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Abstract: Renewable resources have added additional uncertainty to power grids. Deterministic power flow does not

provide sufficient information for power system calculation and analysis, since all sources of uncertainty are not taken

into account. To handle uncertainties PPF has been introduced and used as an efficient tool. In this paper, we present

a cumulant-based PPF approach that can account for various sources of uncertainty in power systems with renewable

resources such as wind and photovoltaic energy. We also propose the use of a new methodology to estimate probability

distribution for wind power output based on measured data. The proposed approach is carried out on a modified IEEE-14

bus test system. Simulation results of the proposed method are then compared with the result obtained by Monte Carlo

simulation.
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1. Introduction

Deterministic power flow (DPF) has been used as a fundamental tool for calculation and analysis of power

systems. However, this approach does not take into account any source of uncertainty in power systems, such

as load and renewable source uncertainties. In order to take the uncertainties into consideration, probabilistic

power flow (PPF) has been introduced and has served as an effective tool for various research areas of power

systems.

PPF was first introduced by Borkowska in 1974 [1]. In recent years, many papers have been published in

this field. In general, PPF can be classified into three categories: numerical, approximate (e.g., point estimate

method), and analytical methods. Monte Carlo simulation (MCS) [2,3] is a typical numerical method. The

main issue of MCS is that it uses a large number of solutions from DPF, so it is usually computationally

intensive. Its accuracy mostly depends on the number of samples. Conversely, point estimate methods [4–6] use

an approximation technique, in which input variables are decomposed into a series of pairs of values and weights,

and then the moments of the output variables are calculated as a function of the inputs. In a different way, the

analytical approach applies an arithmetic algorithm (e.g., using a convolution technique [7] or cumulant method

[8–11]) with probability density functions (PDFs) and/or cumulative distribution functions (CDFs) of input

random variables so that PDFs and CDFs of output random variables can be obtained. From the probability
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distributions of input random variables and linearized power flow equations, while the cumulant method uses

the properties of cumulants, the convolution method convolves all random variables.

Series expansions (such as Edgeworth, Gram–Charlier, or Cornish–Fisher) are widely used in cumulant-

based PPF methods to obtain the probability distributions of desired random variables from their cumulants

or moments [12–15]. However, if input variables of PPF computation contain distributions far from Gaussian

distribution, especially discrete distributions, the accuracy of the computation will be significantly affected. To

treat this issue, the Von Mises method [8,16] was adopted, giving a good performance. In particular, in [16], the

authors treated discrete and continuous distributions separately: discrete distributions are related to random

branch outages, while all input continuous distributions are assumed to have Gaussian distribution. However, in

real PPF applications, continuous distributions, including several types of probability distributions representing

different sources of uncertainty due to the stochastic nature of the load, renewable resources, etc., need to be

taken into account.

In this paper, we present a cumulant-based PPF in which different types of probability distributions,

including Gaussian/non-Gaussian and discrete/continuous distributions, can be accounted for. In addition, in

order to overcome the difficulty of estimating a probability distribution for power output of a wind farm in

reality, we propose the use of clustering methodologies based on measured wind power data.

In Section 2, we present probabilistic modeling of load and renewable power generation. In Section 3, a

technique for constructing probability distributions of random variables is provided. In Section 4, the proposed

PPF methodology is presented. We perform tests on a modified IEEE 14-bus test system and discuss the results

in Section 5. Concluding remarks are given in Section 6.

2. Probabilistic modeling of load and renewable power generation

In power systems, the stochastic nature of a power injection such as a load or renewable power generation can

be characterized by a PDF and/or a CDF.

In the literature, a load is usually assumed to have a Gaussian distribution. The power output of PV

power generation can be characterized by a generic distribution function such as beta, gamma, or Weibull.

In terms of wind resources, fitting the power output of a wind farm to a common distribution function is

very challenging, since the probability distribution regularity of wind power is usually poor. To deal with this

difficulty, we propose to use a clustering technique to build a discrete distribution for wind power output based

on its measured data as follows.

First, using a clustering technique, the wind power data of several years are clustered into distinct groups

(clusters). Data belonging to each group are then used to build an impulse for the discrete distribution. Next,

the probability of each impulse (each cluster) is computed proportionally to the total number of data. Finally,

the discrete distribution of the wind power output is obtained.

Many techniques have been used to perform clustering analysis in the literature [17]. In this paper, for

the identification of wind power clusters, we use the k-means algorithm that was presented in detail in [17].

Other clustering techniques can also be adopted.

3. Constructing probability distributions for random variables

In this section, we present a technique developed to enhance cumulant-based PPF methods for taking into

account different types of probability distributions in the following.

In [8,16], discrete and continuous distributions of input random variables were separately treated so that
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the probability distributions of output random variables were obtained through an approximation approach. In

order to build a discrete distribution for a random variable with ξ impulses, the Von Mises method uses the

first (2ξ – 1) moments of the random variable. The approximation approach was applied in PPF computation

[8,16] with the assumption of the continuous part being of Gaussian distribution. Nevertheless, when using PPF

for a real power system, several types of distributions (including non-Gaussian distributions) for the continuous

part need to be accounted for. For such cases, in the present paper, the continuous part is first approximated

by a series expansion method such as Gram–Charlier, and then the probability distribution of output random

variables are constructed.

Suppose that an output random variable Ỹ of the PPF computation includes discrete part Ỹd and

continuous part Ỹc :

Ỹ = Ỹd + Ỹc. (1)

When continuous part Ỹc has Gaussian distribution, the PDF and CDF of random variable Ỹ [16] can be

calculated as:

fỸ (x) =

ξ∑
i=1

pi
1√

2πσỸc

e−x2
Ni

/2, (2)

FỸ (x) =

ξ∑
i=1

pi
1√
2π

xNi∫
−∞

e−t2/2dt, (3)

where ξ is the number of impulses used to characterize Ỹd ; xi and pi (i = 1 : ξ) are abscissas and corresponding

probabilities for ξ impulses of Ỹd ; xNi = (x − xi −mỸc
)/σỸc

; and mỸc
and σỸc

are the mean and standard

deviation of Ỹc .

On the contrary, in the case of the continuous part being of non-Gaussian distribution, Gram–Charlier

expansion is first adopted to give an approximation for the continuous part.

For Gram–Charlier expansion, the PDF fỸc
(·) and CDF FỸc

(·) of continuous part Ỹc with mean mỸc

and standard deviation σỸc
can be written as follows [9,14]:

fỸc
(x) = ϕ(xN ) + ϕ(xN )

∞∑
η=1

cηHη(xN ), (4)

FỸc
(x) = Φ(xN ) + ϕ(xN )

∞∑
η=1

cηHη−1(xN ), (5)

where xN = (x−mỸc
)/σỸc

and coefficients cη (η ≥ 1) can be obtained from its cumulants:
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cη =
kỸ

η
c

η!ση

Ỹc

η = 3; 4; 5
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η
c

η!ση
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+ 1
2

η−3∑
j=3

cjcη−j η ≥ 6

, (6)
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and Hη(xN ) is the ηth order of the so-called Hermite polynomial, computed as:


Hη(xN ) = 1 η = 0

Hη(xN ) = xN η = 1

Hη(xN ) = xNHη−1(xN )− (η − 1)Hη−2(xN ) η ≥ 2

, (7)

where, in Eq. (6), kỸ η
c

denotes the ηth order of cumulant of Ỹc .

Gram–Charlier expansion allows us to approximate the PDF and CDF of a random variable using its

cumulants based on Eqs. (4) and (5).

After applying Gram–Charlier expansion for Ỹc , the PDF and CDF of Ỹ are obtained as follows:

fỸ (x) =

ξ∑
i=1

pi

[
ϕ(xNi) + ϕ(xNi)

∞∑
η=1

cηHη(xNi)

]
, (8)

FỸ (x) =

ξ∑
i=1

pi

[
Φ(xNi) + ϕ(xNi)

∞∑
η=1

cηHη−1(xNi)

]
, (9)

where Φ(·) and ϕ(·) are the CDF and PDF of the standard normal distribution, respectively.

4. Probabilistic power flow methodology

The basic power flow equations can be expressed in matrix form [12] as:

w = g(x), (10)

z = h(x), (11)

where w is the vector of nodal power injections, x is the vector of state variables, z is the vector of line power

flows, g (x ) are the power flow equations, and h(x ) are the functions to compute line power flows.

Solving a DPF for the system and then using Taylor series expansion to linearize the above equations

around the solution point gives:

∆x = S |
x̄
∆w, (12)

∆z = T |
x̄
∆w, (13)

where S |
x̄
is the inverse of the Jacobian matrix and T |

x̄
is the sensitivity matrix of power flows with respect

to nodal power injections. S |
x̄
and T |

x̄
are computed at the solution point x-par of the DPF calculation.

For PPF, each element of w , x , and z is considered as the realization of the random variable associated

with each nodal power injection, state variable, and power flow, respectively. Based on the relationships in Eqs.

(12) and (13), cumulant-based PPF can be adopted.

The proposed PPF approach is implemented step by step as follows:
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Step 1: Solve DPF for the system to obtain the expected value of random state variables x and the

sensitivity matrices S |
x̄
and T |

x̄
computed at x -par;

Step 2: Compute self and joint cumulants [12,14] of nodal power injections for both discrete and

continuous parts:

• For discrete part : Compute cumulants of state variables and line power flows using Eqs. (12) and (13);

convert cumulants to moments [18], and then use the process presented in Section 3 (partly described in

detail in [16]) to compute abscissas xi and corresponding probabilities pi ;

• For continuous part : Compute cumulants of state variables and line power flows using Eqs. (12) and (13),

then obtain coefficients cη using Eq. (6) and Hermite polynomials Hη based on Eq. (7);

Step 3: Obtain PDFs and CDFs of the outputs of interest using Eqs. (8) and (9).

5. Results and discussion

The proposed approach was tested on a modified IEEE 14-bus test system. The single line diagram is presented

in Figure 1, while branch, bus, and generator data can be found in [7].

W

PV

Figure 1. Modified IEEE 14-bus test system.

The load at each bus is modeled by a Gaussian distribution characterized by its mean and standard

deviation. Correlation coefficients among loads are given in the Table. Generators at buses 1 and 2 are modeled

by binomial distributions with relevant forced outage rates. Detailed information about the above Gaussian

and binomial distributions was also given in [7].

Three-year measured hourly wind power (from 1 January 2009 to 31 December 2011) of a real wind

farm (rated at 25 MW) in Sicily (Italy) is used to estimate a discrete probability distribution using the method

presented in Section 2. The wind farm is assumed to connect to bus 9 of the system as in Figure 1. Figure
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2 shows the probability distribution of power output in which the discrete distribution is characterized by 20

impulses (corresponding to 20 clusters).

Table. Correlation coefficient among loads.

Bus 2 3 4 5 6 9 10 11 12 13 14
2 1.00 0.35 0.35 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.15
3 - 1.00 0.35 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.15
4 - - 1.00 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.15
5 - - - 1.00 0.15 0.15 0.15 0.15 0.15 0.15 0.15
6 - - - - 1.00 0.20 0.20 0.20 0.15 0.15 0.15
9 - - - - - 1.00 0.20 0.20 0.15 0.15 0.15
10 - - - - - - 1.00 0.20 0.15 0.15 0.15
11 - - - - - - - 1.00 0.15 0.15 0.15
12 - - - - - - - - 1.00 0.20 0.20
13 - - - - - - - - - 1.00 0.20
14 - - - - - - - - - - 1.00
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Figure 2. Distribution of wind power output at bus 9.

A PV power generation resource is also added to the system at bus 14 with the installed capacity of 12

MW (see Figure 1). PV power output is assumed to have a beta distribution with parameters computed by

using the expected value (9.6 MW) and standard deviation (assumed to be equal to 11% of its rated power)

[19].

In the system, the continuous part consists of Gaussian distributions of loads and beta distribution of PV

generation, while the discrete part includes binomial distributions of generating units and discrete distribution

of wind power. The proposed PPF method can take these distributions into consideration thanks to the

construction technique described in Section 3.

The proposed PPF methodology takes into account the first nine self cumulants for the discrete part, the

first six self cumulants for the continuous part, and the second order joint cumulants among loads. To assess

the accuracy of the proposed PPF approach, a MCS with 10,000 samples has been carried out and taken as a

reference.

In order to compare the proposed PPF and the MCS results, ARMS error is calculated [9]:

ARMS =
1

N

√√√√ N∑
i=1

(FMi − FPi)
2, (14)
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where FMi and FPi are the ith values on CDF curves obtained by MCS and the proposed PPF method,

respectively, and N is the total number of points chosen in the range between the 1st and the 99th percentiles

of the CDF obtained by MCS (here, N is determined by selecting an interval between neighboring points equal

to 10−4 p.u. for voltages and 10−3 p.u. for power).

In this test, base power of 100 MVA is used. For illustration, the PDFs and CDFs of selected output

random variables are shown: the PDF and CDF of real power flow through branch 6-11 ( P̃6−11) in Figure 3

and Figure 4, respectively; the PDF of reactive power flow through branch 9-10 (Q̃9−10) in Figure 5; the PDF

of voltage at bus 11 ( Ṽ11) in Figure 6; and then PDF of real power flow through branch 2-4 ( P̃2−4) in Figure 7.
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Figure 3. PDFs of P̃6−11 . Figure 4. CDFs of P̃6−11 .
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Figure 5. PDFs of Q̃9−10 . Figure 6. PDFs of Ṽ14 .
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It can be seen from the figures that the curves obtained by the proposed PPF are very close to the results

obtained by MCS. In particular, looking at Figure 3, the distribution of P̃6−11 has non-Gaussian shape, mostly

caused by binomial distributions of generating units, discrete distribution of wind power, and beta distribution

of PV power generation.

ARMS calculated for P̃6−11 , Q̃9−10 , Ṽ11 , and P̃2−4 are 0.09%, 0.11%, 0.12%, and 0.08%, respectively,

indicating very good accuracy of the proposed PPF method and good performance of the approximation

technique presented in Section 3.

PPF provides not only the information as obtained by DPF calculation but also the overall spectrum of

all probable values of output variables, which is useful for probabilistic analysis of power systems and security

assessment under uncertainty [12]. From the probability functions of output random variables, we can estimate,

for example, the probability so that voltage at a specific bus is out of the operating range or power through a

specific line is over its limit [12], and so on.

For example, the probability that voltage at bus 14 within the operating range [0.95; 1.05] p.u. (values

between the two vertical dashed lines in Figure 6) can be calculated as:

P
{
0.95 ≤ Ṽ14 ≤ 1.05

}
= 95.4%. (15)

Analogously, assuming that the upper bound of the real power flow (e.g., due to thermal rating) of line 2-4, for

instance, is 0.60 p.u. (the vertical dashed line in Figure 7), the probability of it being greater than its upper

bound is:

P
{
P̃2−4 > 0.60

}
= 1%. (16)

6. Conclusions

A cumulant-based probabilistic power flow approach is presented in this paper. It can handle several types

of probability distributions, which represent different sources of uncertainty in power systems. Correlations of

input power injections can also be taken into consideration. In addition, due to the fact that it is difficult to

fit the power output of a wind farm to a common probability distribution, we propose the use of a clustering

technique to build a discrete distribution for wind power by using measured data.

The proposed approach has been tested on a modified IEEE-14 bus test system and it gives a good

performance in comparison with the result obtained by MCS.
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