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Abstract: In software defined radio (SDR) systems, it is desirable to down-convert multiple RF signals simultaneously

by placing an analogue-to-digital converter (ADC) as near the antenna as possible. Radio frequency (RF) subsampling

is one of the established methodologies used by radio receivers to directly down-convert and digitize RF signals. In this

paper, we propose a novel direct RF sampling method to find out the minimum sampling frequency for an evenly spaced

spectrum comprising multiband RF signals. However, it can also be applied to nonuniformly spaced signals with slight

modification. The proposed methodology describes a set of rules to achieve the lowest possible sampling frequency rates

without the compromise of spectrum folding or overlapping of aliases in the baseband after down-conversion. Moreover,

the proposed formula is general, and flexible to the number of input signals or bands and to their positions in the desired

spectrum. Simulations verify that by using the offered minimum sampling rates, the desired signal is extracted without

the mentioned constraints.
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1. Introduction

Bandpass sampling (BPS) is one of the recognized techniques to reduce the high sampling rates required for

frequency translation and digitization of the analogue spectrum. Analytical methods exist that permit minimum

bandpass sampling frequencies to be computed in the case of a single-band spectrum [1–3]. However, BPS has its

issues for multiband signal spectrum due to certain constraints like aliasing, spectral folding, and reconstruction

of information band [4–7]. In addition, there are no analogous equation sets available for a general multiband

bandpass system consisting of signals with arbitrary center frequencies and bandwidths. In the last decade,

BPS for multiband signals has gained significant attention, and efforts have been made to find valid band-pass

sampling frequency ranges for direct down-conversion of multiband RF signals [8–9]. In [10,11], the focus shifted

to finding a single minimum sampling frequency for multiband signals. However, minimum sampling frequency

cannot be acquired in a closed form due to the nonlinear nature of spectrum folding in the process of sampling.

In order to find a minimum useable sampling frequency, the literature [10–12] highlights the need to address

certain BPS limitations like sparse spectrum, fixed bandwidth (BW), and unavailability of a universal rule.

In [13], minimum sampling rate was achieved; however, it does not hold true for all sparsity ratios between

information bands and null bands. In the proposed work, our objective is to set a universal subsampling rule for

direct digitization and down-conversion of multiple signals using minimum sampling rate. Furthermore, there is

no restriction on bandwidth or intersignal space in the spectrum of interest. The proposed method is applicable
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for all sparsity ratios, and it is very simple to find out the exact minimum subsampling frequency without many

iterations. Initially, all the calculations are performed with the major assumption of uniformly spaced signals

in the spectrum of interest. This paper is organized in the following manner: Section 2 explains the model,

numerous terms, and already ascertained constraints. Optimized sampling rates with reference to sparsity ratio

and central frequency of the lowest band or signal in the spectrum are derived in Section 3. By carrying out some

improvisation, the methodology is also applied to unevenly spaced nonuniform signals in Section 4. Simulations

of the theoretical work based on MATLAB examples are presented in Section 5, where sampling rates and their

usability to sparsity ratios are compared with those produced in [13]. Finally, conclusions are given in Section 6.

2. System model

Consider a frequency spectrum having N information signals, each of bandwidth B , which are separated by

space ∆f . Assume that the spectrum is sparse, such that the total bandwidth contained by information signals

NB is much less than the total bandwidth of spectrum SBW . Figure 1 shows the layout of our spectrum.

Assuming fmin as minimum frequency in the spectrum of interest, the central frequency fcn of each signal

present in the spectrum is given by

   

    

Frequency 

|s(f)|  

∆  

1  
2  3   

Figure 1. Spectral layout of N information signals separated by ∆f .

fcn = fmin + (n− 1)∆f +B/2. (1)

In the case of multiple bands being present in the spectrum of interest, [7] describes a relation between sampling

frequency fs and aliased frequency fa to avert the aliased bands from overlapping with zero and the Nyquist

frequency fs/2. This relation is limited to 2 input signals only, and no algorithm is given which is applicable

to N > 2. Two basic constraints described by [7] are given as

0 < fa −B/2, (2)

fa +B/2 < fs/2. (3)

However, for the multiband spectrum, the constraints in (2) and (3) are not sufficient. Therefore, [14,15]

introduced an additional constraint and extended the relationship for N bands. Later, [16] applied the same for

quadrature bandpass sampling for single and multiband communications and satellite navigational receivers. In

addition, to prevent overlapping with baseband boundaries, this constraint prevents the bands from overlapping
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each other as well. Considering Bx and By as information bandwidths of 2 neighbouring bands in the baseband

region with their intermediate frequencies as fax and fay , the constraint is given as

|fax − fay| ≥ (Bx +By)/2. (4)

Here y = 2 . . . N and x = 1 . . . y. However, it is observed that the sampling frequency used for such cases is

not the lowest useable sampling frequency, and can be reduced further. Replacing fc1 = fmin +B/2 in (1), the

general expression for fcn can be written as

fcn = fc1 + (n− 1)∆f. (5)

Now if the complete spectrum is sampled with fs , the replication fan of nonzero energy contents can be

obtained as
fan = |±fcn ±mfs| , n = 1, 2, 3..., (6)

where m is an arbitrary positive integer such that fs/2 ≥ fan ≥ 0. In the context of aliasing, it can be seen

that the left-hand side of Eq. (5) is dependent on the central frequency of the first RF carrier and the interband

space∆f . Here the central frequency of the first carrier plays a vital role in defining the sampling frequency.

By choosing fmin or fc1 analytically, we can avoid overlap between down-converted aliases irrespective of the

ratio between B and ∆f ; however, selection of fmin is not a trivial issue and requires deliberate calculations.

Since there is no formula that universally provides a minimum sampling frequency for multiple input

signals in the spectrum [13], in such cases spectral intervals are derived that contain the permissible sampling

frequencies. These frequencies are later obtained through search algorithms [7–9]. Thereafter, selecting an

appropriate fmin makes it possible to write a standard expression for minimum sampling frequency. For this

purpose, we are analyzing the central frequency of the lowest signal in the spectrum of interest and also the

separations between the signals, which are assumed to be evenly spaced. In the context of an evenly spaced

equal-bandwidth multiband spectrum, [13] proposes that the minimum sub-Nyquist sampling frequency does not

imply any aliasing with the constraint on the lowest frequency in the band of interest. However, the proposed

fs,min (minimum sampling frequency) and fmin (smallest frequency of the lowest band in the spectrum of

interest) in [13] do not hold true for all ratios of ∆f and B . In contrast, our proposed method is applicable to

all ratios of ∆f and B. Using the proposed fs with limitations on fmin aliasing may be avoided for multiple

signals present in the desired spectrum.

3. Proposed methodology

In our proposed method, the minimum sampling frequency depends on 2 factors. The first is the sparsity ratio

γ and the second is fc1 .

3.1. Sparsity ratio γ

Let us represent the complete spectrum in the form of a column matrix:

F = [ fc1 fc2 fc3... fcn]
T , (7)

where F represents carrier positions in compact form as a single column matrix. Eqs. (8) and (9) show the

carrier frequency of each band in the RF spectrum and at the baseband level, respectively.[
fc1 fc2 fc3 ... fcn

]T
=

[
B/2 (2γ + 1)B/2 (4γ + 1)B/2 ... (1 + 2γ(n− 1)B/2

]T
; (8)
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[
fa1 fa2... fan

]T
=

[
B/2±}2mNB (2γ + 1)B/2±}2mNB... (1/2− γ + nγ)B±}2mNB

]T
. (9)

For ease of comprehension, if we assume γ = 2 and N = 3, carrier locations after down-conversion can be

detected at the following frequencies:

fa1 = B/2± 2mNB; (10)

fa2 = 5B/2± 2mNB; (11)

fa3 = 9B/2± 2mNB. (12)

Now considering the constraints mentioned in (2–4), for fa1 and fa2value of m cannot exceed zero. Similarly,

m = 1 satisfies the required aliasing conditions for fa3 , and finally the down-converted replications are received

at B/2, 5B/2, 9B/2. Using a sparsity ratio equal to 2 and 4, Figure 2 shows this process, where received

signals do not overlap in the first Nyquist zone. However, when γ = 3, N3 completely overlaps with N1 after

down-conversion. To analyze the problem, it can be observed that the difference between central frequencies

of N1 and N3 is 6 times bandwidth B , which is equal to the sampling frequency(2NB). Obviously, whenever

2 signals are spaced at a gap that is equal to or is a multiple of the sampling frequency, their replications will

always overlap in the first Nyquist zone. This can be avoided by changing the sampling frequency. Since any

sampling rate less than 2NB creates an aliasing problem, it is reasonable to increment the sampling rate by

an integer multiple of the bandwidth. This implies that, besides N and B , the minimum sampling frequency

depends on γ also. To elaborate further, an algorithm to compute the sampling frequency based on center

frequency is given as follows:
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Figure 2. Direct down-conversion of a tri-band RF spectrum.
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input: N,B , γ ;

fcn = (1/2 – γ + nγ)B

process: f s =2NB ;

if (f j−fi )mod(f s) =0 for j >i ;

fs =(2N +1)B

output: f s .

It has been observed during our simulations that for most cases, the minimum useable sampling is equal

to 2NB and can be calculated in a single cycle of the given algorithm. Similarly, in more than 99% of cases,

the process does not take more than 2 to 3 iterations. No comparison is drawn with other existing iterative

algorithms, as this was not the objective of this paper. However, the above-described algorithm is fast and

simple in terms of iterations to reach optimal sampling frequency. This gives it an edge over [10,11,17] in terms

of reduced number of iterations to calculate minimum sampling frequency.

3.2. Central frequency of lowest carrier

After ascertaining the separation between carriers and fixation of optimal sampling frequency, it was observed

that there exists some pitfall that does not allow elimination of the aliasing problem. Keeping in view the

prescribed conditions, (13) defines the lowest possible passband positions of N bands depending on sparse

value γ . Our next step is to find out the positions of the carriers in the passband, which prevents alias overlaps

when sampled at the optimum sampling rates derived in the previous section. Since fc1 can never be less

thanB/2, after a little manipulation Eq. (5) can be written as

fcn = (1− 2γ + 2nγ)B/2. (13)

This indicates that the position of fc is limited to the set of frequencies defined by (13) such thatfcn ≤
SBW −B/2. To improve the illustration, let us keep N = 2 and vary sparsity ratio γ only. Obviously, in this

case, fc1 will be at B/2, and the position of the second carrier will be at (1 + 2γ)B/2. This simple spectrum

does not pose any problem when sampled at the rate equal to 2NB . However, if both signals are shifted towards

the right (to higher frequencies), overlapping of aliases begins appearing until the time fc1 = 5B/2, despite

having the same sampling rate. After shifting the lowest carrier at 5B/2, there is no overlap due to aliasing or

spectral folding. By continuing the process, it can soon be observed that the positions of fc1 for which there

is no overlap on down-conversion follow certain patterns. These patterns depend on the sparsity ratio γ and

separation between any of the 2 carriers fj − fi and can be expressed by arithmetic sequences as follows.

3.2.1. When mod((fj−fi), 2NB) ̸= 0 .

When the separation between any 2 signals is not a multiple of2NB , then the position of the lowest carrier

depends on whether the sparsity ratio γ is odd or even. For odd values of γ , to circumvent the overlap between

aliases in the first Nyquist zone, the lowest carrier position should be a member of the frequency set expressed

in (14).

fc1 = (γ + 2(k − 1)N)B/2, ∀ mod (γ, 2) ̸= 0, k = 1, 2, 3.... (14)

Puttingϕk = (γ + 2(k − 1)N), we can further simplify fc1 as

fc1 = ϕkB/2. (15)
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Similarly for even values of γ , we have

fc1 = (2k − 1)B/2. (16)

3.2.2. When mod ((fj−fi) ,2NB)= 0

As described in Section 2, when any of the 2 or more carriers have their frequency separation (fj − fi)

as a multiple of 2NB , there will always be loss of information due to overlapping or spectral folding. This

issue can be resolved by increasing the sampling frequency. For all such cases, the recommended positions of

RF carriers can be found by choosing φk ∈ {s1 ∪ s2} in (15) for all positive values offc1 . Here sequences s1

and s2 are as follows:

s0 = γ ± k(2N + 1),∀s1 > 0, (17)

where k ≥ 0 and

s2 = 2γ ± k(2N + 1),∀s2 > 0. (18)

The results obtained in Section 2 are summarized with the help of the flowchart shown in Figure 3. The given

flowchart describes the complete process for computing the optimal sampling frequency, carrier separation, and

central frequency of the lowest signal, fc1 .
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Figure 3. Flowchart to calculate sampling frequency and carrier positions in passband.
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4. Application to nonuniform signals

Although the described methodology was developed for equally spaced signals, it can also be applied to

nonuniformly spaced signals with a little manipulation and a tradeoff in the cost of hardware complexity.

In the manipulation part, we reorganize the nonuniformly spaced spectrum into an equally spaced pattern; the

hardware complexity is just the use of an additional multiplier for up- or down-conversion of the signals or

bands that are out of pattern. Let us take the example of GSM900 (935 MHz–960 MHz) and WCDMA (2119

MHz–2124 MHz), which are spaced nonuniformly, covering a combined bandwidth of 30 MHz. A contiguous

uniform spectrum can be formed by the down-conversion of the WCDMA band in the neighborhood of GSM900

from 930 MHz–935 MHz. For simplicity in the calculations, let us assume that there are 30 channels of 1-MHz

bandwidth each with γ = 1. The only thing that needs to be ensured before down-conversion is that fc1 (in

this case fc1 = 930.5MHz) should be an element of the set proposed in (14). This can be achieved by putting

k = 32 for N = 30. Selecting fc1 helps to acquire a minimum sampling frequency equal to 2NB , which is 60

MHz in our case. It may be noticed that the acquired sampling rate is less than that achieved in [11,17], which

was 64.3636 MHz. Moreover, the minimum sampling rate is achieved in a single iteration without using any

search algorithm.

5. Simulation results and analysis

In order to verify the expressions derived in the previous sections, MATLAB-based simulations are carried out.

In the analysis part, 2 parameters—i.e. optimal sampling frequency and recommended layout of the passband

spectrum—are analyzed for various values ofγ . Although simulations are performed for a large number of input

signals(N), in the presented scenario, the maximum number of inputs is kept at 6. This scenario mainly pertains

to the position of the first carrier in the passband and separation of RF carriers. To circumvent aliasing overlaps,

the required minimum sampling frequency should be greater than or equal to twice the occupied information

bandwidth. Therefore, we start with fs = 2NB . As mentioned above, since the carrier is assumed to be

located centrally in each signal, let us initially place our first carrier, fc1 , at B/2; the rest of the carriers are

separated as given in (5). Now, by choosing γ = 1, it implies that there are no gaps between information

bands. In such a case, the lowest carrier may be placed at B/2 and subsequent signals are separated by B Hz.

The recommended positions of the first (the lowest) carrier are(1, 13, 25, 37...)B/2. The same are listed in the

last column of Table 1. It can be verified that if we assign a frequency to the lowest carrier other than that

recommended in the Table 1, there will always be aliasing overlap or spectrum folding, which will cause loss of

information.

Table 1. Recommended suitable positions are listed in last column for a spectrum composed of bands and varying

sparsity ratio.

Γ Initial Positions B/2,( 1 + 2 γ ) B/2 Recommended Positions f c1 = φkB/2
1 B/2, 3B/2 [γ+ 2(k – 1)N] B/2
2 B/2, 5B/2 (2k – 1) B/2
3 B/2, 7B/2 [γ+ 2(k – 1)N] B/2
4 B/2, 9B/2 X
5 B/2, 11B/2 [γ+ 2(k – 1)N] B/2
6 B/2, 13B/2 (2k – 1)B/2

To reconstruct these overlapping signals requires extra processing power, which in turn increases the size,

cost, and power requirements. There may be another important case when the sampling frequency, 2NB , is a
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multiple of the difference between 2 carriers within the range of the first Nyquist zone. In such cases, on the

next iteration, sampling frequency is incremented by the addition of B Hz. In the present scenario, as listed

in Table 1, the ultimate sampling frequencies are computed within 2 iterations. Table 1 also shows the values

of fs and φk forγ changing from 1 to 6. It can be noted that for γ = 3, 4 or 6 separations between any 2

carriers becomes a multiple of2NB . This causes overlapping in aliased replications; therefore, the sampling

rate is increased to(2N +1)B . Consider Table 1, for a sparsity ratio γ = 3. Figure 4 shows the down-converted

spectrum for φk = 1, 2 and 3. It can be seen that when φk = 1 or 2, there is overlapping or spectral folding,

which causes loss of information as shown in Figures 4(a) and 4(b), respectively. However, in Figure 4(c), there

is no overlapping for φk = 3. The last column of Table 1 contains the sequences for each sampling frequency.

(a) (b)

(c)

Figure 4. In (a) and (b) there is overlapping and spectrum folding for ϕk = 1 and 2 respectively, whereas in (c), all 6

signals are visible.

Realization of the minimum sampling rate heavily depends on the minimum frequency in the band of

interest. However, for any deterministic number of input signals in the desired spectrum, it is not permissible

to plan fmin at any arbitrary frequency. This is the reason that the suggested fmin (shown as fL1 by Muñoz-

Ferreras et al. in [13]) is restricted to a set of frequencies ∈ 2kNB . Consider the example given in [13] for

N = 4 and ∆f = 2B . It can be seen from Table 2 that fmin is restricted to the set of frequencies. This imposes

the necessary condition that the lowest frequency in the spectrum of interest should either be 0 or a multiple

of 8, i.e. mod(fmin, 8) = 0; otherwise there will be overlapping. In other words, it can be concluded that it has

a frequency selection flexibility of 1 to 8B. On the other hand, in our proposed technique, fmin can be placed

at any frequency that is an even multiple of bandwidth B. Hence, it has a frequency selection flexibility of 1 to

2B , which is 4 times greater than in [13].
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Table 2. A spectrum of nonzero energy contents with sparsity ratio 1 to 6. The last column lists values of φ to avoid

aliasing for given minimum sampling frequencies.

γ No. of iterations fs φk

1 1 2NB 1, 13, 25, 37, . .
2 1 2NB 1, 3, 5, 7. . .
3 2 (2N + 1)B 3, 6, 16, 19, 29, 32. . .
4 2 (2N + 1)B 4, 8, 17, 21, 30, 34. . .
5 1 2NB 5,17, 29. . .
6 2 (2N + 1)B 6, 12, 19, 25, 32, 38. . .

Another advantage of our proposed method is its flexibility in terms of γ. Flexibility in terms of sparsity

ratio γ offered by [13] as shown in Table 3 is applicable to37.5% of the values of γ . On the other hand, our

proposal is applicable to 100% of the values of γ . This clearly indicates that the proposed method is more

universal in terms of sparseness in the spectrum of interest, and is also applicable to a greater number of signal

locations. Finally, to make the advantages more evident, some statistics for different numbers of input bands

ranging from N = 2 to N = 12 are shown in Table 4. This clearly shows that the useable average value of γ

for [13] is 0.404 (40.4%). On the other hand, our proposed technique is applicable for all (100%) integer values

ofγ .

Table 3. For N = 4, the proposed technique is more flexible and versatile to apply over a wide variety of sparse

spectrums.

γ = ∆f/B
f min Spectrum usage flexibility
Muñoz-Ferreras et al. Proposed Muñoz-Ferreras et al. Proposed

2 0, 8, 16, 24. . . 0, 1, 2, 3. . . 1/8B 1/2B
3 None 2, 10, 18. . . - 7/50B
4 None 3, 7, 12, 16, 21. . . - 11/48B
5 None 4, 12, 20. . . - 7/52B
6 0, 8, 16, 24. . . 0, 1, 2, 3. . . 1/8B 1/2B
7 None 6, 14, 22. . . - 7/54B
8 None 7, 8, 16, 17, 25, 26. . . - 3/13B
9 0, 8, 16, 24. . . 0, 1, 2, 3. . . 1/8B 7/50B

Table 4. A comparison of the number of ratios ∆f/Bwherefs is applicable.

N
Values of ∆f/B Normalized sparsity ratio
Muñoz-Ferreras et al. [13] Proposed [13] Proposed

2 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30. . . 1, 2, 3. . . .48 1
3 1, 2, 4, 7, 8, 10, 13, 14, 16, 19, 20, 22, 25. . . 1, 2, 3. . . .52 1
4 1, 2, 6, 9, 10, 14, 17, 18, 22, 25. . . 1, 2, 3. . . .4 1
5 1, 2, 4, 6, 8, 11, 12, 14, 16, 18, 21, 22, 24. . . 1, 2, 3. . . .52 1
6 1, 2, 10, 13, 14, 22, 25, 26... 1, 2, 3. . . .28 1
7 1,2 , 4, 6, 8, 10, 12, 15, 16, 18, 20, 22, 24. . . 1, 2, 3. . . .52 1
8 1, 2, 6, 10, 14, 17, 18, 22 , 26, 30. . . 1, 2, 3. . . .32 1
9 1, 2, 4, 8, 10, 14, 16, 19, 20, 22 . . . 1, 2, 3. . . .40 1
10 1, 2, 6, 14, 18, 21, 22, 26,. . . 1, 2, 3. . . .28 1
11 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23. . . 1, 2, 3. . . .48 1
12 1, 2, 10, 14, 22, 25, 26. . . 1, 2, 3. . . .24 1
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In the case of nonuniform signal spacing, the results are shown in terms of computation complexity and

the number of iterations required to determine sampling frequency. Table 5 shows the results for different

combinations of multiband bandpass signals without any ordering constraint. It is evident from all 3 cases that

we can successfully calculate sampling frequency without much computational complexity.

Table 5. Complexity comparison for finding the minimum sampling frequency without an ordering constraint for various

combinations of bandpass signals.

Bands Method in [17] Method in [11] Proposed
ADD MUL iter ADD MUL iter ADD MUL iter

GSM900, GSM1800 38 50 27 17 28 7 6 11 1
GSM900, WCDMA 101 176 90 21 29 7 6 11 1
DAB, WCDMA 452 878 441 77 141 34 6 11 1

6. Conclusion

The proposed direct RF sampling methodology achieves an absolute freedom from aliasing overlap and spectrum

folding for any number of input bands using a simple low-cost ADC. The proffered relaxation to analogue-to-

digital converter (ADC) technology in terms of sampling rates is highly advantageous in the ultra-high–frequency

(UHF) band for wideband receivers. This also includes the associated advantages like size, cost, and power

consumption. In addition, these advantages are applicable in the design of SDRs and reducing the detection time

for cognitive radios. That there are no intermediate stages involved in translation of signals down to baseband

is a great advantage. The given algorithm also leads to computation of the optimal sampling frequency with

the least possible number of iterations, giving it an edge over contemporary iterative algorithms. Although

the prescribed methodology is developed for equally spaced bands, it can also be extended to nonuniformly

spaced energy contents, and can be effectively used for real applications with some modifications. In case of

asymmetric composition, RF spectrum may be translated in a contiguous symmetric band to carry out further

signal processing.
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