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Abstract:One of the challenges in electromagnetics is to solve electromagnetic fields originated from a radiating source

or a scattering object in distances that largely exceed the dimensions of the source or scatterer. In this paper, domain

decomposition based on the application reasoning of the perfectly matched layer (PML) is studied by the spectral element

method (SEM) for the first time in order to solve near and far electromagnetic fields without requiring substantially

computational resources. Scattering from a loss-free dielectric cylinder and radiated fields from a line source are

the problems utilized for the purpose of numerical demonstration in two dimensions in order to verify the successful

application of SEM and its accuracy under domain decomposition. It is demonstrated that it is possible to accurately

solve for near-field and far-field zones where millions of unknowns are encountered by using a typical personal computer.
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1. Introduction

Until the 1940s, most of electromagnetic problems that involve simplicity were solved by analytical methods [1],

mainly by separation of variables and integral equation methods. In addition, a lot of effort was given to extend

the application of these methods to a narrow range of practical problems. However, complexity in geometries

associated with the most realistic problems was the main reason behind developing numerical methods that can

easily be performed by computing machines [2].

The most common numerical methods used in electromagnetic modeling are [2,3] the finite-difference time-

domain method (FDTD), method of weighted residuals, method of moments, finite element method (FEM), and

Monte Carlo method. Generally speaking, computational methods in the numerical modeling of electromagnetic

scattering and radiation problems are based either on the direct discretization of the governing partial differential

equations or on the discretization of the integral equations that reformulate the associated boundary value

problems [4].

Recent years have seen a lot of progress in our capability to simulate and design very complex electro-

magnetic systems [3]. Still, there are some challenges in the modeling of electromagnetic problems. One of these

challenges is the limitations in computational resources. That is, in numerical modelling, the approximation

to Maxwell’s equations returns a large system of linear equations to be solved by a computer. The result-

ing system of equations sometimes exceeds the limit of the available computational resources. To overcome
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this problem, the multilevel fast multipole algorithm (MLFMA) was introduced to accurately solve large-scale

scattering problems [5–7].

For the purpose of reducing the burden computationally, as most of electromagnetic problems are

unbounded in nature, the well-known technique by which truncation can be successfully applied is the so-called

artificial boundary conditions (ABCs). ABCs are essentially based on a differential operator (boundary operator)

such as the Trefethen–Halpern general ABC and Higdon boundary operator [8]. Yet, the electromagnetic

community were not relatively satisfied by ABCs for two main reasons. First, ABCs have to be placed at a

distance away from the region of interest, and this placement adds a computational burden. The second is in

terms of accuracy as truncation introduces artificial reflections that deteriorate the solution accuracy [4,9,10].

Berenger [9] changed the way of thinking and introduced the perfectly matched layer (PML), which is superior

to the ABCs. Mahariq et al. [11] demonstrated that one can achieve the same accuracy when the PML is

utilized for domain truncation (and when it is not for problems whose exact solutions are available) to solve

the scattered field from a perfect electric conducting cylinder, where the exact solution is imposed on the outer

boundary instead of PML truncation. In addition, PML can be placed much closer to the region of interest than

ABCs without deteriorating the accuracy [9–11], and hence reducing the size of the resulting system matrix.

However, in some engineering problems, very important information can be lost when the PML truncation

is carried out in the close vicinity of a scatterer or a radiator. In other words, the interest of an engineer

sometimes lies in fields that are relatively far away from the source. In such cases, as mentioned earlier, if the

domain truncation is performed far away from the source, the corresponding system matrix will dramatically

get larger and hence exceed the available computer memory [12]. A very typical example is the interest in

solving the near and far fields of radiating antennas. Alternatively, several techniques were applied to transform

near-zone FDTD results to far-field zones [13–21].

The current study applies SEM and verifies its accuracy using a domain decomposition technique based

on the mathematical reasoning of PML to directly find near and far electromagnetic fields in free space where

billions of unknowns can be involved without requiring substantial computational resources (mainly, memory).

That is, the novelty of the current study is, first, the adoption of the PML formulation presented by [4] for

proposing a domain decomposition technique, and, second, its verification by SEM for the first time. Due to its

high accuracy, the spectral element method (SEM) is utilized in order to numerically demonstrate the technique

through spatial discretization of the governing partial differential equations in the frequency domain.

2. Verification in 1D

Considering the following 1D problem:

d2u

dx2
+ k2u = 0, Ω = [x0, xn], with u(x0) = u0, (1)

One cannot solve such a problem as it is a second-order equation with only one boundary condition being

provided. This is a very typical situation where the importance of the perfectly match layer (PML) can be

realized. Here u(x) is the function to be solved and k = 2π . The introduction of PML requires an additional

differential equation governing the domain [xn, xb] [11]:

1

a2
d2u

dx2
+ k2u = 0, x ∈ [xn, xb], (2)
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in which

a = 1 +
α

jk
, (3)

with α being a real constant number. Here, since the value of α determines the rate at which u(x) is attenuated

within the PML, it is called the attenuation factor. As seen from Figure 1, the function u(x) is immediately

forced to zero (i.e.u(xb) ≃ 0); hence, the original problem in (1) is turned into a typical boundary value problem

as both boundaries are now known. It is important to note that the additional interface conditions between Ω

and ΩPML must be satisfied [11].

Figure 1. Domain truncation by PML in a 1D problem.

Let us further assume that the region of interest (Ω) is too large for the available computational resources.

Then one can subdivide Ω into n adjacent domains as follows:

Ω = Ω1 ∪ Ω2 ∪ Ω3... ∪ Ωn, with

Ω1 = [x0, x1], Ω2 = [x1, x2],

Ωi = [xi−1, xi], ...,Ωn = [xn−1, xn], and Ωi ∩ Ωi+1 = Φ,

(4)

where i = 1, 2, 3, ... n and Φ is the null space. By this view, the original problem stated in (1) is partitioned

into n -computationally independent problems each of which is governed by the differential equation in (1) and

the solution in Ω is obtained as follows:

Step-1: Solve:

d2u
dx2 + k2u = 0, x ∈ Ω1

1
a2

d2u
dx2 + k2u = 0, x ∈ [x1, x1 + b],

with u(x0) = u0, and u(x1 + b) = 0.

(5)

Step-2: Store the solution obtained from step-1 over the domain Ω1 , clear the memory, and then solve the

differential equations in (5) over:

x ∈ Ω2, and x ∈ [x2, x2 + b],
with u(x1) = u1, and u(x2 + b) = 0.

...

(6)

Step-n: Store the solution obtained from step-(n-1) over the domain Ωn−1 , clear the memory, and then solve

the differential equations in (5) over:

x ∈ Ωn, and x ∈ [xn, xn + b],

with u(xn−1) = un−1, and u(xn + b) = 0,
(7)
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where b stands for the thickness of ΩPML . Attention should be given to the fact that the boundary u(xi) = ui

which is required to solve over Ωi+1 is borrowed from the solution in Ωi . By applying these steps, one can

solve a problem whose domain is extremely large. The previous steps are applied to solve the problem stated

in (1) by the spectral element method (SEM). In fact, one can choose x0 and xn so that the following exact

solution is obtained: u(x) = exp(−jkx), which is a combination of sine and cosine functions with a period of

λ = 1 and it is chosen to be the length of each subdomain Ωi . The length of the domain Ω (region of interest)

is chosen as: xn − x0 = 500000λ(hence, n = 500000), and in each subdomain the function is represented by 17

nodes as this number is sufficient to resolve one wavelength by SEM. In Figure 2 the maximum relative error

(Err) in each subdomain is presented versus x , where Err is defined as follows:

Err = max
i

|ui,exact − ui,SEM |
|ui,exact|

, (8)

in which ui,exact and ui,SEM denote the exact and the SEM solution, respectively, at the ith node. As can be

seen from the figure, the error is very slowly increasing although the region of interest is very large in terms

of the period length. It took 1.8 h for a computer of 2.3 GHz CPU, while a small percentage of the available

memory was utilized over the solution time.

If this problem is solved directly without using the domain decomposition technique presented in the

current study, the total number of unknowns will be 500000× 17, which is around 9 million, and the size of the

system matrix would be around 9× 9million (sparsity is ignored). Therefore, this requires very large memory.

Applying this solution technique in two dimensions (2D) is slightly different from the case of 1D as the adjacent

subdomains share nonhomogeneous boundaries. Corresponding details are presented in the next section.

3. Two dimensions

The schematic of a typical unbounded 2D electromagnetic scattering where the PML is applied for domain

truncation is shown in Figure 3. The PML formulation presented by [4] is utilized in the current study. The

authors showed that the following equations governing the PML regions (with its possible realizations; the

split-field formulation [9], the anisotropic realization [22], and the bianisotropic realization [23]) can be derived:

Figure 2. The maximum relative error vs x over the

domain Ω.

Figure 3. A typical 2D electromagnetic scattering prob-

lem truncated by PML.
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1

a

∂2u

∂x2
+ a

∂2u

∂y2
+ ak2u = 0, (9)

a
∂2u

∂x2
+

1

a

∂2u

∂y2
+ ak2u = 0, (10)

∂2u

∂x2
+

∂2u

∂y2
+ a2k2u = 0, (11)

where k is the wavenumber, u(x, y) is a function denoting the plane wave to be solved (with suppressed

time dependence exp(jwt)), i.e. u(x, y) stands for Ez(x, y) in TE mode or Hz(x, y) in TM mode, and the

homogeneous Dirichlet boundary condition u = 0 is set on the exterior boundaries of the PML region. Eq. (9)

must be satisfied in x-decay in the PML region, whereas (10) and (11) must be satisfied in y-decay and xy-decay

(corner) in the PML, respectively.

The following 2D equations must be satisfied in free space and in dielectric objects, respectively:

∂2u

∂x2
+

∂2u

∂y2
+ k2u = 0, and ∇.(

1

µr
∇u) + k2εru = k2(1− εr)u

inc, (12)

where µr and εr stand for relative permeability and relative permittivity, respectively, and uinc is the incident

field. As mentioned earlier, in some cases the interest lies in finding the near and far electromagnetic fields

around the scatterer or the radiator. However, the limitations in the computational resources restrict us to

truncate the free space in the close vicinity of sources or scattering objects, and hence losing the details about

the solution in farther distances becomes a problem.

Therefore, by extending the proposed technique introduced for 1D to 2D, the solution over Ω can be

obtained as follows: assume that the available memory can be utilized at most in solving the field over Ω11 ,

which is a subset of Ω and includes the sources (see Figure 4), with Ω being partitioned into equal subdomains:

Figure 4. Partitioning a typical 2D electromagnetic scattering and/or radiation problem truncated by PML.
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Ω =
∪
i,j

Ωij , and Ωij

∩
ij ̸=lm

Ωlm = Φ, (13)

where i, j = 1, 2, 3, ..., n , and Ωij(i, j ̸= 1) stand for free space only. Then, after solving the field over Ω11 ,

the solution is permanently stored (on hard disk) and the memory is cleared. Next, the field is solved over Ω12 ,

and the process is repeated until Ωnn . Here it is important to point that on the exterior boundaries of PML

in Ω12u = 0, whereas the left-hand vertical boundary ∂Ω12 is borrowed from ∂Ω11 . In addition, as the upper

and lower PML parts of Ω12 form continuation to the PML in Ω11 , (9) has to be satisfied in these parts. In

conclusion, this implies that once a subdomain is solved, any adjacent subdomain can be considered without

restriction on sequency. Interestingly, this method requires not to solve for all the domain Ω if one is interested

in fields at specific locations far from the source and/or scatterer. That is, only the adjacent subdomains that

lead to the location under interest need to be solved.

Details smaller than the cell size can be lost when quantization of space of finite size is applied. This is

a known drawback of the FDTD method [13]. To overcome this drawback, subgridding techniques have been

introduced in the literature [24–33]. In such techniques, part of the FDTD grid is replaced with a finer grid,

which is called the subgrid [13]. Then the fields on the boundary of one grid are imposed on the boundary of

the finer grid. This is to attract the reader’s attention in order not to be confused with the presented technique

in this work as the concept of subgridding may lead to confusion. More precisely, subgridding in this study

refers to domain decomposition, and the reader may refer to [34,35] for other decomposition techniques for even

more complicated problems. However, in this study the author focuses on the SEM performance when domain

decomposition is involved.

4. Results

Two electromagnetic problems are studied for the purpose of demonstrating the presented decomposition

technique. One is scattering type and the other is radiating type. The utilized numerical method in this

study is SEM, which is known for its high accuracy [11,33,36–41]. It is important to note that the proposed

technique is not restricted to SEM as the finite difference method (FDM) or FEM can also be utilized.

In the case of SEM, Gauss–Legendre–Lobatto (GLL) grids are applied with Legendre polynomials being

the test functions. The PML region is discretized into rectangular elements so that each element has an aspect

ratio close to unity in order to reduce the deterioration in the accuracy due to elemental deformation [38]. For

GLL grids, the optimum values of the attenuation factor α recommended in [11] are utilized in this work. The

spatial discretization in terms of SEM of the governing differential equations using the continuous Galerkin

method is introduced by Mahariq et al. in [39]. In the case of the discontinuous Galerkin method, Riemann

solvers can be utilized in order to match the solution at the interfaces between elements [41].

4.1. Scattering

Scattering from a loss-free dielectric cylinder excited by a perpendicularly incident plane wave is chosen first for

demonstration. In micro-scale, i.e. when the radius of the dielectric cylinder is several times the wavelength of

the illuminating plane wave, the scattered field is focused behind the cylinder, producing the so-called photonic

nano-jet [39,42,43]. Under some special cases where a long photonic nano-jet [42] is expected, the unbounded

medium (or free space), where the cylinder is embedded, has to be truncated by the PML in such a way that

the required solution can be obtained. Hence, large computational domains may be encountered.
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In Figure 5, the magnitude of the total (incident-scattered) electric field ( |Einc
z + Escat

z |) is shown for

an illuminating plane wave of the form Einc
z = exp(−jkx)(TEz polarization is considered), when the diameter

and the refractive index of the dielectric cylinder are taken as 7λ and 1.3, respectively. Here the dimensions of

the problem are normalized with respect to the wavelength λ , with λ = 1.

Figure 5. The magnitude of the total (incident-scattered) electric field, ( |Einc
z +Escat

z |) inside and outside a dielectric

cylinder of 7λ in diameter and of 1.3 refractive index. The region of interest is partitioned into 5 adjacent subdomains

represented by (a), (b), (c), (d), (e), and (f) represents the color mapping of field magnitude.

Considering the complexity in the codes applying the SEM, the available computational resources can

solve with difficulty the scattered field from a cylinder of 9λ in diameter mainly due to the size of the resulting

linear system of equations. By using the proposed technique in the current study, the field is solved first within

and near the scatterer (dielectric cylinder) as shown in Figure 5a. Then the solution is permanently stored and

the memory is cleared and prepared for a new computation as mentioned in Section 3. After that, depending on

the region of interest, the adjacent subdomain that leads to the interest can be solved. For the example chosen

here, the subdomain represented by Figure 5b is then considered, but one cannot solve the field in Figure 5c

before 5b as no information is provided about the boundary conditions. It is important to note that Figure 5d

is the adjacent solution for that shown in Figure 5c.

4.2. Radiation

Radiation from a line source located along the z-axis is solved over a relatively large region in terms of the

wavelength λ . The radiation of the line source is governed by (again, TEz polarization is considered)

∇2u+ k2u = −δ(r), (14)

where r denotes the radial distance from the origin, and the solution is given in terms of Hankel function of

the second kind of order zero as u(r) = (j/4)H
()
0 (k|r|). To avoid the singularity in the solution, the free-space
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region is truncated around the source as shown in Figure 6, and the exact solution is imposed on the boundary

∂Ωin . Therefore, the subdomain Ω11 , which is bounded by ∂Ωin and the PML, has to be solved first.

Figure 6. The definition of the radiating line source problem.

By applying the proposed technique, the solution is obtained by SEM over the region of interest Ω that

covers a square area of 180λ× 180λ . The real part of the radiated electric field in a portion of Ω is shown in

Figure 7, where the white lines represent the boundaries of the subdomains forming the presented portion of

Ω. It is important to note that each subdomain Ωij has an area of 10λ× 10λ ; hence, 324 subdomains have to

be solved in order to cover Ω. As seen from Figure 7, the solution is continuous and looks as if it is obtained

over Ω in one computation. As the exact solution to this problem is available, the relative error defined in

(8) is calculated in each subdomain and is averaged over all. The averaged relative error over Ω is 0.0012.

For engineers, this error is very satisfactory when compared with that obtained by the finite difference or the

low-order finite element method. However, in terms of the accuracy of SEM, this error seems relatively large

when compared with that obtained from the 1D problem introduced in Section 2. This does not originate from

the proposed solution technique when applied in 2D, but it is due to the limitation in the application of PML.

That is, when the incident angle θ , which is the angle between the normal to PML and the incident plane wave,

tends to 90◦ , the wave is not successfully attenuated in the PML [4,11]. This situation occurs in the very far

subdomains that are either along the x-axis or y-axis. However, as the near-field and far-field zones are defined

in terms of the size of the radiator (hence, in terms of the wavelength), the distance considered in this example

is relatively large.

Figure 7. The real part of the radiated electric field from a line source positioned at the origin as obtained by SEM in

a portion of Ω. The white lines represent the boundaries of the corresponding subdomains.
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It is worth estimating the total number of unknowns that are required to resolve the electric field within

Ω. If 50 nodes are assumed to resolve one wavelength (in the case of FDM or FEM), then the total number

of nodes will be approximately 81 million, where the nodes simulating the field in the PML are excluded.

Computationally speaking, such a number of unknowns is extremely large and requires much larger memory

than a typical PC has. However, with the aid of the solution technique introduced in the current study, the

solution is obtained using a moderate PC and even without applying any of the parallelization techniques.

5. Conclusion

In this paper, a domain decomposition technique utilizing the mathematical consequences to the introduction

of PML has been presented and verified by SEM for the first time in order to successfully solve electromagnetic

fields in scattering and radiation problems. Numerical demonstrations either in 1D or 2D reveal that very

large problems can be handled by using this technique and show that near and far electromagnetic fields can be

solved after customizing the problem to the available computational resources. In terms of the PML formulation

introduced in this work, the technique is well explained and presented in such a way that other numerical

methods such as finite difference or finite element methods can be utilized to approximate the governing partial

differential equations.

As demonstrated in this work, the line source problem shows that the SEM can be applied with domain

decomposition to solve far fields from a radiator in a domain involving millions of unknowns with typical

engineering accuracy. When this technique is extended to 3D problems, several hundreds of billions of unknowns

can be tackled. There are two limitations restricting the maximum number of unknowns in this technique. One

arises from the nature of the PML. The second is that this method of solution requires the existence of no

obstacles in the free-space region surrounding the antenna or the scatterer. The latter could be overcome by

sweeping techniques.
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