
Turk J Elec Eng & Comp Sci

(2017) 25: 1095 – 1105

c⃝ TÜBİTAK

doi:10.3906/elk-1510-90

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Enhanced hybrid method of divide-and-conquer and RBF neural networks for

function approximation of complex problems

Mohammed AWAD∗

Department of Computer Systems Engineering, Faculty of Engineering and Information Technology,
Arab American University, Jenin, Palestine

Received: 12.10.2015 • Accepted/Published Online: 24.03.2016 • Final Version: 10.04.2017

Abstract: This paper provides an enhanced method focused on reducing the computational complexity of function

approximation problems by dividing the input data vectors into small groups, which avoids the curse of dimensionality.

The computational complexity and memory requirements of the approximated problem are higher when the input data

dimensionality increases. A divide-and-conquer algorithm is used to distribute the input data of the complex problem

to a divided radial basis function neural network (Div-RBFNN). Under this algorithm, the input data variables are

typically distributed to different RBFNNs based on whether the number of the input data dimensions is odd or even.

In this paper, each Div-RBFNN will be executed independently and the resulting outputs of all Div-RBFNNs will

be grouped using a system of linear combination function. The parameters of each Div-RBFNN (centers, radii, and

weights) will be optimized using an efficient learning algorithm, which depends on an enhanced clustering algorithm

for function approximation, which clusters the centers of the RBFs. Compared to traditional RBFNNs, the proposed

methodology reduces the number of executing parameters. It further outperforms traditional RBFNNs not only with

respect to the execution time but also in terms of the number of executing parameters of the system, which produces

better approximation error.

Key words: Approximation algorithms, computational complexity, divide-and-conquer algorithm, RBF neural networks

1. Introduction

Developing multivariate models for industrial or medical applications produces a computational complexity

problem [1,2]. The complexity of the input data affects the quality of the neural network training process.

Often, such complexity compromises the accuracy of the approximation process [3,4]. Other data complexity

factors such as noise, atypical patterns, overlap, and bad data distribution usually weaken the quality of the

training process, too [5]. The curse of dimensionality problem increases the computational complexity and

memory requirements, in some cases exponentially [1,2]. Due to the increased number of input data variables,

the number of executing parameters usually increases exponentially. One of the instrumental methods used to

tackle the problem is the divide-and-conquer algorithm, which is commonly used to attenuate the computational

complexity of the input data variables [6,7]. A divide-and-conquer algorithm, used to reduce the dimension of

the input data variables by dividing the input data variables and allowing the learning algorithms to be executed

effectively, breaks the input data into simpler sets before grouping the subsets and providing a solution. This

philosophy of dividing the input data governs the operation of the neural network model. The topology of

∗Correspondence: mohammed.awad@aauj.edu

1095

AWAD/Turk J Elec Eng & Comp Sci

neural networks is produced by the split process, with different modules assigning different data to a variety of

regions. The learning process, using divide-and-conquer algorithms, combines the output of each divided neural

network, thus allowing data to divide the space into subregions and, where possible, handling the training of

complex data using neural networks.

Owing to its simple topology and fast learning algorithms, the radial basis function neural network

(RBFNN) [8,9] is one of the most common types of neural networks. The RBFNN usually uses a Gaussian

activation function in the hidden layer; the basic topology of a RBFNN is a 3-layer neural network, as illustrated

in Figure 1. The RBF Φ can be calculated using a Gaussian function as in the following expression:

Φ(x⃗, c⃗, r) = exp

(
∥x⃗− c⃗∥

r

)
, (1)

where x⃗ is the input data variables, c⃗ is the central point of the functionΦ, and r is its radius.

Figure 1. Radial basis function neural network.

The output of the RBFNN is given by the following expression:

Fd(x⃗,Φ, w) =
m∑
i=1

Φi(x⃗) · wi, (2)

where Φ = {Φi : i = 1, ...,m} are the basis functions set and wi denotes the weights of the RBF.

1096

AWAD/Turk J Elec Eng & Comp Sci

In general, the complexity of RBFNN topology depends on the number of neurons (RBF) used in the

hidden layer, which, in turn, depends on the number of input data variables. A decrease in input data variables

can reduce the number of execution parameters, which produces a fast and effective learning process. One of the

most frequently used methods to reduce the number of execution parameters is principal component analysis

(PCA). Another method is independent component analysis (ICA), which is typically used with neural networks

and signal processing [10,11]. Several related works have also utilized PCA and ICA to decrease the number of

execution parameters in neural networks meant to solve function approximation problems. Pomares et al. [12]

obtained the structure of a complete rule-based fuzzy system for specific approximation accuracy of the training

data, deciding which input variables should be taken into account and the number of membership functions

needed in every selected input variable in order to reach the approximation target. Vehtari and Lampinen [1]

proposed the use of posterior and marginal posterior probabilities obtained via variable-dimension Markov chain

Monte Carlo methods to find out potentially useful input combinations and to perform the final model choice

and assessment using the expected utilities computed by using the cross-validation predictive densities. For a

given set of input and output variables, Chen and Wang [13] proposed using fuzzy partition, which maps fuzzy

sets into each input variable. Cheung and Huang [14] used a divide-and-conquer-based learning approach to

RBFNNs. They divided the conventional RBFNN into several RBF subnetworks, each of which individually

takes a subspace of input data of each dimension as input. The original RBFNN output becomes a linear

combination of the subnetworks’ outputs, with the coefficients adaptively learned together with the system

parameters of each subnetwork, a traditional learning algorithm used for optimizing centers, radii, and weight

of each sub-RBFNN. The divide-and-conquer algorithm is a simple and successful method in solving problems

with large input data dimensions. Its idea is derived from breaking large amounts of input data into smaller

sets, solving the divided subproblems separately, and then combining the subsolutions into a full solution [15].

Our goal is to reduce the computational complexity of function approximation problems using a RBFNN and

divide-and-conquer algorithm. The proposed Div-RBFNN method generates an output vector for each input

vector. The resulting products are simultaneously combined using a linear combination function, which also

uses these values to optimize the centers, radii, and weights in the input space of each RBFNN so that the final

output of the Div-RBFNN will be a weighted sum of all vector output. Local models operate separately but

provide information to the output that can be strongly correlated, so that the overall system performance can

be improved in terms of reliability and fault tolerance.

Overall Div-RBFNN system output is derived from a combination of the outputs, where the approxi-

mation of the total system, which is generally higher than any of the individual approximation Div-RBFNN

topologies, provides a suitable construction of the RBFNN, which eventually improves the performance of

complex function approximation problems.

In this paper, the proposed hybrid Div-RBFNN method is capable of modeling complex systems by

reducing the number of execution parameters. The methodology divides the input data variables into equal

parts if they are even and into equal parts plus one if they are odd. For each divided part, the traditional

algorithms of enhanced clustering for function approximation (ECFA) [16] are used to optimize the parameters

of each sub-Div-RBFNN; this algorithm depends on the calculation of the error committed in each cluster

using the current output of the RBFNN and trying to concentrate more clusters in input regions where the

approximation error is bigger, attempting to homogenize the contribution to the error of every cluster [16]. The

number of RBFNNs depends on the number of the input data variables and on whether the value of input data

dimensions is odd or even.

The paper is organized as follows: Section 2 describes the basic hybrid proposed model and topology

1097

AWAD/Turk J Elec Eng & Comp Sci

of the Div-RBFNN, as well as the traditional clustering method to optimize Div-RBFNN parameters, while

Section 3 presents hypothetical numerical examples on how the proposed hybrid Div-RBFNN is capable of

reducing execution parameters with the best approximation error.

2. Topology of the Div-RBFNN

In a traditional RBFNN, all neurons in the hidden layer receive input from all variables. The development in

this proposed hybrid method focuses on studying the effect of creating a different topology of Div-RBFNN to

solve the problem of computational complexity in neural network training. Div-RBFNN topology is particularly

instrumental when the input data dimensions of the problem are divided into subproblems connected in parallel.

Every sub-Div-RBFNN is a RBFNN. The entire sub-Div-RBFNN has the hybrid Div-RBFNN topology as a

total output. The number of RBFNNs in the hybrid Div-RBFNN system depends on whether the values

of input data dimensions are odd or even. The training parameters of each sub-RBFNN in the Div-RBFNN

(centers, radii, and weight, and the number of neurons in each sub-Div-RBFNN) are optimized using an efficient

algorithm of clustering designed for function approximation.

In order to observe the role of different topologies in solving function approximation problems, different

models of Div-RBFNNs are used as a tool to generate RBFNN topologies depending on the input data

dimensions, yet with a different structure. The success rates achieved by the Div-RBFNN structure were higher

than that of an independent RBFNN employed with the Levenberg–Marquardt algorithm [17]. Div-RBFNN

topology divides the problem into simpler problems and combines each solution. The Div-RBFNN training

algorithm is suitable for modular structures and it converges faster than traditional RBFNNs. This hybrid

method has been built differently to target the function and the neighborhood of solutions, allowing accurate

observation of the influence of the Div-RBFNN topology on the generated solution fields. The contribution

focuses on establishing a framework for the effective and practical model to study the effect of the Div-RBFNN

topology of an instance of computational complexity problems. To arrive at this, the study proposes a measure

that operates regardless of the size of the instance and the parameters of the problem. This measure can be

applied in the study of the structural effects of instances of other computational problems and even by using

other types of algorithms. We propose a hybrid method that reduces the input data variables and creates the

most suitable topology of Div-RBFNN, as shown in Figure 2.

Each subset of the input variables {x1 ,. . . ,xn } can be used as the input to each divided part (sub-Div-

RBFNN). Each sub-Div-RBFNN receives its specific input variable values depending on the dimensions of the

input data, as shown in the following recursive solution formula:

of inputdimeach RBFNN =

{
dim/2 if d = even.

(dim− 1)/2 if d = odd & d ≥ 3.
(3)

Each sub-Div-RBFNN receives variable(s) and applies the process of optimization of its parameters (centers c⃗d ,

radiird). The optimization of the weight between hidden layer and output layer in the Div-RBFNN does not

depend on the output of every sub-Div-RBFNN {F1 (x),. . . ,FT (x)} ; rather, it relies on the total output FT (x)

of the hybrid Div-RBFNN, as in the linear formula below.

FT (x⃗,Φ, w) =
d∑

d=1

md∑
i=1

Φd
i (x⃗) · wd

i (4)

wd
i Here, are the weights and represents the ith basis functions of the dth RBFNN.

1098

AWAD/Turk J Elec Eng & Comp Sci

Figure 2. Div-RBFNN.

The divide-and-conquer processes are usually applied recursively. The efficiency of this technique depends

on how the subdivisions are resolved. Generally speaking, however, the process depends on three stages:

Division step: The original problem is split into smaller subproblems,d .

Conquer step: The subproblems are solved independently, directly if they are simple, or reduced to

more simple cases (typically recursively).

Merge step: The individual solutions are combined to obtain the solution of the original problem.

The most frequent situation is when d = 2.

Function divide and conquer

(input x1
i , ..., x

1
n1
, x2

i , ..., x
2
n2
, xd

i , ..., x
d
nd

.

Return output Fd1(x⃗,Φ, w) ,..., Fdn(x⃗,Φ, w));

If the input is ≤ 1, then it returns a simple solution.

Else decompose input in x1
i , ..., x

1
n1
, x2

i , ..., x
2
n2
, xd

i , ..., x
d
nd

For i = 1 to do

Y = divide and conquer (x i).

End

Return combined subcases solution.

The Div-RBFNN can be obtained for any given problem from a set of input variables. For example,

for 4-input {x1 ,, x4} even number of dimensions and 5-input {x1 ,. . . , x5 } odd number of dimensions, two

possible different topologies can be obtained for each case (even, odd). The Div-RBFNN configuration affects

the number of executing parameters of the proposed hybrid system; the total number of parameters in every

sub-Div-RBFN can be illustrated by the following expression [8].

of parametersRbfnn = md · (nd + 2) (5)

1099

AWAD/Turk J Elec Eng & Comp Sci

Here, md is the number of RBFs in the dth sub-Div-RBFNN and nd is the number of input variables actually

used by this dth sub-Div-RBFNN. Table 1 shows the number of parameters used in each of these topologies

using a total number of 20 RBFs for each one in the odd case and 25 RBFs for each one in the even case. It is

clear that any topology of odd/oven Div-RBFNN produces an execution number of parameters lower than that

of the traditional RBFNN with the same number of neurons in the hidden layer.

Table 1. Number of parameters used in each Div-RBFNN.

of # Sub-Div- #RBF Sub- #Var. Sub- #Parm. Sub- #Parm.
Inputs RBFNNs Div-RBFNN Div-RBFNN Div-RBFNN Div-RBFNN

Even

4

5 1 15

60
5 1 15
5 1 15
5 1 15

2
10 2 40

80
10 2 40

Odd

5

5 1 15

75

5 1 15
5 1 15
5 1 15
5 1 15

2
10 2 40

115
15 3 75

2
15 3 75

115
10 2 40

3

10 2 40

9510 2 40
5 1 15

The training process depends on an efficiently supervised algorithm of clustering designed for function

approximation to initialize the parameters in each sub-Div-RBFNN. Figure 3 presents, in a schematic way,

the general description of the proposed hybrid Div-RBFNN method. The learning process is informed by the

minimization of an error function calculated as shown below.

Ertn =
1

2

t∑
j=1

n∑
i=1

(f(xt
i,Φ, w)− Yi)

2 (6)

Here, f((xt
i,Φ, w) is the total output FT (x), and Y i is the real output. The number of RBFs increases in each

iteration only by one RBF in one hybrid Div-RBFNN until there is no improvement in the test error during

several iterations.

In the hybrid Div-RBFNN, a supervised algorithm of clustering is used for initializing the learning

parameters in each sub-Div-RBFNN. This algorithm uses the target output for each input vector of the training

data and calculates the error produced by each cluster in the real output of the approximated problem. This

process results in an increasing number of clusters that migrate into zones where the cluster produces a bigger

error by moving clusters that have a small error to zones of clusters that have a bigger error [16,18]. The next

step of this clustering algorithm is fixing the value of the radius rd of each cluster (RBF) through a heuristic

algorithm of k-nearest neighbors [16]. Singular value decomposition [19,20] is used to find the optimal weight.

1100

AWAD/Turk J Elec Eng & Comp Sci

Figure 3. The proposed hybrid Div-RBFNN procedure.

Below is an illustration of the process of calculating the weight wd
m :

wd
m = G Y, (7)

where G is the pseudoinverse matrix of the activation matrixφd
m .

In this way, the proposed hybrid method Div-RBFNN selects the suitable topology and optimizes the

learning parameters of the RBFNN. Notably, some small subproblems (approximation problems with one

dimension) may not be applicable with respect to the basic concepts of the proposed hybrid Div-RBFNN

method; thus, the solution for multidimensional problems will be feasible. The Div-RBFNN topology is a

powerful concept that can lead to a wide variety of applications in complex function approximation problems.

3. Numerical simulation examples

To demonstrate the efficiency of the proposed hybrid Div-RBFNN method on modeling complex function

approximation problems, we proposed two different numerical functions (even/odd) with 5000 normalized data

points for each data dimension generated randomly [8]. The proposed hybrid Div-RBFNN system was simulated

in MATLAB 7.1 under Windows 7 with processor i5, 2.3 GHz, and 4 GB RAM to show three types of results:

the topology of each Div-RBFNN, the number of executing parameters in each sub-Div-RBFNN compared with

the number of executing parameters of a traditional RBFNN, and the approximation results of the validity of

the proposed hybrid topology (test approximation error) derived from samples of complex input/output data,

compared with approximation results of a traditional RBFNN that receives all the input data variables.

The results were obtained in 5 executions: {# of RBF in each sub Div-RBFNN} , the set of neurons used

in each sub-Div-RBFNN. Par. #s is the number of executing parameters. A drop in this number assumedly

reduces the execution time. The training data is supposed to be 70% of the input data in each dimension, and

RMSETest is the root mean squared error of the test data, which is supposed to account for 30% of the input

data.

1101

AWAD/Turk J Elec Eng & Comp Sci

3.1. Even numerical examples, Feven (X)

The first hypothetical example involves 4 possible input data variables to be distributed by using a divide-and-

conquer algorithm. Each variable consists of 5000 normalized input data points defined on the interval [0,1] and

generated randomly from the proposed complex function shown below.

feven(x) = sin (πx1 · x2)+ 2(x3−0.5)
2
+10x4.x1,x2,x3, x4 ∈ [0, 1], (8)

This proposed function with even number of input data produces 2 different topologies: topology A with 1

input variable conveyed individually to 4 sub-Div-RBFNNs, and topology B with 2 input variables directed

simultaneously to 2 sub-Div-RBFNNs. In all cases, the two proposed topologies produce fewer executing

parameters, as shown in Table 2. The smallest number of executing parameters appears in the single input

variables for each sub-Div-RBFNN. The proposed hybrid Div-RBFNN selects the best topology depending on

the value of the approximation error. Figure 4 compares different topologies of the Div-RBFNN and traditional

RBFNN.

a) b)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

of RBFs

#
 o

f
P

a
ra

m
e
te

rs

Number of Parameetrs in Div-RBFNN

Topology A
Topology B
Traditional RBFNN

Figure 4. a) Parameter numbers in even Div-RBFNN, b) approximation error in even Div-RBFNN.

3.2. Odd numerical examples, Fodd (X)

The second demonstration example consists of 5 possible input data variables to be distributed by using a divide-

and-conquer algorithm. Each variable comprises 5000 normalized input data points defined on the interval [0,1]

and generated randomly from the proposed complex function illustrated in the following equation.

fOdd(x) = sin(2πx1 · x2). x3+ e(−2.x4·x5) . x1,x2,x3, x4, x5 ∈ [0, 1], (9)

This proposed function with odd number of input data generates 4 different topologies. Topology A involves

1 input variable conveyed individually to 5 sub-Div-RBFNNs. Topology B consists of 2 sub-Div-RBFNNs: the

first receives 2 input data variables and the other receives 3 input data variables. Topology C is the same

as B, but functions contrariwise. The different topologies of B and C are used to ensure the validity of the

1102

AWAD/Turk J Elec Eng & Comp Sci

approximation process when the input data change. In topology D, 3 Div-RBFNNs are produced, with 2 sub-

Div-RBFNNs receiving 2 input data variables each, while the third receives 1 input data variable. In all cases,

the four proposed topologies produce fewer executing parameters, as shown in Table 3. Obviously the smallest

number of executing parameters appears in the single input variables for each sub-Div-RBFNN. The proposed

hybrid Div-RBFNN selects the best topology depending on the value of the approximation error.

Table 2. Different topologies with their parameters in the even case and the approximation error for each one.

Div-RBFNN fEven(x) Traditional RBFNN
A B
of RBFs Par. RMSE # of RBFs Par. RMSE # of Par. RMSE
in Div-RBFNN #s test in Div-RBFNN #s test RBFs #s test
{1 1 1 1} 12 0.265 {2 2} 16 0.385 4 24 0.627
{2 2 2 2} 24 0.240 {4 4} 32 0.341 8 48 0.534
{3 3 3 3} 36 0.192 {6 6} 48 0.272 12 72 0.411
{4 4 4 4} 48 0.109 {8 8} 64 0.185 16 96 0.297
{5 5 5 5} 60 0.096 {10 10} 80 0.147 20 120 0.198

Table 3. Different topologies with their parameters in the odd case and the approximation error for each one.

Div-RBFNN fodd(x)
A B
of RBFs Par. RMSE # of RBFs Par. RMSE
in Div-RBFNN #s Test in Div-RBFNN #s test
{1 1 1 1 1} 15 0.252 {2 3} 23 0.312
{2 2 2 2 2} 30 0.227 {4 6} 46 0.271
{3 3 3 3 3} 45 0.172 {6 9} 69 0.210
{4 4 4 4 4} 60 0.098 {8 12} 92 0.154
{5 5 5 5 5} 75 0.051 {10 15} 115 0.093
C D
of RBFs Par. RMSE # of RBFs Par. RMSE
in Div-RBFNN #s Test in Div-RBFNN #s test
{3 2} 23 0.327 {2 2 1} 19 0.291
{6 4} 46 0.274 {4 4 2} 38 0.244
{9 6} 69 0.206 {6 6 3} 57 0.194
{12 8} 92 0.158 {8 8 4} 66 0.106
{15 10} 115 0.097 {10 10 5} 95 0.083
Traditional RBFNN
RBFs Par. #s RMSE test
5 35 0.671
10 70 0.509
15 105 0.391
20 140 0.271
25 175 0.172

As Tables 2 and 3 clearly show, the success rates of the Div-RBFNN topology in our experiment were

higher than the traditional RBFNN provided with the same clustering algorithm, ECFA [18]. Figure 5 draws a

comparison between different topologies of Div-RBFNN and traditional RBFNN.

1103

AWAD/Turk J Elec Eng & Comp Sci

a) b)

5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

RBFs

#
 o

f
P

a
ra

m
e

te
rs

Number of Parameters in Div-RBFNN

Topology A

Topology B,C

Topology D

Traditional RBFNN

Figure 5. a) Parameter numbers in odd Div-RBFNN, b) approximation error in odd Div-RBFNN.

To illustrate, the proposed hybrid Div-RBFNN breaks the input data dimensions into smaller ones by

using a divide-and-conquer algorithm, which generates fewer executing parameters, thus making the proposed

hybrid Div-RBFNN more efficient in reducing the number of parameters and eventually the execution time.

The ECFA has been frequently used to solve function approximation problems. It basically looks for an

optimal overall solution, which generates a sequence of improving approximate solutions for a class of problems,

thus producing the best approximation result. The proposed Div-RBFNN method, however, divides the problem

into simpler subproblems and groups all solutions. The methodology is best suited for modular complex data

structures, with faster convergence compared to the traditional RBFNN.

4. Conclusion

The basic drawback of complex approximation problems is that the increase in input data variables usually

raises the number of executing parameters, even exponentially. This restricts the use of traditional modeling

techniques owing to the execution time lag, which drives us to look for more effective solutions. In this paper,

we proposed a hybrid Div-RBFNN topology based on breaking the problem input data variables into simpler

problems. A complex problem model can be decomposed into a set of submodels; each represents different

input data dimensions (odd/even). While each sub-Div-RBFNN model operates individually in the centers

and radii parameters, the weights optimized rely on the total output. Eventually, the operation of the total

system is enhanced in terms of reliability and fault tolerance. Div-RBFNN hybrid system output is derived

from a combination of the products of the sub-Div-RBFNNs. As such, the approximation of the total (Div-

RBFNNs) system is generally better than that of the traditional RBFNN. We provide a methodology that

divides the input data variables of multidimensional function approximation problems and selects the most

suitable topology for the proposed Div-RBFNN. The results produced by the Div-RBFNN outperform those

derived by the traditional RBFNN in a number of executing parameters, suggesting shorter execution time and

better approximation error.

1104

AWAD/Turk J Elec Eng & Comp Sci

References

[1] Vehtari A, Lampinen J. Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities.

Tech Report B31. Helsinki, Finland: Helsinki University of Technology, 2002.

[2] Strass H, Wallner JP. Analyzing the computational complexity of abstract dialectical frameworks via approximation

fix point theory. Artif Intell 2015; 226: 34-74.

[3] Kainen P, Kurkov V, Sanguineti M. Dependence of computational models on input dimension: tractability of

approximation and optimization tasks. IEEE T Inform Theory 2012; 58: 1203-1214.

[4] Kůrková V. Dimension-independent rates of approximation by neural networks. In: Warwick K, Kárný M, editors.

Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality. Boston, MA, USA:

Birkhäuser, 1997. pp. 261-270.

[5] Bengio S, Bengio Y. Taking on the curse of dimensionality in joint distributions using neural networks. IEEE T

Neural Networ 2000; 11: 550-557.

[6] Bhagat S, Deodhare D. Divide and conquer strategies for MLP training. In: IJCNN International Joint Conference

on Neural Networks; 16–21 July 2006; Vancouver, Canada. New York, NY, USA: IEEE. pp. 3415-3420.

[7] Guo Q, Chen BW, Jiang F, Ji X, Kung SY. Efficient divide-and-conquer classification based on feature space

decomposition. arXiv:1501.07584.

[8] Awad M. Input variable selection using parallel processing of RBF neural Networks (PP-RBFNNs). Int Arab J Inf

Techn 2010; 7: 6-13.

[9] Ebrahimzadeh A, Khazaee AA. An efficient technique for classification of electrocardiogram signals. Adv Electr

Comp Eng 2009; 9: 89-93.

[10] Ziehe A, Nolte G, Sander T, Muller KR, Curio G. A comparison of ICA based artifact reduction methods for MEG.

In: 12th International Conference on Biomagnetism; 13–17 August 2001; Helsinki, Finland. Helsinki, Finland:

Helsinki University of Technology. pp. 895-899.

[11] Ferrari S, Maggioni M, Borghese NA. Multiscale approximation with hierarchical radial basis functions networks.

IEEE T Neural Networ 2004; 15: 178-188.

[12] Pomares H, Rojas I, González J, Prieto A. structure identification in complete rule-based fuzzy systems. IEEE T

Fuzzy Syst 2002; 10: 349-359.

[13] Chen Y, Wang JZ. Kernel machines and additive fuzzy systems: classification and function approximation. In: 12th

IEEE International Conference on Fuzzy Systems; 25–28 March 2003; St Louis, MO, USA. New York, NY, USA:

IEEE. pp. 789-795.

[14] Cheung YM, Huang RB. A divide-and-conquer learning approach to radial basis function networks. Neural Process

Lett 2005; 21: 189-206.

[15] Noel S, Szu H. Multiple-resolution divide and conquer neural networks for large-scale TSP-like energy minimization

problems. In: IEEE International Conference on Neural Networks; 12 June 1997; Houston, TX, USA. New York,

NY, USA: IEEE. pp. 1278-1283.

[16] Pomares H, Rojas I, Awad M, Valenzuela O. An enhanced clustering function approximation technique for a radial

basis function neural networks. Math Comput Model 2012; 55: 286-302.

[17] Dias FM, Antunes A, Vieira J, Mota A. A sliding window solution for the on-line implementation of the Levenberg–

Marquardt algorithm. Eng Appl Artif Intell 2006; 19: 1-7.

[18] Awad M, Pomares H, Rojas F, Herrera LJ, González J, Guillén A. Approximating I/O data using radial basis

functions: a new clustering-based approach. In: 8th International Work-Conference on Artificial Neural Networks;

5–7 June 2005; Barcelona, Spain. Berlin, Germany: Springer-Verlag. pp. 289-296.

[19] Kumar RH, Kumar BV, Karthik K, Chand JL, Kumar CN. Performance analysis of singular value decomposition

(SVD) and radial basis function (RBF) neural networks for epilepsy risk levels classifications from EEG signals. Int

J Soft Comput Eng 2012; 2: 232-236.

[20] Fulginei FR, Laudani A, Salvini A, Parodi M. Automatic and parallel optimized learning for neural networks

performing MIMO applications. Adv Electr Comp Eng 2013; 13: 3-12.

1105

http://dx.doi.org/10.1016/j.artint.2015.05.003
http://dx.doi.org/10.1016/j.artint.2015.05.003
http://dx.doi.org/10.1109/TIT.2011.2169531
http://dx.doi.org/10.1109/TIT.2011.2169531
http://dx.doi.org/10.1109/72.846725
http://dx.doi.org/10.1109/72.846725
http://dx.doi.org/10.4316/aece.2009.03016
http://dx.doi.org/10.4316/aece.2009.03016
http://dx.doi.org/10.1109/TNN.2003.811355
http://dx.doi.org/10.1109/TNN.2003.811355
http://dx.doi.org/10.1109/TFUZZ.2002.1006438
http://dx.doi.org/10.1109/TFUZZ.2002.1006438
http://dx.doi.org/10.1007/s11063-004-7777-4
http://dx.doi.org/10.1007/s11063-004-7777-4
http://dx.doi.org/10.1109/ICNN.1997.616218
http://dx.doi.org/10.1109/ICNN.1997.616218
http://dx.doi.org/10.1109/ICNN.1997.616218
http://dx.doi.org/10.1016/j.mcm.2011.07.010
http://dx.doi.org/10.1016/j.mcm.2011.07.010
http://dx.doi.org/10.1016/j.engappai.2005.03.005
http://dx.doi.org/10.1016/j.engappai.2005.03.005
http://dx.doi.org/10.1007/11494669_36
http://dx.doi.org/10.1007/11494669_36
http://dx.doi.org/10.1007/11494669_36
http://dx.doi.org/10.4316/AECE.2013.01001
http://dx.doi.org/10.4316/AECE.2013.01001

	Introduction
	Topology of the Div-RBFNN
	Numerical simulation examples
	Even numerical examples, Feven(X)
	Odd numerical examples, Fodd(X)

	Conclusion

