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Abstract:Transient state estimation (TSE) was used to determine the state values that have no measurement equipment

placed in an electric power system with transient phenomena. Previous papers used the PI model for TSE with a short

transmission line, but longer lines require the development of algorithms that include the distributed parameters of

transmission lines with the Bergeron model. The test system was a 10-bus power system. The simulated transient was

caused by a fault event, resulting in different persistent voltage drops that ranged from 10% to 90% at selected buses.

In addition, noises were applied to evaluate the algorithm, which was defined to be normally distributed. Noise at 1%,

2%, and 3% was added to all measurements. The results showed that the developed TSE provided good estimation at

the locations that had no measurement equipment for distributed transmission lines.

Key words: Bergeron line model, traveling wave transmission line, state estimation, electromagnetic transients, power

quality

1. Introduction

State estimation techniques are used to estimate the state of power systems at locations that have no measure-

ment equipment, such as phasor measurement units (PMUs). It is not economically feasible to place PMUs at

all locations in large power systems. Therefore, a more economical technique is to combine partial measurements

at optimal locations with state estimations [1–3]. Previous studies applied state estimation techniques to power

quality problems such as harmonic state estimation and identification of harmonic sources [4–6].

When switching events, loss of load, or system disturbances occur, which involve transients, the technique

of state estimation can be expanded to instantaneously estimate voltage and current data at locations without

PMUs. The state estimation techniques that concern transient phenomena are called transient state estimation

(TSE) [4–6].

TSE needs to be based on the combination of each component model (i.e. generator, transformer, trans-

mission line, and load) forming a system model appropriate for a functioning power system. For transmission

line model study, previous works used the PI-transmission line model, a lumped parameter model [4,5,7] suitable

for a short distance line. However, longer line transmission needs to consider distributed parameter representa-

tion more, which is based on the concept of traveling wave theory [8,9], for more accurate estimation. Generally,

the distributed parameter of transmission lines, widely used as the Bergeron method, combined with the state

space model is used for the study of transient phenomena [6,10–15]. Therefore, this paper aimed to present
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TSE with the Bergeron transmission line model. Additionally, a modal transformation technique was used to

transform coupled equations to decoupled equations for three-phase transmission lines.

2. System modeling

This study focused on a traveling wave transmission line model. Generally, lumped RLC elements are often

used for short transmission lines and constructed by cascaded connection of T, π , or L sections [8]. If the

transmission lines are sufficiently long, the traveling time will be greater than the solution time step. Figure

1 shows a decision tree for the selection of the appropriate transmission line model. For example, in the case

of a general solution time step, ∆t of 50 µs, the minimum limit for traveling time is length/c, where the c is

the speed of light (c = 3 × 108 m/s), and therefore a line over 15 km can be represented by the Bergeron

model [16]. In the Bergeron model, the distributed LC line is characterized by two values: the surge impedance,

ZC =
√
ℓ/c , and the phase velocity, ν = 1

/√
ℓc , where ℓ, c are line inductance and line conductance per unit

length parameters, respectively. The attenuation of the line is approximated by total line resistance R′ = rl ,

where r is line resistance per unit length and l is length of transmission line.

Bergeron 

Model

Traveling time

 > time step

Start

physical line geometry

Frequency-

dependent
PI model

Yes

No

No Yes

 

Figure 1. Decision tree for selecting the transmission line model.

The Bergeron equivalent two-port network is shown in Figure 2. The transmission line between sending-

end and receiving-end bus has a traveling time of τ = l/ν = l
√
ℓc (subscripts k and m denote the sending-end

and receiving-end, respectively) In this study, each Bergeron transmission line referring to [10] was driven by a

voltage assumed as a voltage source (vs) with series inductance L and parallel RC load, as shown in Figure 3.

A set of differential equations can be expressed by choosing the inductor current and capacitor voltage as state

variables. The single-phase state equations are as follows [10]:

 dik
dt

dvm
dt

 =

[ −Z
L 0

0 − 1
C

(
Z+R
ZR

) ] [
ik

vm

]
+

[ 1
L

Z
L 0

0 0 − 1
C

]
vs (t)

Ik (t− τ)

Im (t− τ)

 . (1)

The dependent variable equations or output equations to obtain the sending-end voltages and the receiving-end

currents are written as:
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Figure 3. Equivalent circuit model for the positive sequence transmission line.

[
vk

im

]
=

[
Z 0

0 1
Z

][
ik

vm

]
+

[
0 −Z 0

0 0 1

]
vs (t)

Ik (t− τ)

Im (t− τ)

 , (2)

where Z = ZC + rl/4 and ik ,imare the sending-end and receiving-end current, and vk ,vm are sending-end

and receiving-end busbar voltages, respectively. The current sources that represent the past history terms are

determined as [10,16,17]:

Ik(t− τ) = −ZC

(ZC+R′/4)2 [vm(t− τ) + (ZC −R′/4)im(t− τ)]

+ −R′/4
(ZC+R′/4)2 [vk(t− τ) + (ZC −R′/4)ik(t− τ)],

(3)

Im(t− τ) = −ZC

(ZC+R′/4)2 [vk(t− τ) + (ZC −R′/4)ik(t− τ)]

+ −R′/4
(ZC+R′/4)2 [vm(t− τ) + (ZC −R′/4)im(t− τ)].

(4)

Eqs. (1)–(4) are equations of a single-phase Bergeron transmission line of two buses. For large three-phase

power systems we can use these equations to calculate the state variables and output variables associated with

modal transformation, which will be explained in the next section.
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3. Transient state estimation

The state equation uses the function to relate the system state vector, x , with the set of measurement vectors,

z , which can be written as [1,2,4,5]:

z = [H]x+ ε, (5)

where [H] is the measurement matrix and ε is the error vector. The previous state formulation of the Bergeron

transmission line in Eq. (1) that included operator d/dt can be approximated and rewritten in terms of the

previous system state (t−∆t) as [4]:

di(t)
dt ≈ i(t)−i(t−∆t)

∆t ,

dv(t)
dt ≈ v(t)−v(t−∆t)

∆t .
(6)

In this study, the three-phase transmission line uses a modal transformation technique to transform coupled

equations to decoupled equations. The effect of coupling between phases can be eliminated. The three-phase

voltage and current can be calculated as three independent modes and each mode can be treated as a single-

phase transmission line [17–19]. The relationship between modal and phase quantities (subscript mode and

phase, respectively) can be described as [19]:

[vmode] = [T ]
−1

[vphase] ,

[imode] = [T ]
−1

[iphase] ,
(7)

where [vmode] , [imode] , [vphase] , and [iphase]denote the modal voltage, modal current, phase voltage, and phase

current, respectively. Let [T ] be a modal transformation matrix and [T ]
−1

be the inverse matrix of [T ] . The

modal transformation is not unique for a transposed three-phase line; this can be determined as [19]:

[T ] =

 1 1 0

1 0 1

1 −1 −1

 , (8)

[T ]
−1

=
1

3

 1 1 1

2 −1 −1

−1 2 −1

 . (9)

Therefore, the Bergeron transmission line can be constructed as a modal domain in the state space equation

and Eq. (1) can be represented in terms of the previous time in the modal domain as shown in Eq. (10). The
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equivalent circuit for the positive sequence network is shown in Figure 3.
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.

(10)

The superscripts (0), (1), and (2) denote zero, positive, and negative sequence parameters, respectively. Note

a series inductance in each sequence as L(0) = L(1) = L(2) = L . Moreover, resistance and capacitance load for

each sequence are assigned as R(0) = R(1) = R(2) = Rand C(0) = C(1) = C(2) = C , respectively.

The proposed algorithm uses the sending-end current and receiving-end voltage as the state variables

[10]. Rows of measurement equations associated with the selected measurement location (value of both the

previous time-step,zt−∆t , and present time-step,zt) are added to the measurement matrix [H ]. At each time

step, measurements are updated by applying an estimated result, x̂ , to virtual measurements, zt−∆t , for the

next time step calculation. These can form a new set of measurement equations. The weighted least squares

formulation for which the covariance of the measurements is assumed to be an identity matrix (collecting data

from the same instrumentation) is used to describe the measurement system as [4,5]:

x̂ =
(
[H]

T
[H]

)−1

[H]
T
z. (11)

After the equations are solved to obtain the sending-end currents and receiving-end voltages in the modal

domain, the output variables of sending-end voltages and receiving-end currents are determined using Eq. (2)

and the history term current in Eqs. (3) and (4). Finally, the current and voltage in the phase domain can

be obtained by the modal to phase domain transformation in Eq. (7). The flowchart of TSE with modal

transformation is presented in Figure 4.
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Phase to modal transformation 

and reform equations in terms 

of the previous system state

(Eqs. (7), (8), (10))

Read measurement data, z

From selected locations
t

Adding rows to measurement 

matrix, [H]. (Eq. (5))

z H x= +

Solve equation by (Eq. (11))
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 as virtual measurements, z

for the next time step

1
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x H H H z=

Final time step ?

STOP

 Next time step, t+ t
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Build state space model of 

power system (Eq. (1))

Modal to phase transformation

(Eq. (7), (9))

t+ t

Calculate dependent variable, e.g., 

sending voltage, receiving current, 

history term (Eq. (2)-(4))

Figure 4. Flowchart of transient state estimation.

4. Test case and estimation results

The actual waveform was simulated in PSCAD/EMTDC and fed to the TSE algorithm, which was written and

implemented in MATLAB, and the test was performed on an Intel Core i5 CPU at 2.66 GHz computer. Figure

5 shows the test case of a 10-bus power system. The system consists of:
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Figure 5. Test system.

1. Two generators connected at bus no. 1 and no. 2.

2. Four star-delta-connected-to-two-winding type transformers.

3. All transmission lines are simple single circuits and these include traveling wave propagation. The

parameters for all Bergeron transmission line models considered in this test system are [10]:

r(0) = 0.29 Ω/km, r(1) = 0.048 Ω/km, l(0) = 3.23 mH/km, l(1) = 1.012 mH/km,

c(0) = 7.66 nF/km, c(1) = 11.86 nF/km,

where superscripts (0) and (1) denote zero and positive sequence parameters, respectively. The inductor,

500 mH, was added to each transmission line at the sending-end to solve the sending-end current state

variables.

4. Each linear load at bus no. 5–8 has resistance of 1 kΩ in parallel with a capacitance of 0.1 µF for solving

the receiving-end voltage state variables. Load at bus no. 9 and no. 10 has a resistance of 1 kΩ [10].

5. Fault characteristics of both three-phase and single-phase faults are defined only in the simulation part of

the PSCAD program. Fault sizes are acquired by determining the fault resistance connected to ground at

bus no. 8, which corresponds to retained voltage at 90% to 10% (sag magnitude referred to the remaining

voltage). Fault duration for the test system uses 50 ms at a simulation time of 0.035 s.
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In this test system, seven measurement points (21 measurement values) were determined at selected

placement locations. The time period used for the calculation is 0–0.11 s with a 10 µs time step. The proposed

algorithm estimated busbar voltage at the location without voltage measurement as bus no. 5 and 7. Figures 6

and 7 show comparisons of voltage waveform and difference values between the actual value and estimated value

(solid and dashed lines) for a three-phase fault that affected the 80% sag case while testing for a single-phase

fault (disturbance at phase A) as shown in Figures 8 and 9. The results show that the actual and estimated

waveforms are similar. Some discrepancies occurred during the fault event at bus no. 8 (at time 0.035–0.085 s)

because of a very fast transient at the voltage level. The performance tool for evaluating the estimator is the

percentage of root mean squared error (%RMSE), calculated by [20,21]:

%RMSE =

√
1
n

n∑
i=1

(xi − x̂i)2

peak voltage at nominal
× 100 , (12)

where xi is the actual value and x̂i is the estimated value, n is the number of values, and “peak voltage at

nominal” means the peak voltage value while there is no fault occurring. Figures 10 and 11 show %RMSE at
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Figure 6. Voltage at bus no. 5 (three-phase disturbance: 80% sag).
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Figure 7. Voltage at bus no. 7 (three-phase disturbance: 80% sag).
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Figure 9. Voltage at bus no. 7 (single-phase disturbance at phase A: 80% sag).

bus no. 5 and 7 for three-phase and single-phase fault testing, respectively. All figures indicate that TSE can

estimate a high percentage of sag better than a low percentage of sag. In addition, %RMSE of three-phase

fault testing at bus no. 5 has percentage of error lower than 10% in the case of voltage sag not lower than 40%.

Bus no. 7 has percentage of error less than bus no. 5 because of a shorter distance from the fault location.

The distance affects traveling time according to τ = l
√
ℓcand also affects the calculation of past history current

according to Eqs. (3) and (4), which affects estimator performance. However, this error can be reduced by

decreasing the step size of calculation. For single-phase fault testing the percentage of error is more in the phase

in which a disturbance appeared (Phase A for this study) than the others. However, it is not over 10% while

voltage sag is not lower than 40%.

5. Estimation with measurement noise

Generally, measurement noises affect the performance of algorithms. This study added the normally distributed

measurement noises of 1%, 2%, and 3% to all of the measurement data. This testing was applied to both three-

phase and single-phase (disturbance appearing in Phase A) faults at bus no. 8. In practice, if the measurement

noises are higher, they can be reduced by a prefiltering process [22,23]. Figures 12 and 13 show the comparison
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Figure 12. Voltage at bus no. 5 (three-phase disturbance, 80% sag with a 1% measurement noise).

of voltage waveforms and difference values at bus no. 5 and 7 between the actual value and estimated value for

a three-phase fault that affected 80% of the sag cases with 1% measurement noise. The tests of a single-phase

fault are shown in Figures 14 and 15. Figures 16 and 17 show %RMSE at bus no. 5 and 7 for both three-phase

and single-phase fault testing. The results indicated that the measurement noise reduced the performance of

the proposed algorithm but provided a good estimation for measurement noise between 1% and 3% and voltage
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Figure 13. Voltage at bus no. 7 (three-phase disturbance, 80% sag with a 1% measurement noise).
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Figure 14. Voltage at bus no. 5 (single-phase disturbance: 80% sag with a 1% measurement noise).
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Figure 15. Voltage at bus no. 7 (single-phase disturbance: 80% sag with a 1% measurement noise).
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sag not lower than 40%. The computational time for estimation is 9.30 min, which is desirable for a first step

and for post data analysis study, and it should be improved in the future.
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Figure 16. %RMSE at bus no. 5 and 7 for three-phase disturbance with measurement noise.
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Figure 17. %RMSE at bus no. 5 and 7 for a single line disturbance with measurement noise.

6. Conclusion

In this paper, a distributed-parameter state variable approach was developed for TSE of a Bergeron transmission

line. The proposed algorithm was used to estimate state variables at locations that had no measurement

equipment in place. The TSE algorithm was evaluated through performance with a 10-bus test system and

estimated two busbar voltages at bus no. 5 and 7. Disturbances occurred from a fault event, which caused

voltage sag at bus no. 8. Then the estimated and actual waveforms were compared. The algorithm generated

good approximations in a high percentage of sag cases. Adding high noise levels reduces the performance of the

estimator. For future work, other nonlinear components such as transformer or load model should be considered.

These are also important for increasing the TSE performance.
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