, it is difficult to obtain a proper penalty parameter in advance. Fortunately, inspired by

the concept of balance, He et al. proposed a modified alternating direction method for adjusting the penalty

parameter [12].

According to He et al. [12], the stop criterion for the problem of Eq. (3) can be expressed as follows:


ekx1

ekx2

ekλ

 =


xk
1 − PΩ1

{
xk
1 −

[
∇f

(
xk
1

)
−AT

12λ
k
]}

xk
2 − PΩ2

{
xk
2 −

[
∇g
(
xk
2

)
−BT

12λ
k
]}

Axk
1 +Bxk

2

 = 0 (12)

where PΩ (·) is the projection on Ω. ∇f (·) and ∇g (·) denote the gradient of f (·) and g (·), respectively.
In addition, according to the iterative scheme of ADM, we can get

ekx2
= xk

2 − PΩ2

{
xk
2 −

[
∇g
(
xk
2

)
−BT

12λ
k
]}

= 0 (13)

Then the error between current iteration
(
xk
1 , x

k
2 , λ

k
)
generated by the ADM and (x∗

1, x
∗
2, λ

∗) can be expressed

as
∥∥ekx1

∥∥2+∥∥ekλ∥∥2 . For the sake of balance, we should adjust the penalty factor in order to ensure
∥∥ekx1

∥∥ ≈
∥∥ekλ∥∥

[12].
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Similarly, for the N -area ED problem, the error between the current iteration generated by the ADM

and the corresponding optimal value can be expressed as follows:

n∑
m=1

∥∥ekxm

∥∥2 + n∑
i=1

n∑
j=i+1

∥∥∥ekλij

∥∥∥2 (14)

where

ekxm
= xk

m − PΩm

xk
m −

∇fm
(
xk
m

)
−
∑
i=m

n∑
j=m+1

AT
ijλ

k
ij −

m−1∑
i=1

∑
j=m

BT
ijλ

k
ij

 ,m = 1, 2, · · · , n (15)

ekλij
= Aijx

k
i +Bijx

k
j , i, j = 1, 2, · · · , n; j > i (16)

For the sake of balance, we should adjust the penalty factor so that
n∑

m=1

∥∥ekxm

∥∥2 ≈
n∑

i=1

n∑
j=i+1

∥∥∥ekλij

∥∥∥2 . The

corresponding CSADM for adjusting the penalty parameter can be expressed as follows:

cij =


0.5cijifr

k+1 > 10

2cijifr
k+1 < 0.1

cijotherwise

(17)

where

rk+1 =

√
n∑

m=1

∥∥ekxm

∥∥2
√

n∑
i=1

n∑
j=i+1

∥∥∥ekλij

∥∥∥2 (18)

3.2. Distributed self-adaptive ADM (DSADM)

Lemma 1. If sequence
{
vkij
}

is generated by the ADM iterative scheme and v∗ij is the optimum solution for

corresponding variables vij , we get

n∑
i=1

n∑
j=i+1

∥∥vkij − v∗ij
∥∥2
Nij

−
n∑

i=1

n∑
j=i+1

∥∥vk+1
ij − v∗ij

∥∥2
Nij

> 0 (19)

where

wij =


xi

xj

λij

 , vij =

(
Bijxj

λij

)
, Nij =

(
cijI 0

0 1
cij

I

)
(20)

TheNij -norm of vector x is denoted by ∥x∥Nij
, i.e. ∥x∥Nij

=
√
xTNijx .
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4. Proof

Using the concept of variational inequality, for the k th iteration, solving the optimization problem of Eq. (9)

is equivalent to solving xk+1
m , which satisfies [15]

fm (xm)− fm
(
xk+1
m

)
+
(
xm − xk+1

m

)T
{∑

i=m

n∑
j=m+1

(
−AT

ijλ
k
ij + cijA

T
ij

(
Aijx

k+1
i +Bijx

k
j

))
+

m−1∑
i=1

∑
j=m

(
−BT

ijλ
k
ij + cijB

T
ij

(
Aijx

k+1
i +Bijx

k+1
j

))}
≥ 0,

∀xm ∈ Ωm;m = 1, 2, · · · , n

(21)

and using λk+1
ij = λk

ij − cij
(
Aijx

k+1
i +Bijx

k+1
j

)
, we get

n∑
i=1

fi (xi)−
n∑

i=1
fi

(
xk+1
i

)

+
n∑

i=1

n∑
j=i+1

(
wij − wk+1

ij

)T




−AT

ijλ
k+1
ij + cAT

(
Aijx

k+1
i +Bijx

k+1
j

)
−BT

ijλ
k+1
ij + cBT

(
Aijx

k+1
i +Bijx

k+1
j

)
(
Aijx

k+1
i +Bijx

k
j

)

+


0 −cijA

T
ijBij AT

ij

0 0 BT
ij

0 0 1
cij

I

(
wk+1

ij − wk
ij

)


≥ 0,

∀wij ∈ Ωi × Ωj ×Rr

(22)

Setting wij = w∗
ij in Eq. (22), we get

n∑
i=1

n∑
j=i+1

(
w∗

ij − wk+1
ij

)T


0 −cijA
T
ijBij 0

0 0 0

0 0 1
cij

I

(wk+1
ij − wk

ij

)
≥

n∑
i=1

fi
(
xk+1
i

)
−

n∑
i=1

fi (x
∗
i ) +

n∑
i=1

n∑
j=i+1

(
wk+1

ij − w∗
ij

)T
F
(
wk+1

ij

) (23)

where

F (wij) =


−AT

ijλij

−BT
ijλij

Aijxi +Bijxj

 (24)

Using the concept of variational inequality to deal with the problem of Eq. (5) directly [15], we get

n∑
i=1

fi
(
xk+1
i

)
−

n∑
i=1

fi (x
∗
i ) +

n∑
i=1

n∑
j=i+1

(
wk+1

ij − w∗
ij

)T
F
(
w∗

ij

)
≥ 0 (25)

In fact, F is a monotone operator [16]. We have

(
wk+1

ij − w∗
ij

)T (
F
(
wk+1

ij

)
− F

(
w∗

ij

))
≥ 0 (26)

where the equality holds up if and only if wk+1
i = w∗

ij .
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If vk+1
i ̸= v∗ij , then we only can get

(
wk+1

ij − w∗
ij

)T (
F
(
wk+1

ij

)
− F

(
w∗

ij

))
> 0 (27)

Combining Eqs. (23), (25), and (27), if vk+1
i ̸= v∗ij , we get

n∑
i=1

n∑
j=i+1

(
w∗

ij − wk+1
ij

)T


0 −cijA

T
ijBij 0

0 0 0

0 0 1
cij

I

(
wk+1

ij − wk
ij

)
> 0

⇒
n∑

i=1

n∑
j=i+1

(
v∗ij − vk+1

ij

)T
Nij

(
vk+1
ij − vkij

)
+

n∑
i=1

n∑
j=i+1

cij

(
Aijx

k+1
i +Bijx

k+1
ij −Aijx

∗
i −Bijx

∗
ij

)T
Bij

(
xk+1
j − xk

j

)
> 0

⇒
n∑

i=1

n∑
j=i+1

(
v∗ij − vkij + vkij − vk+1

ij

)T
Nij

(
vk+1
ij − vkij

)
−

n∑
i=1

n∑
j=i+1

(
λk+1
ij − λk

ij

)T
Bij

(
xk+1
j − xk

j

)
> 0

⇒
n∑

i=1

n∑
j=i+1

(
v∗ij − vkij

)T
Nij

(
vk+1
ij − vkij

)
>

n∑
i=1

n∑
j=i+1

∥∥∥vk+1
ij − vkij

∥∥∥2
Nij

+
n∑

i=1

n∑
j=i+1

(
λk+1
ij − λk

ij

)T
Bij

(
xk+1
j − xk

j

)
⇒

n∑
i=1

n∑
j=i+1

(
v∗ij − vkij

)T
Nij

(
vk+1
ij − vkij

)
> 1

2

n∑
i=1

n∑
j=i+1

∥∥∥vk+1
ij − vkij

∥∥∥2
Nij (28)

Using Eq. (28), we get

n∑
i=1

n∑
j=i+1

∥∥vkij − v∗ij
∥∥2
Nij

−
n∑

i=1

n∑
j=i+1

∥∥vk+1
ij − v∗ij

∥∥2
Nij

=
n∑

i=1

n∑
j=i+1

∥∥vkij − v∗ij
∥∥2
Nij

−
n∑

i=1

n∑
j=i+1

∥∥vkij − v∗ij − (vkij − vk+1
ij )

∥∥2
Nij

= 2
n∑

i=1

n∑
j=i+1

(
v∗ij − vkij

)T
Nij

(
vk+1
ij − vkij

)
−

n∑
i=1

n∑
j=i+1

∥∥vk+1
ij − vkij

∥∥2
Nij

> 0

(29)

If vk+1
i = v∗ij , according the stop criterion described in Eq. (11), we get vki ̸= v∗ij and

n∑
i=1

n∑
j=i+1

∥∥vkij − v∗ij
∥∥2
Nij

> 0,
n∑

i=1

n∑
j=i+1

∥∥vk+1
ij − v∗ij

∥∥2
Nij

= 0 (30)

Thus, we get
n∑

i=1

n∑
j=i+1

∥∥vkij − v∗ij
∥∥2
Nij

−
n∑

i=1

n∑
j=i+1

∥∥vk+1
ij − v∗ij

∥∥2
Nij

> 0 (31)

Based on the above discussion, the proof of Lemma 1 is complete.

It is clear that Eq. (19) is Fejér monotone [17], and so we get

lim
k→∞

∥∥Bijx
k+1
j −Bijx

k
j

∥∥ = 0, lim
k→∞

∥∥λk+1
ij − λk

ij

∥∥ = 0, i, j = 1, 2, · · · , nandj > i (32)

Eq. (32) is consistent with the ADM’s stop criterion. It is clear that vkij → v∗ij when k → ∞ . Hence, the

magnitude of
n∑

i=1

n∑
j=i+1

∥∥vk+1
ij − vkij

∥∥2
Nij

can measure how vkij fails to be close to v∗ij . According to the description

in Lemma 1, we get

n∑
i=1

n∑
j=i+1

∥∥vk+1
ij − vkij

∥∥2
Nij

=

n∑
i=1

n∑
j=i+1

∥∥Bijx
k+1
j −Bijx

k
j

∥∥2
cij

+

n∑
i=1

n∑
j=i+1

∥∥λk+1
ij − λk

ij

∥∥2
1

cij

(33)
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For the sake of balance, we only need to adjust the penalty parameter so that

n∑
i=1

n∑
j=i+1

∥∥Bijx
k+1
j −Bijx

k
j

∥∥2
cij

≈
n∑

i=1

n∑
j=i+1

∥∥λk+1
ij − λk

ij

∥∥2
1

cij

, i, j = 1, 2, · · · , nandj > i (34)

If we adjust the penalty parameter for the sake of balance in Eq. (34) directly, then a large amount of data

communication between different areas is needed. For a distributed iterative scheme, a large amount of data

communication will lead to communication bottlenecks and may not be suitable for practical applications. In

fact, to achieve balance in Eq. (34), we just need to satisfy

∥∥Bijx
k+1
j −Bijx

k
j

∥∥2
cij

≈
∥∥λk+1

ij − λk
ij

∥∥2
1

cij

, i, j = 1, 2, · · · , nandj > i (35)

The corresponding DSADM for adjusting the penalty parameter can be expressed as follows:

cij =


0.5cijifr

k+1
ij > 10

2cijifr
k+1
ij < 0.1

cijotherwise

(36)

where

rk+1
ij =

∥∥Bijx
k+1
j −Bijx

k
j

∥∥
cij∥∥λk+1

ij − λk
ij

∥∥
1

cij

, i, j = 1, 2, · · · , nandj > i (37)

5. Simulation

In this section, we employ a 40-unit system and a 10-unit system to demonstrate the convergence performance of

the proposed methods. Throughout this paper, the stop criterion is set to be η = 10−4 , the initial Lagrangian

multiplier is set to be zero, and the maximum iteration kmax is 100. In addition, the optimization problem for

each area is solved by the fmincon code of the MATLAB optimization toolbox on a PC with Intel E7500 2.93

GHz CPU and 4 GB of RAM.

5.1. Case 1: 40-unit power system with two areas

A 40-unit power system consists of two areas, area 1 and area 2. In area 1, there are 25 units and the demand

is set to be 8000 MW. In area 2, there are 15 units and the demand is set to be 2000 MW. The tie-line power

flow limit between two areas is set to be 800 MW. Data related to the generator are from Chang et al. [18].

5.2. Case 2: 10-unit power system with three areas

This test system comprises three areas as shown in the Figure. Area 1 is made up of the first four units (P1,

P2, P3, and P4). Area 2 is composed of the next three units (P5, P6, and P7). Area 3 consists of the remaining

three units (P8, P9, and P10). The total demand is 2700 MW. The corresponding demand in area 1, area 2,

and area 3 accounts for 50%, 25%, and 25% of the total demand, respectively. The tie-line power flow limits

between any two areas are set to be 100 MW. All data about the generator are from [19]. To be more exact,

each generator has three different fuel options. In this paper, we employ fuel option 1 as the fuel cost.
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Figure. Three areas, 10-unit system.

5.3. Case 3: IEEE-118 power system with two areas

In this section, we divided the IEEE-118 power system into two areas, area 1 and area 2. Area 1 consists of the

first 24 units and the demand is set to be 1883 MW. Area 2 consists of the next 30 units and the demand is
set to be 2359 MW. The tie-line power flow limit between two areas is set to be 600 MW. Data related to the

generator are from [3].

5.4. Analysis of simulation results

In this section, we employ three different strategies with different penalty factors to solve a multiarea ED

problem.

1. Traditional alternating direct method (ADM)

2. Centralized self-adaptive alternating direct method (CSADM)

3. Distributed self-adaptive alternating direct method (DSADM)

The information presented in Tables 1–3 reflects the convergence performance of the three different

iterative strategies with different starting penalty parameters. The word “FAIL” means that the corresponding

method failed to converge with the maximum iteration number of 100. The lowercase letter “c” denotes an

initial given value of a penalty parameter. The words “Iterations” and “CPU time (s)” represent the total

number of iterations and CPU time (in seconds) when the stop criterion for the corresponding test systems is

satisfied.

As shown in Tables 1–3, it is clear that the ADM is sensitive to the selection of the penalty parameter. In

contrast, the proposed CSADM and DSADM methods are robust in terms of the choice of penalty parameter.

Compared with the DSADM, the CSADM has two significant deficiencies: 1) CSADM needs a coordinator server

that communicates with all areas to collect information. For a distributed iterative scheme, a large amount

of data communication will lead to a communication bottleneck and is infeasible for practical applications. 2)

Computational load for adjusting the penalty parameter in the CSADM is time-consuming, which means that

CSADM needs more computing time for a single iteration. Based on the above discussion, we suggest using

DSADM for solving the MAED problem in practice.

6. Conclusion

In this paper the CSADM and DSADM methods are proposed to solve the MAED problem. CSADM and

DSADM take into consideration the balance of the stop criterion, and this gives us an insight into how to

adjust the penalty parameter for consistency constraints between interconnected areas, that is, how to adopt
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Table 1. Comparison of results for case 1.

c
ADM CSADM DSADM

Total cost ($/h)
Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

102 Fail Fail 42 11.09 22 3.59

1.3602 × 105

101 Fail Fail 53 12.50 22 3.81

100 70 12.27 41 9.46 15 2.71

10−1 16 3.77 21 5.14 16 2.52

10−2 Fail Fail 12 2.74 9 1.50

10−3 Fail Fail 13 3.06 13 2.09

10−4 Fail Fail 16 3.55 17 2.57

10−5 Fail Fail 21 4.26 19 2.27

10−6 Fail Fail 22 4.26 23 2.62

Table 2. Comparison of results for case 2.

c
ADM CSADM DSADM

Total cost ($/h)
Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

102 Fail Fail 35 10.01 48 7.57

718.0707

101 Fail Fail 30 8.84 18 3.52

100 Fail Fail 30 8.95 28 4.51

10−1 Fail Fail 32 9.08 29 4.66

10−2 76 11.96 28 8.14 37 6.44

10−3 25 4.95 34 9.70 22 4.24

10−4 Fail Fail 44 12.09 31 5.73

10−5 Fail Fail 43 12.23 36 6.36

10−6 Fail Fail 47 13.12 32 5.69

Table 3. Comparison of results for case 3.

c
ADM CSADM DSADM

Total cost ($/h)
Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

102 Fail Fail 33 14.26 24 9.98

1.2595 × 105

101 Fail Fail 33 13.28 25 9.06

100 Fail Fail 30 11.53 28 9.49

10−1 79 26.99 Fail Fail 25 9.01

10−2 24 7.96 46 20.82 23 7.92

10−3 66 23.18 40 16.86 28 9.71

10−4 Fail Fail 52 21.51 35 10.82

10−5 Fail Fail 49 19.85 34 10.32

10−6 Fail Fail 46 17.55 39 11.58
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a self-adaptive penalty parameter strategy instead of a fixed penalty parameter. Simulation results illustrated

that the CSADM and DSADM are superior to the ADM in terms of robustness and convergence rate. Moreover,

unlike the CSADM, the DSADM does not need to create a coordinator server to exchange data from all areas,

and it just uses the exiting data in each area to update the penalty parameter, so the DSADM is more suitable

for implementation in distributed environment.

Nomenclature
ED Economic dispatch
MAED Multiarea economic dispatch
EMS Energy management system
ALR Augmented Lagrangian relaxation
CLR Classic Lagrangian relaxation
APP Auxiliary problem principle
ADM Alternating direction method
CSADM Centralized self-adaptive alternating direction method
DSADM Distributed self-adaptive alternating direction method
gi The equality constraints for area i
hi The inequality constraints for area i
fi(xi) The total fuel cost for area i
λij The Lagrangian multiplier for consistency constraint between area i and area j
cij The penalty parameter for consistency constraint between area i and area j

References

[1] Koodalsamy C, Simon SP. Fuzzified artificial bee colony algorithm for nonsmooth and nonconvex multiobjective

economic dispatch problem. Turk J Electr Eng Co 2013; 211: 1995-2014.

[2] Slimani L, Bouktir T. Economic power dispatch of power systems with pollution control using artificial bee colony

optimization. Turk J Electr Eng Co 2013; 21: 1515-1527.

[3] Yan W, Wen L, Li W, Chung CY, Wong KP. Decomposition-coordination interior point method and its application

to multi-area optimal reactive power flow. Int J Elec Power 2011; 33: 55-60.

[4] Somasundaram P, Swaroopan NMJ. Fuzzified particle swarm optimization algorithm for multi-area security con-

strained economic dispatch. Electr Pow Compo Sys 2011; 39: 979-990.

[5] Cohen G. Auxiliary problem principle and decomposition of optimization problems. J Optimiz Theory App 1980;

32: 277-305.

[6] Batut J, Renaud A. Daily generation scheduling optimization with transmission constraints: a new class of

algorithms. IEEE T Power Syst 1992; 7: 982-989.

[7] Chung KH, Kim BH, Hur D. Distributed implementation of generation scheduling algorithm on interconnected

power systems. Energ Convers Manage 2011; 52: 3457-3464.

[8] Liu K, Li Y, Sheng W. The decomposition and computation method for distributed optimal power flow based on

message passing interface (MPI). Int J Elec Power 2011; 33: 1185-1193.

[9] Chung KH, Kim BH, Hur D. Multi-area generation scheduling algorithm with regionally distributed optimal power

flow using alternating direction method. Int J Elec Power 2011; 33: 1527-1535.

[10] Kim BH, Baldick R. A comparison of distributed optimal power flow algorithms. IEEE T Power Syst 2000; 15:

599-604.

[11] Beltran C, Heredia FJ. Unit commitment by augmented Lagrangian relaxation: testing two decomposition ap-

proaches. J Optimiz Theory App 2002; 112: 295-314.

4621

http://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-sup.1/elk-21-sup.1-14-1112-60.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-sup.1/elk-21-sup.1-14-1112-60.pdf
http://dx.doi.org/10.3906/elk-1106-10
http://dx.doi.org/10.3906/elk-1106-10
http://dx.doi.org/10.1016/j.ijepes.2010.08.004
http://dx.doi.org/10.1016/j.ijepes.2010.08.004
http://dx.doi.org/10.1080/15325008.2011.552094
http://dx.doi.org/10.1080/15325008.2011.552094
http://dx.doi.org/10.1007/BF00934554
http://dx.doi.org/10.1007/BF00934554
http://dx.doi.org/10.1109/59.207311
http://dx.doi.org/10.1109/59.207311
http://dx.doi.org/10.1016/j.enconman.2010.10.006
http://dx.doi.org/10.1016/j.enconman.2010.10.006
http://dx.doi.org/10.1016/j.ijepes.2011.01.032
http://dx.doi.org/10.1016/j.ijepes.2011.01.032
http://dx.doi.org/10.1109/59.867147
http://dx.doi.org/10.1109/59.867147
http://dx.doi.org/10.1023/A:1013601906224
http://dx.doi.org/10.1023/A:1013601906224


REN et al./Turk J Elec Eng & Comp Sci

[12] He BS, Yang H, Wang SL. Alternating direction method with self-adaptive penalty parameters for monotone

variational inequalities. J Optimiz Theory App 2000; 106: 337-356.

[13] Muthu Vijaya Pandian S, Thanushkodi K. Considering transmission loss for an economic dispatch problem without

valve-point loading using an EP-EPSO algorithm. Turk J Electr Eng Co 2012; 202: 1259-1267.

[14] Losi A. On the application of the auxiliary problem principle. J Optimiz Theory App 2003; 117: 377-396.

[15] He BS, Li M, Liao LZ. An improved contraction method for structured monotone variational inequalities. Opti-

mization 2008; 57: 643-653.

[16] He BS, Shen Y. On the convergence rate of customized proximal point algorithm for convex optimization and

saddle-point problem. Scientia Sinica Mathematica 2012; 42: 515-525.

[17] Shen Y. Some first-order algorithms for structured optimizations. PhD, Nanjing University, Nanjing, China, 2012.

[18] Chang HC, Chen PH. Large-scale economic dispatch by genetic algorithm. IEEE T Power Syst 1995; 10: 1919-1926.

[19] Basu M. Artificial bee colony optimization for multi-area economic dispatch. Int J Elec Power 2013; 49: 181-187.

4622

http://dx.doi.org/10.1023/A:1004603514434
http://dx.doi.org/10.1023/A:1004603514434
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-sup.2/elk-20-sup.2-4-1102-1074.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-sup.2/elk-20-sup.2-4-1102-1074.pdf
http://dx.doi.org/10.1023/A:1023687824722
http://dx.doi.org/10.1080/02331930802386288
http://dx.doi.org/10.1080/02331930802386288
http://dx.doi.org/10.1360/012011-1049
http://dx.doi.org/10.1360/012011-1049
http://dx.doi.org/10.1109/59.476058
http://dx.doi.org/10.1016/j.ijepes.2013.01.004

	Introduction
	Problem formulation
	Centralized economic dispatch formulation
	Duplication of variables
	Traditional alternating direction method for MAED problem

	Self-adaptive ADM (SADM) for MAED problem
	Centralized self-adaptive ADM (CSADM)
	Distributed self-adaptive ADM (DSADM)

	Proof
	Simulation
	Case 1: 40-unit power system with two areas
	Case 2: 10-unit power system with three areas
	Case 3: IEEE-118 power system with two areas
	Analysis of simulation results

	Conclusion

