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Abstract: The quantization table in the baseline Joint Photographic Experts Group (JPEG) algorithm plays an

important role in compression/quality trade-off. Hence the detection of the optimal quantization table is viewed as

an optimization problem. The genetic algorithm (GA) is an attractive optimization tool by many researchers for this

application due to its ability in dealing with complex problems. In spite of its advantages, the GA requires more

computation time to achieve an optimal solution if it has an expensive fitness evaluation.

This paper proposes a problem approximation surrogate model (PASM) for fitness approximation to assist the GA

in optimizing the quantization table for a target bits per pixel. This proposal reduces the computational time of the GA

without any loss in performance. The PASM uses an image block clustering process and an indirect evaluation method

to approximate the fitness value. The number of clusters in the clustering process may influence the performance of the

PASM. A performance analysis with different number of clusters has been done and a suitable cluster number is identified

with the help of measuring criteria such as mean squared difference, correct selection, potentially correct selection, and

rank correlation. In addition, the results acquired from these measuring criteria are confirmed using statistical hypothesis

tests such as Friedman’s ANOVA and Wilcoxon signed rank. The PASM with suitable cluster number has been tested in

a classical genetic algorithm and knowledge based genetic algorithm. Several benchmark images with different complexity

levels have been examined in three different target bits per pixel to validate the performance of the PASM. The results

proved that the PASM guarantees better results in terms of peak signal-to-noise ratio with a reduction in computational

time.

Key words: JPEG, quantization table, optimization, genetic algorithm, surrogate model, fitness approximation,

problem approximation, ANOVA, Wilcoxon signed rank test

1. Introduction

Joint Photographic Experts Group (JPEG) is a widely used image compression standard on the web and in

multimedia applications. The web statistics report reveals around 68.9% of images on the Internet are in JPEG

format [1]. JPEG is a still-frame compression standard developed by CCITT with the collaboration of ISO

in 1992. It supports four distinct modes of operation in algorithmic point of view: sequential discrete cosine

transform (DCT), progressive DCT, hierarchical, and lossless. In sequential DCT based mode often called a

JPEG baseline algorithm, the image is subdivided into 8 × 8 pixel blocks and they are processed from left to

right and top to bottom. The forward DCT is applied to each block and 8 × 8 DCT coefficients are quantized

by a quantization table. Finally the quantized DCT coefficients are entropy encoded and stored along with the
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quantization table to form the compressed file. During sequential JPEG decompression, the compressed file

is decoded and the resultant DCT coefficients are dequantized by the quantization table. Finally, the inverse

discrete cosine transform (IDCT) is applied to the dequantized DCT block to get the pixel values. A detailed

description of a baseline JPEG encoder/decoder is available in [2].

The quantization table used in the JPEG scheme plays an important role in image quality/compression

trade-off. The default quantization tables recommended by the JPEG standard do not provide the best trade-

off for all images. Since the generation of the quantization table is viewed as an optimization problem, many

researchers use metaheuristic techniques to optimize the quantization table, which guarantees the best trade-

off. For optimizing the quantization table, a genetic algorithm (GA) seems to be a very appropriate choice by

many researchers. In general, the GA requires a large number of generations to achieve a good solution, and if

computationally expensive fitness evaluations are added to it, then it requires more computation time [3]. The

solution to this problem is the use of a surrogate model, which can simulate the behavior of the original fitness

function in the evolution cycle but can be evaluated much faster [4]. In the literature, fitness approximation is

done in three ways [5] for different applications: i) problem approximation [6,7], replaces the original statement

of the problem with its approximate one, which is easier to solve, ii) functional approximation [8–11], replaces

the original objective function by an alternate and explicit expression, and iii) evolutionary approximation

[12,13], estimates the fitness value of an offspring from their parents or from their fellow offspring. Although

several surrogate models used in GAs are available in the literature, to the best of our knowledge they have

been never used to optimize the quantization table for the JPEG baseline algorithm.

In this paper we propose a problem approximation surrogate model (PASM) to approximate the fitness

value in a GA for optimizing the quantization table for the target bits per pixel. Our objective is to reduce

the computational time of the GA without any loss in performance. The PASM separates all 8 × 8 blocks of

an image into subgroups by K means clustering method, and one representative from each group is taken to

represent an image. The measures that influence the fitness value are bits per pixel and mean squared error.

These measure values are evaluated only for these representative blocks and the measure values of remaining

blocks are estimated from these representative measure values of each group. This divide-and-conquer approach

replaces the number of blocks to be processed with a smaller number of blocks, which in turn reduces the

computational time drastically. However, k value may influence the performance of the PASM. Therefore, the

performance of the PASM with different k values is examined by measures [14] such as MSD, CS, PCS, and RC;

also the results are validated by a statistical hypothesis testing approach. The proposed PASM is introduced in

both a classical genetic algorithm (CGA) and knowledge based genetic algorithm (KBGA) [1]; in addition, the

results are compared in terms of peak signal-to-noise ratio (PSNR) to that of the same GAs without using the

PASM. Furthermore, it has been found that, by using a PASM, CGA and KBGA are able to find an optimal

quantization table in a reduced computational time and also it exhibits a better performance.

The remainder of this paper is organized as follows. In the next section, the optimization problem

considered in this paper is explained. A brief review of CGA and KBGA is given in Section 3. Section 4

illustrates the proposed PASM. The validation measures are given in section 5. The experimental results are

discussed in section 6. Concluding remarks are summarized in section 7.

2. The optimization problem

The optimization problem considered here is to find the quantization table that generates better image quality

for the given bits per pixel. For any optimization problem, the fitness function is one that determines the
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goodness of each chromosome. In this paper, an unfitness function is used instead of a fitness function to

evaluate the survival probability of each chromosome. The unfitness function is shown in Eq. (1).

ξ = a

(
8

Br
− λ

)2

+ ε, (1)

where a = 10, Br = bit rate, λ = desired compression ratio, and ε = mean squared error (MSE).

Here the constraint is incorporated into the unfitness function and the unfitness value depends on the

difference between the actual and the desired compression ratio, in addition to the MSE of the decoded image.

3. Genetic algorithm

A genetic algorithm is a directed random search technique often applied to optimization in complex multidi-

mensional search spaces. It belongs to the class of search methods that operate on a population of solutions for

a problem and make it evolve by iteratively applying a set of stochastic operators. These operators, inspired

by the natural evolution process, manipulate the individuals in a population to improve the solution. The

modifications in these operators to suit a particular application may lead to the variants of GA. In this paper,

two variants of GA, CGA and KBGA, are taken into consideration.

The main steps involved in the CGA process are initialization, evaluation, crossover, and mutation.

Initialization is a first step where a population of candidate solutions is randomly generated for the given

problem. Each candidate solution is called a chromosome and made up of genes. Here every quantization table,

which is an 8 × 8 matrix, denotes a chromosome. Therefore, each chromosome has 64 genes. Each chromosome

is evaluated by the unfitness function shown in Eq. (1), which is a measure of performance toward an objective.

(mu +λ)-selection is used to select the chromosomes as parents for crossover and mutation. Crossover is an

operation used to create two new offspring from two randomly selected parents. Mutation is an operation that

changes a gene value in a chromosome randomly.

KBGA follows the same procedure as of CGA with modifications in genetic operators. KBGA uses

knowledge based operators such as knowledge based initialization (KBI), knowledge based selection (KBS),

knowledge based crossover (KBC), and knowledge based selective mutation (KBSM) to accelerate the search

of optimal solution. KBGA incorporates the domain knowledge in genetic search to address the problems

like uncertainty and low convergence speed of the GA in constrained optimization. A detailed description of

KBGA is given in [1]. The algorithms for CGA and KBGA used in our work are shown in algorithms 1 and 2,

respectively.

4. Problem approximation surrogate model (PASM)

As discussed in the introduction, the computational time of the GA process has become prohibitive due to

expensive fitness value calculation. The unfitness function considered here includes the computation of measures

like bits per pixel (Br) and MSE (ε) for the given image. For each unfitness value evaluation, the whole JPEG

compression and decompression process has to be executed to calculate the above said measures. Furthermore,

the computational time taken for these measures depends on the number of 8 × 8 blocks present in an image.

Thus the time taken for evaluating the unfitness value is directly proportional to the number of 8 × 8 blocks

present in an image. In this paper, the PASM is used for fitness approximation, which reduces the total number

of 8 × 8 blocks of an image to lower number to produce approximately the same unfitness value as the actual

number of 8 × 8 blocks but in a shorter amount of time. It is well accepted that the natural images are generally
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statistically self-similar, that is blocks of an image can be approximated using other blocks of the same image

[15]. The PASM exploits the similarities between the 8 × 8 blocks of an image to reduce the number of 8 × 8

blocks for processing.

Algorithm 1: Classical Genetic Algorithm

Input: a gray scale image and desired compression ratio  

Output: a best chromosome (Quantization Table) 

Generate population of n chromosomes randomly; 

Evaluate the chromosomes; 

Select superior chromosomes based on low unfitness value; 

While maximum generation not reached do 

Perform single point crossover on selected chromosomes; 

Evaluate the offspring; 

Select superior chromosomes from both parents and offspring; 

Perform mutation on selected chromosomes; 

Evaluate the offspring; 

Select superior chromosomes from both parents and offspring; 

End while 

Return best Chromosome; 

Algorithm 2: Knowledge Based Genetic Algorithm

Input: a gray scale image, desired compression ratio and number of clusters  

Output: a best chromosome (Quantization Table) 

Generate population of n chromosomes randomly using KBI; 

Evaluate the chromosomes; 

Select superior chromosomes based on low unfitness value; 

While maximum generation not reached do 

Select the chromosomes using KBS; 

Perform KBC on selected chromosomes; 

Evaluate the offspring; 

Select superior chromosomes from both parents and offspring; 

Perform KBSM on selected chromosomes; 

Evaluate the offspring; 

Select superior chromosomes from both parents and offspring; 

End while 

Return best Chromosome; 

The construction of the PASM can be divided into two stages: (i) clustering of image blocks and (ii)

evaluation of unfitness value. An image block clustering process adopted from [1] is used to cluster the image

blocks. Clustering of image blocks is done in transform domain using the K means algorithm, which is chosen
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for its simplicity and low computational cost. The image block clustering process uses a deterministic centroid

initialization method (DCIM), which made the K means algorithm produce unique clustering results every time.

The procedures of the image block clustering process and DCIM are given in algorithms 3 and 4, respectively.

Algorithm 3: Image Block Clustering Procedure

Input: a gray scale image 

M (Number of Main Clusters) 

N (Number of Subclusters)  

Output: Cluster Representatives 

Number of Image blocks in each cluster  

Split an image into 8  8 nonoverlapping blocks. 

Transform each 8  8 block of the image using discrete cosine transform (DCT) 

Extract DC coefficients and Standard deviation of AC coefficients as features from each 

DCT block. Store them together as a vector. 

Group the DC coefficients into M clusters (Main Clusters) using K Means algorithm. 

Choose the initial centroids using DCIM. 

Group the corresponding image blocks into M clusters based on DC coefficient clusters. 

Group the Standard deviation of AC coefficients in the corresponding main clusters into 

N clusters (Subclusters) using K Means algorithm. Choose the initial centroids 

using DCIM. 

Group the corresponding image blocks into N clusters based on Standard deviation of AC 

coefficients clusters. 

Choose a block that is closest to the cluster center as cluster representative. 

Return Cluster representatives and number of blocks in each cluster. 

Algorithm 4: Deterministic Centroid Initialization Method

Input: a set of N data vectors (Data set) 

K (Number of Clusters) 

Output: Initial Cluster Centroids 

Sort the data vectors in ascending order. 

Split the ordered vectors into K bins randomly. 

Calculate the mode for each bin and consider as initial centroids 

Return initial centroids 

A block that is closest to the cluster center is taken as a representative of that cluster; also MSE and Br

values can be calculated only for the representative blocks. Since these measures satisfy the additive property

subject to suitable normalization [16,17], the MSE and Br values calculated for the representative block are

assumed for the remaining blocks in that cluster and they are added to form total MSE and Br values of an

image, which will be approximately equal to the actual MSE and Br values. The algorithm for evaluation of

unfitness value using the PASM is shown in algorithm 5.

4627



BALASUBRAMANIAN and MANAVALAN/Turk J Elec Eng & Comp Sci

 

8

target bits per pixel
;   

Algorithm 5: Unfitness value evaluation using PASM

Input: Representative blocks;  

8  8 Quantization tables;  

Number of blocks in each cluster; 

  a = 10;  

 = desired compression ratio =

Output: Unfitness values  

For all chromosomes do 

Calculate MSE and Br for each representative block using quantization table; 

Assume same MSE and Br for the remaining blocks in the cluster; 

5. Performance measures

Analyzing the quality of the model is found essentially in surrogate modeling. Different performance measures

considered here are adopted from [14] with small modifications in expectation parameter due to use of the (mu

+λ)-selection, where mu represents the number of parents and λ represents the number of offspring.

5.1. Mean squared difference (MSD)

This is a commonly used measure that calculates the mean squared difference between the actual fitness value

(ϕactual) and the model based approximated fitness value (ϕapproximate) of each chromosome. This measure is

averaged over n different chromosomes taken into account in one generation, which is shown in Eq. (2).

MSD =
1

n

n∑
j=1

(
ϕ
(approximate)
j − ϕ

(actual)
j

)2

(2)

5.2. Correct selection (CS)

The above measure mainly focuses on the accuracy of the surrogate model. However, the selection of right

individuals for the next generation is also important in view of the evolutionary process. This measure is based

on the number of chromosomes that have been correctly selected using the surrogate model. It is given in Eq.

(3).

CS =
ξ − ⟨ξ⟩
µ− ⟨ξ⟩

, (3)

where ξ (0 ≤ ξ ≤ µ) represents the number of chromosomes that would also be selected if the fitness value

evaluations were done without using a model. The expected value of ⟨ξ⟩ is given by
⌊
µ
2

⌋
. This measure value can

be positive or negative, where positive values indicate that more than
⌊
µ
2

⌋
chromosomes are selected correctly

and negative values indicate that only less than
⌊
µ
2

⌋
chromosomes are selected correctly.
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5.3. Potentially correct selection (PCS)

This measure indicates whether good or bad chromosomes have been selected. It includes the rank of the

selected chromosomes, calculated based on the fitness function without using a model. It is given in Eq. (4).

PCS =
π − ⟨π⟩

π(max) − ⟨π⟩
, (4)

where

π(max) =

µ∑
m=1

λm, ⟨π⟩ =
⌊µ

2 ⌋∑
m=1

λm

A grade λ – m is assigned to each chromosome, if it is an mth best individual selected based on the real fitness

function. Then the grades of all selected chromosomes are summed to form π . The maximum π value indicates

that all µ chromosomes are selected correctly.

5.4. Rank correlation (RC)

This measure gives the relation between the ranks of all chromosomes with and without a model. It is given in

Eq. (5).

RC = 1−
6

λ∑
l=0

d2l

λ(λ2 − 1)
(5)

dl is the difference between the ranks of the lth chromosome based on the original fitness function and on the

approximate model. If the RC value is higher, then the relation between the ranks of all chromosomes with and

without a model is stronger with a positive slope.

6. Experimental results

Although GA is a well-known effective approach for the generation of the quantization table, more effort is

needed to reduce the computational time. The focus of this paper is to reduce the computational time of

the GA using the PASM. The image block clustering process plays a vital role in PASM. The performance of

the PASM is based on the number of clusters k . Generally the approximation error is taken into account to

validate the performance of the model; at the same time, it could not be concluded that the model with low

approximation error may do the optimization process correctly [14]. Here the approximation error is inversely

proportional to the k value. Therefore, there is also a need to find the suitable k value based on not only

approximation error but also on the evolutionary perspective. In this study, the k value is chosen as 75, 100,

125, and 150 based on the computational time taken to evaluate the unfitness function. In order to find the

suitable k value in the PASM, it is integrated in the CGA process and the performances of the PASM with

different k values are validated by four quality measures explained in section 5. These measures are calculated

between the PASM assisted CGA and its counterpart CGA without the PASM. The experiments are carried

out by considering (mu+λ)-selection with mu = λ and mu+λ chromosomes as the initial population in both
cases.

The proposed PASM assisted CGA is realized using MATLAB R2008b and it is implemented on a Dell

workstation of Intel Xenon CPU E3-1240 V3 @ 3.40 GHz processor with 16 GB of RAM. Benchmark images

shown in Figure 1 are taken from the USC-SIPI image database and are of size 256 × 256 and digitized to
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256 gray levels. As the model performance can be changed from one generation to the next, it is necessary to

validate the performance of the PASM with different k values at multiple generations.
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Figure 1. Benchmark test images: (a) Lena, (b) camera man, (c) Barbara, (d) couple, (e) crowd, (f) bridge, (g) clock,

(h) baboon, (i) pattern, (j) montage.

The performance measures for the PASM with different k values have been calculated at each generation

for each image. The programs are executed for 20 runs and the comparison graph has been drawn based on

the average value of each measure at every five generations as shown in Figures 2–5. From the graphs, no

clear conclusions can be drawn about which k value is better. This leads to the need for statistical analysis.

Here the difference between the performances of the PASM with different k values needs to be analyzed at

multiple time points. Thus Friedman’s ANOVA test [18] is suited to this study, where it analyzes whether

there is a significant difference in performance of different k values across multiple generations. As a result, a

null hypothesis is made that there are no significant differences among different k values. Table 1 shows the

P-value obtained from Friedman’s ANOVA test with 0.05 at level of significance (α) for the above-mentioned

performance measures. When a P-value is greater than the significance level, then the null hypothesis is not

rejected; otherwise it is rejected. The P-value of all the measures is less than 0.05, which shows the rejection of

the null hypothesis. Therefore, it can be observed that there is a significant difference among the PASM with

different k values.

Table 1. Friedman’s ANOVA test results for different performance measures.

Performance measures SS df P-value Significance level
Mean squared deviation 1000 799 1.22062e–079

0.05
Correct selection 1000 799 5.58068e–056
Potentially correct selection 1000 799 1.03053e–058
Rank correlation 1000 799 5.10723e–065

4630



BALASUBRAMANIAN and MANAVALAN/Turk J Elec Eng & Comp Sci

20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

110

120

130

Generations

M
ea

n
 S

q
u

ar
ed

 D
i"

er
en

ce

 

 

MSD75
MSD100
MSD125
MSD150

20 40 60 80 100 120 140 160 180 200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

C
o

rr
e
c
t 

S
e
le

c
ti

o
n

 

 

CS75

CS100

CS125

CS150

Figure 2. Mean squared difference criterion for different

k values.

Figure 3. Correct selection criterion for different k val-

ues.
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Figure 4. Potentially correct selection criterion for dif-

ferent k values.

Figure 5. Rank correlation criterion for different k val-

ues.

After finding the significant differences between the k values, it is important to find the best k value. A

nonparametric test (Wilcoxon signed rank test) [18] is performed to find the best k value among the considered

k values. As a null hypothesis, it is assumed that there is no significant difference between paired k values,

whereas the alternate hypothesis is that there is a significant difference between the paired k values at the

5% significance level. Based on the rankings, one of two signs (‘<’ and ‘>’) is assigned for the comparison of

the performance of any two k values in Table 2, where ‘<’ shows the row k value is significantly worse than

column k value and ‘>’ shows the row k value is significantly better than the column k value. From Table 2,

it can be clearly seen that k = 100 is better than other k values in all criteria. In the MSD criterion, k = 75

is significantly worse than k = 150; however, k = 75 performs significantly better than k = 150 in all other

criteria. This confirms the statement given in [14] that the large approximation errors must not mislead the

evolution process. From the above study, it can be concluded that the PASM with 100 clusters performs better

than the PASM with other numbers of clusters.
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Table 2. Wilcoxon signed rank test results for different performance criteria.

Metric k value 100 125 150

MSD

75 < < <
100 - > >
125 - - >

CS

75 < < >
100 - > >
125 - - >

PCS

75 < < >
100 - > >
125 - - >

RC

75 < < >
100 - > >
125 - - >

A model management procedure is required to integrate the PASM into the GA process. Direct replace-

ment with no evolution control is used as a model management procedure, where it directly replaces the exact

unfitness value with its approximate value. An exact unfitness value is not at all used in the optimization

process. The main difference between the GA and the PASM based GA is an evaluation of the unfitness value.

In GA, an unfitness value is evaluated by the original unfitness function, whereas in PASM-GA, it is evaluated

by the PASM based unfitness function. In addition, there is no difference in implementation style between the

algorithms. As per the above study, the number of clusters in the PASM is set as 100 and the PASM-CGA

is evaluated using a set of benchmark images shown in Figure 1. A performance comparison is made between

the JPEG based, CGA based, and PASM-CGA based quantization tables using a performance measure: peak

signal-to-noise ratio (PSNR) . The parameters for both GA simulations are given in Table 3. Both simulations

are terminated when they achieve a better result than a standard JPEG result of the corresponding bits/pixel.

Random gene values of initial chromosomes are in the range of 1 to 256. The programs are executed for 20 runs

for each image against each of the target bits per pixel: 0.75 and 1.0 and 1.5. Table 4 compares the performance

of the PASM-CGA based quantization table with CGA based and default JPEG quantization tables for different

bits per pixel. It displays the average results of both CGA and PASM-CGA from 20 independent runs. From

Table 4, it is clearly shown that the PASM-CGA based quantization table yields similar results as a CGA and

JPEG in terms of PSNR. Table 4 also shows that the CGA and PASM-CGA take 34,134.90 s and 19,209.92

s on average, respectively, to generate the optimal quantization table. It confirms that the PASM reduces the

computational time of the CGA by 43.7%.

Table 3. CGA and PASM-CGA parameter settings.

Parameter CGA PASM-CGA
Population size 64 64
Crossover probability 0.9 0.9
Mutation probability 0.09 0.09
Number of independent runs 20 20

In order to validate the performance of the PASM with our previous results for the optimization of

the quantization table, KBGA is taken into consideration. PASM based KBGA is implemented in the same

programming environment with the same simulation parameter settings and evaluated using the same set of

4632



BALASUBRAMANIAN and MANAVALAN/Turk J Elec Eng & Comp Sci

Table 4. Comparison of JPEG, CGA, and PASM-CGA for different target bits/pixels.

Target bits/pixel 0.75 1 1.5 

Image 
Quantization 
table 

Bits/
pixel 

PSNR 
in dB 

CPU 
running 
time in 
seconds 

Bits/
pixel 

PSNR 
in dB 

CPU 
running 
time in 
seconds 

Bits/
pixel 

PSNR 
in dB 

CPU 
running 
time in 
seconds 

Lena 

JPEG 0.76 31.01 NA 1.03 32.81 NA 1.50 35.31 NA 

CGA 0.77 31.03 9316.40 1.00 32.95 26,447.66 1.51 35.35 85,489.58 

PASM-CGA 0.77 31.12 5328.60 1.02 33.01 13,646.94 1.52 35.57 45,229.50 

Camera 
man 

JPEG 0.75 29.95 NA 1.02 31.71 NA 1.51 34.68 NA 

CGA 0.76 29.96 9578.14 1.02 31.79 18,189.00 1.52 34.78 80,575.78 

PASM-CGA 0.77 30.05 5344.20 1.01 31.91 10,679.77 1.52 34.94 41,947.50 

Barbara 

JPEG 0.77 30.26 NA 1.01 31.94 NA 1.50 35.88 NA 

CGA 0.76 30.43 9297.76 1.02 32.28 9353.44 1.50 36.05 66,836.80 

PASM-CGA 0.77 30.54 5794.53 1.03 32.38 5920.53 1.52 36.19 33,031.71 

Clock 

JPEG 0.75 34.31 NA 1.00 36.51 NA 1.51 39.58 NA 

CGA 0.75 34.47 30,675.34 0.99 36.62 33,545.04 1.53 39.87 77,890.26 

PASM-CGA 0.76 34.54 15,972.62 1.01 36.85 18,199.11 1.53 39.95 44,718.75 

Bridge 

JPEG 0.75 26.19 NA 1.03 27.37 NA 1.61 29.37 NA 

CGA 0.77 26.35 9862.15 1.06 27.46 9331.68 1.58 29.96 82,678.04 

PASM-CGA 0.74 26.47 6663.12 1.07 27.55 5930.19 1.57 30.05 40,647.85 

Couple 

JPEG 0.75 31.21 NA 1.01 32.81 NA 1.50 35.27 NA 

CGA 0.75 31.28 23,146.17 1.02 32.96 25,642.00 1.52 35.35 71,574.03 

PASM-CGA 0.77 31.39 12,971.81 1.01 33.05 14,788.72 1.51 35.37 48,314.00 

Crowd 

JPEG 0.76 32.09 NA 1.01 33.81 NA 1.52 36.47 NA 

CGA 0.76 32.24 34,629.73 0.99 33.89 36,856.12 1.52 36.71 55,934.48 

PASM-CGA 0.75 32.56 17,427.20 1.02 34.05 20,178.93 1.52 36.92 30,869.89 

Baboon 

JPEG 0.75 22.10 NA 1.04 22.98 NA 1.54 24.68 NA 

CGA 0.77 22.14 9349.60 1.05 23.32 9434.88 1.49 24.82 9477.76 

PASM-CGA 0.77 22.22 5295.68 1.04 23.41 5445.97 1.47 24.85 5782.20 

Pattern 

JPEG 0.75 30.48 NA 1.01 31.34 NA 1.51 32.61 NA 

CGA 0.74 30.73 9158.56 1.00 31.64 9168.00 1.53 32.62 9281.60 

PASM-CGA 0.74 30.77 5289.41 0.97 31.71 5506.77 1.47 32.73 5665.00 

Montage 

JPEG 0.75 34.15 NA 1.00 36.85 NA 1.50 40.76 NA 

CGA 0.74 34.32 26,457.42 1.01 36.92 51,652.23 1.52 40.86 83,217.48 

PASM-CGA 0.75 34.55 16,389.61 1.02 37.10 29,164.18 1.52 41.01 54,279.31 

NA: Not applicable 

benchmark images as given in [1]. The simulation parameters for PASM-KBGA are shown in Table 5 and the

simulation is terminated when it achieves a better result than the KBGA result of the corresponding bits/pixel.

The programs are executed 20 times for each image against each of the bits per pixel 0.75, 1.0, and 1.5. Table

6 compares the performance of both KBGA and PASM-KBGA for different bits per pixel. The CPU running
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times shown in Table 6 are the average results of 20 runs. It is observed that KBGA and PASM-KBGA take

18,080.52 s and 11,253.66 s on average, respectively, to generate the optimal quantization table. It confirms

that the PASM reduces the computational time of the KBGA by 37.7%. From the above results it can be

Table 5. KBGA and PASM-KBGA parameter settings

Parameters KBGA PASM-KBGA
Initial population 100 100
Crossover probability 0.6 0.6
Mutation probability 0.015 to 0.093 for ranks 0.015 to 0.093 for ranks

1 to 6 respectively 1 to 6 respectively
Number of independent runs 20 20

Table 6. Comparison of KBGA and PASM-KBGA for different target bits/pixels.

Target bits/pixel 0.75 1.0 1.5 

Image 
Quantization 
table 

Bits/ 
pixel 

PSNR 
in dB 

CPU 
running 
time in 
seconds 

Bits/
pixel 

PSNR 
in dB 

CPU 
running 
time in 
seconds 

Bits/
pixel 

PSNR 
in dB 

CPU 
running 
time in 
seconds 

Lena 
KBGA 0.75 31.80 17,965.80 1.03 33.96 18,050.00 1.55 37.25 18,136.30 

PASM-
KBGA 

0.76 31.93 11,133.12 1.04 34.09 11,220.00 1.52 37.33 11,356.68 

Camera 
man 

KBGA 0.76 30.87 18,081.80 1.01 33.21 18,167.00 1.51 36.26 18,239.20 

PASM-
KBGA 

0.77 30.92 11,152.56 1.05 33.26 11,251.20 1.52 36.31 11,362.92 

Barbara 
KBGA 0.77 31.30 17,822.60 1.01 33.57 17,933.00 1.52 37.35 18,001.30 

PASM-
KBGA 

0.76 31.36 11,120.64 1.05 33.65 11,187.60 1.48 37.51 11,294.28 

Clock 
KBGA 0.75 35.45 18,011.30 1.00 37.35 18,093.00 1.51 41.43 18,179.80 

PASM-
KBGA 

0.78 35.55 11,053.32 0.99 37.42 11,174.40 1.53 41.53 11,279.76 

Bridge 
KBGA 0.75 26.58 18,088.50 1.04 28.03 18,132.00 1.60 30.27 18,118.90 

PASM-
KBGA 

0.76 26.62 11,181.84 1.02 28.15 11,277.60 1.60 30.43 11,349.96 

Couple 
KBGA 0.75 31.70 18,013.40 1.00 33.46 18,088.00 1.50 36.40 18,174.90 

PASM-
KBGA 

0.76 31.88 11,129.88 0.99 33.67 11,242.80 1.53 36.47 11,329.20 

Crowd 
KBGA 0.75 32.38 18,053.20 1.02 34.36 18,178.00 1.53 37.62 18,265.60 

PASM-
KBGA 

0.77 32.56 11,251.56 1.04 34.42 11,353.20 1.56 37.67 11,426.28 

Baboon 
KBGA 0.76 22.50 17,943.70 1.04 23.66 18,072.00 1.53 25.52 18,135.10 

PASM-
KBGA 

0.74 22.55 11,141.52 1.02 23.71 11,236.80 1.55 25.58 11,305.44 

Pattern 
KBGA 0.75 31.10 17,937.40 1.01 32.21 18,065.00 1.51 34.17 18,121.20 

PASM-
KBGA 

0.74 31.27 11,161.32 1.03 32.27 11,265.60 1.53 34.31 11,371.32 

Montage 
KBGA 0.75 35.76 18,037.50 1.01 37.96 18,115.00 1.50 43.42 18,195.20 

PASM-
KBGA 

0.77 35.98 11,262.48 1.05 38.12 11,322.00 1.54 43.52 11,414.52 
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observed that the introduction of the PASM in the GA leads to better results in a shorter time compared to its

counterpart GA without the PASM.

7. Conclusion

In this paper, a PASM has been proposed to assist GAs for optimizing the quantization table in the JPEG

baseline algorithm. The PASM used an image block clustering process and an indirect evaluation method

to approximate the fitness value. The performance of the PASM depended on the number of clusters in the

clustering process. An experimental analysis has been done on different numbers of clusters and a suitable cluster

number is identified based on approximation error and evolutionary perspective. In addition, verification has

been performed using Friedman’s ANOVA and Wilcoxon signed rank tests. The proposed PASM is integrated

in CGA and KBGA and their results are compared with its counterpart in terms of PSNR. The integrated

PASM in GAs guarantees better results with a reduction in computational time. Furthermore, the proposed

PASM can be applied to other population-based metaheuristics for quantization table optimization.
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