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Abstract: It is beneficial for telecommunication authorities and Internet service providers (ISPs) to classify and detect

voice traffic. It can help them to block unsubscribed users from using their services, which saves them huge revenues.

Voice packets can be detected easily, but it becomes complicated when the application or port information in the

packet header is hidden due to some secure mechanism such as encryption. This work provides effective voice packet

classification and detection based on behavioral and statistical analysis, which is independent of any application, security

protocol, or encryption mechanism. First we have made initial assessments through packet feature analysis followed by

the implementation of a voice detection algorithm to perform statistical analysis for classifying traffic over IP networks.

The proposed voice detection algorithm is executed in three phases: registering of packet flow traces, signature-based

analysis, and voice classification. In the first phase, new packets are registered. In the second phase, registered packets are

tested if they are already marked as detected. In the third phase, the voice detection algorithm works at distinguishing

encrypted and nonencrypted voice flows by fine-tuning the parameters, which are chosen after a detailed statistical

analysis of datasets on security protocols such as secure socket layer, secure session initiation protocol, and secure real-

time transport protocol. Our results demonstrate a high true positive rate (TPR) and very low false alarm rate (FAR).

The proposed methodology achieves a TPR of 93.6% for offline traces, 100% for the self-configured voice setups, and

95% for the online traffic. The FAR is 0.000084% for offline traces and 0.00020% for online traces, which shows that the

proposed methodology is highly efficient and can be incorporated in contemporary telecommunication systems.
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1. Introduction

Similar to other services on IP networks, Voice over Internet Protocol (VoIP) traffic can be eavesdropped,

hacked, or spoofed, which results in serious security threats to VoIP users as well as to service providers. VoIP

users can use security protocols on both the sending and receiving sides to guard their media sessions, whereas

VoIP service providers cannot use security protocols. They can protect their services by detecting illegal voice

traffic and stopping or blocking it. In this way, VoIP providers can save additional profits that cannot be earned

otherwise.

The practice of typecasting computer network traffic based on diversified constraints such as port numbers

and protocols into distinct traffic classes is called traffic classification. Several traffic classification techniques

reported in the literature use deep packet inspection to identify specific VoIP applications by creating a reference
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database, which requires a continuous updating of signatures [1–3]. Pattern-based techniques are dependent

on signaling mechanisms as each application has its own signaling patterns [4]. Traffic classification techniques

based on source and destination IP addresses or source and destination ports [5] are limited to some extent due

to hiding transport and network layer information through encryption mechanisms.

In this work, we propose a more precise generic voice packet classification and detection technique based

on packet features and statistical analysis. The proposed method is independent of an application, security

protocol, or encryption mechanism for voice traffic over IP networks with low probability of false alarm. It

first makes initial assessments through packet feature analysis and then performs statistical analysis on the

acquired data by following the proposed voice detection algorithm. We have performed analysis on different

voice and nonvoice applications such as Skype, Yahoo messenger, Gmail, MSN messenger, user voice setups

with different configurations, and Facebook. We also analyze other applications such as Hotmail, Yahoo, Gmail,

media sessions, online gaming, torrent downloading, and online live TV. The aforementioned applications along

with additional applications like Tencent QQ messenger, Trillian IM, and TEAMtalk have been used for testing

purposes. Test results demonstrate that the proposed voice traffic detection technique not only exhibits low

false alarm rates but it is also adaptable by telecommunication authorities and ISPs to detect voice traffic.

The rest of the paper is organized as follows: Section 2 provides the related work. The proposed strategy for

traffic classification is presented in Section 3. Details about our experimental setup and datasets are provided

in Section 4. Results and performance analysis are presented in Section 5. Finally, conclusions are presented in

Section 6.

2. Related work

Traffic classification techniques are helpful to categorize diverse applications and protocols that exist in a

network and to detect the voice traffic over IP networks. These classification techniques are organized as port-

based, pattern analysis, statistical analysis, deep packet inspection, heuristic analysis, and numerical analysis

techniques. In port-based techniques [1], packets are classified based on the fields of the packet header such as

the source or destination ports at the transport layer. It is an ultimate, customary, and simple technique but less

accurate [5]. Pattern-based techniques perform analysis on the signaling pattern where certain patterns such as

bytes, characters, or strings are embedded in the application. These patterns help in identifying applications

or protocols [4]. This technique entirely depends on the call signaling mechanism of VoIP traffic. Standard

and proprietary protocols can be powerfully exploited by inspecting the signaling patterns. The drawback

of this technique exists due to the fact that the pattern for every application is different and therefore not

generic. In signature-based analysis/deep packet inspection, every application has its own unique signature that

symbolizes its unique characteristics and a reference database is created. This reference is then used to identify

the application and needs to be updated periodically [1–3]. Techniques based on numerical analysis involve

numerical attributes of the traffic like payload size, offsets, and number of response packets [6]. Techniques

using behavior or heuristic analysis investigate the behavior [5,7,8] and heuristics [4] of the network traffic,

which sometimes yield better insight to identify the application. In [9], port-based analysis is used as helping

information to detect VoIP. Pattern-based detection usually involves machine learning techniques, which were

first used in traffic classification for intrusion detection [10]. In [11], supervised learning was used with three

extractable properties of IP packets: packet length, interarrival time, and order of arrival. The parameters are

used to develop protocol fingerprints. In [12] a decision algorithm was used to classify traffic by categorizing

the Internet flowe into classes such as web-browsing, email, bulk FTP, and P2P. The accuracy achieved by this

algorithm is around 99%.
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Most of the research in the literature includes SSH or SS traffic rather than purely focusing on tunneling

approaches like IPSec. In [7], the authors proposed an empirical method based on the hidden Markov model for

the type of applications using tunneled protocols and demonstrated an accuracy of 20%. Some heuristic methods

have been also explored based on the characteristics of the host behaviors. In [11], an approach based on the

behavior of P2P peers was proposed. In [13], a multilevel traffic classification named BLINC was developed.

Similarly, in [14], a methodology based on data mining and information theoretic techniques was proposed

to discover the behavioral patterns of the hosts and the services provided by the hosts. In [15], the authors

used a machine learning algorithm on subflows using features based on mean packet length, autocorrelation,

and the ratio of data transmitted on both sides to identify variable rate VoIP flows. In [16], the authors used

the Skype framing structure and exploited randomness during the encryption process, and secondly proposed

a näıve Bayesian classifier by characterizing Skype traffic in terms of packet arrival rate and packet lengths.

These algorithms are application-specific and successfully identify those applications even with variable data

rates or different versions of them. These heuristic algorithms assume that only one network application has

been in execution at one host. In reality, multiple applications may coexist.

In this work we propose a time-efficient voice packet classification and detection technique, which is a

hybrid approach based on behavioral and statistical analysis of an input packet. All the packets are sorted into

voice and nonvoice packets by using behavioral analysis. The packets are then further classified and confirmed

as voice or nonvoice using statistical analysis. That helps in reducing the false alarm rate. Once a packet is

classified correctly, it is marked as a voice or nonvoice packet. That makes our algorithm time-efficient as no

statistical analysis is performed when packets of the same flow enter the next time. The main contribution

of this paper is to analyze voice and nonvoice traffic, which is not application-specific, and then to classify

incoming packets in the future as voice or nonvoice without any prior information.

3. The proposed strategy for identifying voice traffic

In our work, we first take IP traffic, separate out distinct flows, and analyze their features based on their flow

parameters. In the second step, statistical approaches further improve the results to classify the voice traffic. We

first work on the test data by capturing voice and nonvoice traces in our own setup for a number of applications

to train the system. We have validated our proposed algorithm on datasets collected from 3rd party websites. A

systematic procedure to execute the proposed flow-based analysis followed by our statistical model applicable to

voice and nonvoice flows is presented below. We first present packet size distribution (PSD) to examine packet

size and minimum and maximum packet size to define the range and variation in packet size with respect to

their frequencies for both voice and nonvoice traces. PSDs of bidirectional flows for voice-based applications

such as Zfone-Asterisk-Xlite, Yahoo messenger, MSN messenger, Google Talk (Gtalk), Eyebeam-Asterisk-Blink,

and Skype are illustrated in Figure 1. By looking at PSDs of all voice traces, we can observe that the PSD of

Skype voice traces has more variations as compared to Gtalk. Applications like Eyebeam-Asterisk-Blink and

Zfone-Asterisk-Xlite show much less deviation because they are voice-specific applications and use codecs like

G.711, which maintain almost constant data rates. The PSDs of voice-based traces have low packet sizes. For

example, Skype has a packet size of 45–216 bytes, Gtalk has a packet size of 67–230 bytes, and MSN messenger

has a packet size of 117–147 bytes.

In Figure 1, it can be seen that there are packets of small sizes, but the most frequent packets of Yahoo

messenger (90 and 131 bytes), Eyebeam-Asterisk-Blink (224 bytes), and Zfone-Asterisk-Xlite (218 bytes) have

packet sizes in the range of 90–220 bytes. As voice flows have small packet sizes, they are in low ranges. These

low variations in packet sizes guarantee the low jitter and delay in delivering voice packets at the receiving end.
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Figure 1. Packet size distributions of the voice flows.
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Figure 2. Packet size distributions of the nonvoice flows.
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Bidirectional PSDs of nonvoice traces provide two observations. As shown on the left-hand side in Figure

2, most frequent packets of flows A to B have low packet sizes. For example, Facebook has 66 bytes, Gmail has

54 bytes, Yahoo Mail has 54 bytes, Online Live TV has 54 and 66 bytes, Torrent has 54 bytes, and YouTube has

54 bytes. The packet size ranges from 54 to 66 bytes, which is low as they all are client requests. As shown in

Figure 2 on the right-hand side, the packet size lies between 1450 and 1550 bytes, and our second observation is

that the flows from B to A have very large packet sizes as they start exchanging data such as pictures, movies,

audio, and video after the login requests by the clients are accepted. Next we examine the packet rate (PR)

of all the traces for each incoming voice and nonvoice packet. PR in flow-based techniques becomes significant

as it provides the whole statistics of how may packets (Ps) a flow sends in every second (T). PR defines the

average packet size for a specific time.

PR =
ΣPi

ΣTi
(1)

Figures 3a and 3b show that the PRs of voice-dependent applications are quite high.

High packet rates depict the best quality of voice service. As voice applications are real-time applications

they are sensitive to the delivery rate. Every data packet should reach its destination within its allowed time,

or else it has no significance and is discarded.

Figure 4 presents the PRs of nonvoice application traces in both directions from A→B and B→A. As it

is shown, PRs of nonvoice traces like YouTube, Torrent, and Online TVs are high in contrast to voice traces but

their PSDs are different from the voice flows. PR and PSD provide vital information for traffic classification

like the number of packets, interarrival time of packets, variation in packet size, packet rate, maximum and

minimum packet size, and the range of packet size. Packet feature analysis on PRs and PSD of voice and

nonvoice traces can lead to three main observations: 1) voice application traces have small packet sizes of ∼60

bytes as compared to nonvoice packets of ∼90 bytes; 2) voice application traces have low variations in packets,

within the range of 0 to 100, whereas nonvoice applications can have variations of greater than 100; 3) voice

application traces have high packet rates, greater than 12.

3.1. Voice detection algorithm

The behaviors of both voice and nonvoice traffic vary when the traffic is tunneled or encrypted through protocols

like SRTP, SSL/TLS, MGCP, SIP, SMIME, or IPSec. That requires defining more precise boundaries for

differentiating voice and nonvoice traffic. For this, we have extended our analysis by including more features

like number of packets, total flow time, arithmetic mean, standard deviation, packet rate, and minimum and

maximum size of the packet. Based on our deep analysis for traffic using secure protocols, the following algorithm

works well for classification of voice and nonvoice traffic.

As shown above, the algorithm starts by measuring the total flowe time and total number of packets from

the first packet to the current packet when flowe F is not yet detected as voice or nonvoice flowe. The algorithm

keeps updating the flowe parameter values such as total flowe time, total flowe packets, sum of packet lengths

and sum of packet lengths squares, minimum packet size, and maximum packet size until the flowe time exceeds

10 s or the total number of flowe packets exceeds 120. When both the conditions are met it computes values

such as average of packet sizes, variation of packet sizes (standard deviation), packet rate, maximum packet size,

minimum packet size, and range of packet size of the flowe. The packet is declared as a voice packet when the

computed values stand within threshold constraints as described in Step 4 of the voice detection algorithm, but

if statistical values of that flowe do not match the system threshold parameters then it is identified as nonvoice
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Figure 3. a) Packet rate of voice-based traces: Facebook, Gtalk, MSN Messenger. b) Packet rate of voice-based traces:

Blink, Xlite, Yahoo messenger.
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Figure 4. Packet rate of nonvoice traces.

flowe. Flows that have less than 120 packets within 10 s will be detected as nonvoice flowes by default through

the proposed solution.

4. Experimental setup

For the voice detection algorithm and analysis of the captured traces we use a dual core 2.26 GHz pro-

cessor with 6 GB RAM under the Windows 7 operating system. The test setup captures both online

and ofline traces. Online traces are captured by observing the communication between various voice and

nonvoice traces for almost 3 h. Ofline traces are collected from 3rd party websites such as Wireshark

(https://wiki.wireshark.org/SampleCaptures) and Skype (http://tstat.polito.it/traces-skype.shtml). These traces

comprise voice-based application traces, their own voice setup traces, nonvoice traces, and mixed traffic. Voice-

based application traces like Skype version 6.1.129, Yahoo! messenger version 11.5.0.228, Gtalk Beta Version,

MSN messenger 7.0 and 8.5, ooVoo Version 3.5.8.22, Tencent QQ messenger ver 1.75.2548.0, Trillian IM ver

5.3.0.15, and Team Talk 4 are used for voice communications. A simple voice setup is also developed by using

Asterisk as voice server and Eyebeam, Blink, Zfone, and Xlite as voice clients that perform conversation for

encrypted and nonencrypted voice using SRTP and ZRTP protocols for testing purposes. Moreover nonvoice

traces are collected for testing by using applications like Facebook, BitTorrents, YouTube Session, download-

ing audio and video, Online Live TV, and gaming. Mixed traffic consists of both voice and nonvoice traffic

simultaneously. Table 1 shows the summary of those testing traces used in testing phase.
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Algorithm: 

INPUT: Flow F, Input packet Pi, where 0 < I < N  

OUTPUT: Flow F is categorized as voice or nonvoice flow  

Step 1: Read Pi (Read a new Packet)  

Step 2: Test Pi  F(r) or Pi   F(ur)    (Test if a packet belongs to a registered F(r) or unregistered flow F(ur)  

     (a) If (Pi  F(ur) ) !en  (packet received first time, to be registered)  

           Register(S-IP, D-IP, S-Port, D-Port) 

    Initialize (T(flow), N(pkts), MIN(pkt size), MAX(pkt size),SUM(pkt length), SUM          

     (Sqr pkt length))  

     (b) If ( T(flow) < 10 OR N(pkts) <120 ) !en  

             GoTo Step 1 

             Else  

             GoTo Step 3      (packet is registered but not detected)  

Step 3: Test ( Pi  F(voice) OR Pi  F(nonvoice) )  

(a) If ( Pi  F(voice) OR Pi  F(nonvoice) ) !en  

             GoTo Step 1 

             Else                             (Already identified, read the new packet)  

             GoTo Step 4      (Go for flow identification) 

Step 4: Calculate T(flow) & N(pkts)   (for a required time interval)  

Step 5: Test ( T(flow)< 10 OR (N(pkts)<120 )  

(a) If (True)  

              Update(T(flow), N(pkts), SUM(pkt length), SUM(Sqr pkt length), MIN(pkt size),      

              MAX(pkt size))  (Keep updating until total flow time < 10 or total number of packets < 120)  

 
             Else    

             Calculate AVG(pkt size), VAR(pkt size), PR, RANGE(pkt size) 

     (b) If ( (PR > 12) & (50 < AVG(pkt size) < 250 ) & ( 0  VAR(pkt size) < 100) )  !en  

              If ( 50 < AVG(pkt size) < 60 ) !en  

                   If (PR ≤ 200)  !en 

F  Flow(voice)  

                   Elsif (PR < 500) !en  

                              F  Flow(voice) 

                    Else 

F  Flow(nonvoice)  

                     End if  

               End if  

           End if  

End algorithm 

5. Performance evaluation of the proposed solution

In this work we have applied statistical analysis to both voice and nonvoice flowes to compute parameters such

as number of packets, total flowe time, arithmetic mean, standard deviation, packet rate, and minimum and

maximum packet size of the captured traces.

As shown in Figure 5a, our three previous observations about a voice flowe are true, i.e. high packet rate

and low mean and standard deviation of packet size. Moreover, the range of packet size is also minimum in the
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Table 1. Test traces.

# Application Type
No. of Max. Max. Transport
traces duration size layer

1 Skype version 6.1.129 Voice 11 980 8 UDP
2 Yahoo Messenger 11.5.0.228 Voice 5 332 2 TCP&UDP
3 Gtalk Beta Version Voice 4 504 3 UDP
4 MSN Messenger 7.0, 8.5 Voice 4 88 0.6 UDP
5 Eyebeam-Asterisk-Blink Voice 8 478 103 UDP
6 ooVoo Version 3.5.8.22 Voice 1 123 4 UDP
7 Zfone-Asterisk-Xlite Voice 2 2630 4.5 UDP
8 Tencent QQ 1.75.2548.0 Voice 1 57 1 UDP
9 Trillian IM ver 5.3.0.15 Voice 1 133 1.8 UDP
10 TEAMtalk 4 Voice 1 238 UDP
11 Mixed Voice & nonvoice 1 1023 4 TCP&UDP
12 Facebook Nonvoice 2 370 65 TCP&UDP
13 Email server (Hotmail, Yahoo Mail, Gmail) Nonvoice 2 156 16 TCP&UDP
14 Online game Nonvoice 1 108 3 TCP&UDP
15 Online live TV (Geo, Duniya) Nonvoice 2 204 4 TCP&UDP
16 Torrent download Nonvoice 3 2043 150 TCP&UDP
17 Video clips (YouTube, others) Nonvoice 4 297 9 TCP&UDP
18 Mixed nonvoice Nonvoice 2 1331 112 TCP&UDP

Figure 5. a) Statistical analysis of voice applications. b) Statistical analysis nonvoice applications.

case of voice flowes. Based on this analysis, threshold values of the statistical parameters are fine-tuned for the

proposed voice detection algorithm.

Figure 5b shows the statistical parameter values of different flowes on different nonvoice applications.

Mainly those applications are considered that have higher packet rates, similar to voice flowe, so that we make a
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clear distinction between voice and nonvoice flowes based on other parameters when the packet rate constraints

match. There is only one flowe, i.e. torrent flowe from A→B, that may be confused with voice flowes but in

such a case we use the range determinant that will differentiate such flowes from voice flowes. Thus, this article

describes a thorough investigation of both nonvoice and voice flowe parameter values by using prevalent voice

and nonvoice applications. Moreover, it is also observed that the measurements of the values of these evaluated

statistical factors for both voice and nonvoice flowes are quite different. Using the empirical analysis carried

out in this research and with the above statistics, voice flowes can easily be identified.

The following are the conventional evaluation parameters used to test the proposed system accuracy: 1)

true positive (TP) - flows that are correctly identified as voice flows; 2) false positive (FP) - flows that are

incorrectly identified as voice flows; 3) false negative (FN) - flows that are incorrectly identified as nonvoice

flows; 4) true negative (TN) - flows that are correctly identified as nonvoice flows.

Table 2 presents total voice calls for applications, which is the product of the number of traces multiplied

by the number of flowes. For example, the Eyebeam-Asterisk-Blink Voice Setup has a total of 8 traces used in

our testing phase multiplied by 2 as there are two flowes involved in a single trace, i.e. A . → gB and B . → gA.

The proposed solution truly detects 103 voices traces out of 110 voice traces. Table 3 presents the evaluation

results of the proposed solution for nonvoice flowes. As shown, the algorithm correctly identifies 59,466 traces

out of 59,471 nonvoice traces. However, 5 nonvoice traces are identified as voice traces. Mixed traces are both

voice and nonvoice traces, which are captured simultaneously.

Table 2. Performance evaluation of voice traces.

Application Total voice calls
Our solution
TP FN

Eyebeam-Asterisk- Blink 16 16 0
Gtalk 8 8 0
MSN Messenger 8 8 0
Yahoo Messenger 10 10 0
Skype 22 19 3
ooVoo 2 1 1
Mix Voice Calls 46 44 2
Tencent QQ Messenger 2 2 0
Trillian IM 2 2 0
aZfone-Asterisk-Xlite 8 7 0
TeamTalk 2 2 0
Total 110 103 7

Table 3. Performance evaluation of nonvoice traces.

Application Total voice calls TN FP
Facebook 20,764 220,763 1
Mixed nonvoice 8405 8403 2
Mail servers (Hotmail,YahooMail,Gmail) 253 253 0
Online game 19 19 0
Online live TV (Geo Sports, Duniya) 249 249 0
Torrents 22,847 22,846 1
Video clips (YouTube, others) 1428 1427 1
Total 59,471 59,466 5
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Table 4 shows the evaluation results by applying the algorithm in terms of TP, TN, FP, and FN rates.

As shown, there are 2 TPs and 5506 TNs, demonstrating good detection estimates. We have added two more

parameters to summarize the overall results by the proposed voice detection algorithm. These two parameters

are the direct rate (DR) and false alarm rate (FAR) used in [17] to measure the correctness of the system. There

should be a minimum FAR value and maximum DR value for an efficient and accurate system. According to

[17], the ideal system has 100% DR and 0% FAR. DR provides the percentage of correctly identified voice flowes

and is defined as: DR = TP / (TP + FN) & FPR = FP / (FP + TN). Table 5 summarizes the performance

results of the proposed voice detection algorithm.

Table 4. Performance evaluation of mixed traces.

Mix traces Total flows TP FN FP TN
Mix voice and nonvoice 5508 2 0 0 5506

Table 5. Absolute performance evaluation of the proposed methodology.

Traces TP FN FP TN DR FAR
Offline traces 103 7 5 59,466 93.6% 0.000084%
Own voice setup traces 16 0 - - 100% -
Online traffic 19 1 1 4855 95% 0.00020%

6. Conclusion

We have proposed a new voice packet classification and detection strategy over IP networks. In the first step,

we perform packet feature analysis on voice, nonvoice, and mixed traces for a number of applications and

provide more precise boundaries for packet size distribution and packet rate to separate distinct flowes for voice

and nonvoice applications. We then propose a voice detection algorithm to further improve our results. The

algorithm is based on statistical analysis of both the voice and nonvoice flowes. It is independent of any protocol,

security mechanism, and application. Statistical analysis is performed on the basic parameters to set threshold

constraints on captured datasets for IP traffic and is equally applicable for applications making use of security

protocols such as TLS, SRTP, ZRTP, or SIPS. Evaluation of the system is based on online and ofline test suites

and data captured in different environments. Our proposed technique has 93.6% TP for ofline traces, 100% TP

for the self-configured voice setups, and 95% TP for the online traffic. Our research work has a low FAR of

0.000084% for ofline traces and 0.00020% FAR for online traces. Future work includes parallel implementation

of the proposed algorithm to achieve high-speed gains for real-time traffic.
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