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Abstract:Droop controlled power sharing with an assumption that the value of line impedance is unavailable has been

proven to have limitations; the power sharing is problematic in systems with significantly resistive lines. Furthermore,

when the droop is applied in the islanding mode of operation of a microgrid, the system is likely to become unstable. In

this paper, the droop control is replaced by an analytical solution. The proposed approach of power sharing is power-

angle control of distributed generators (DGs), such as voltage source converters, a type of DG with extrapolation of

power injected to the connected bus. It is demonstrated that the power injection to the bus could be tracked within the

DG’s capacity autonomously. Simulation and experimental results demonstrate the validity of the approach and it is

shown that the proposed approach is suitable for DGs with either inductive or resistive line impedance. Moreover, this

method can be operated in complex networks, such as meshed networks.

Key words: Active and reactive power sharing, autonomous microgrid, power-angle control, distributed generation,

extrapolation

1. Introduction

Decentralized and autonomous power generation is more and more becoming a viable option for electrical

energy supply in remote areas or systems where a connection to the public electricity grid is not economical.

The concept of the microgrid (MG), which relies mainly on parallel connected power electronic converters, plays

an important role in maintaining the overall power balance by sharing the load in the network. The widely

used solution for power sharing in MGs is the droop control technique. Applications of droop control with

minimum communication between generators can be found in, e.g., [1–4]. Droop controlled systems without

using additional communication wiring were presented in [5,6]. Despite its proliferation, the droop control

strategy itself is proven to have technical limitations [7,8], one of them being the persisting residual deviation

from the control set point, e.g., in frequency control in MGs. To eliminate the residual frequency deviation, angle

droop control was proposed in [9–11]. However, the method proposed in [9–11] relies on GPS to synchronize

the individual controllers and to adjust their power sharing.

It has also been found that droop controlled power sharing is especially problematic when applied to

systems with significantly resistive line impedance [5,7,8,12,13]. To improve control precision in such a situation,

the concept of virtual impedance was proposed and successfully demonstrated in [14,15]. The concept is based

on droop control voltage reference modification, compensating for the effect of line impedance in power sharing.

Despite introducing an improvement, this concept, by choosing the virtual impedance, requires a trade-off
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between power sharing and voltage frequency/magnitude regulation [8]. Nevertheless, the concept of virtual

impedance already demonstrates the existence of a relationship between line impedance and how the power is

shared among the generators in a MG.

The proposed analysis of power sharing is carried out by dividing the network into two elements: 1) the

power generation unit and 2) the interconnection line connecting a distributed generator (DG) and common bus.

In the power generation unit, the control of power into the network of a synchronous generator [16] is emulated,

with the assumptions that the active power is generated depending on a phase angle difference between terminal

and generating voltage, where the reactive power depends on a difference in magnitude of the two voltages.

To extrapolate the power flow through the interconnection line from the DG to the common bus, the

power flow is analyzed by using a phasor diagram, which is then combined with the phasor diagram of the power

generation unit. The resulting diagram can be used to calculate the absolute voltage and phase angle difference

required from the generation unit in order to precisely supply the demanded powers, while at the same time

maintaining the voltage magnitude at the bus at its intended value.

In this paper, the relationship is analyzed based on the assumption that the impedance of the line

connecting DG and its connected bus is known. Although measurement of the line impedance is difficult, there

are successful works on this problem [17,18] and its calculation and estimation can be found in [16]. Despite

the analysis of this research focusing on VSC-based power generation units, the implementation is not limited

to this class of DGs. Any generation technologies capable of adjusting their output voltage as described in this

paper can be implemented in the presented technique.

2. Power sharing analysis

Figure 1 depicts a typical microgrid, with each DG connected to its bus directly or via its own line. The analysis

is based on an assumption that each of the DGs needs to share the power provision while at the same time

commonly regulate the voltage magnitude at the connected bus. Figure 2 shows the power delivery from the

DG to its connected bus, and the analysis is divided into two parts: the generation unit and the interconnection

line.

Figure 1. Typical microgrid.

2.1. Power generation by power-angle control

To generalize the analysis of the power generation of each DG, the phase of the DG’s terminal voltage is used

as the DG’s reference phase. Each of the DGs acts like a synchronous generator [16] and the power delivery via

an inductor to DG terminal is governed by Eqs. (1) and (2). Figure 3 shows a phasor diagram of the terminal

voltage, Vt , the generating voltage, Vg , and the line current, I , in the DG.
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Figure 2. Power delivery from the DG to its connected bus via its own line.

Figure 3. Phasor diagram of power generation at one of the DGs.

The active power, P , transferred to the DG terminal [16] can be calculated by:

P =
|Vg| · |Vt|

Xg
sin(δg), (1)

where δg is the angle difference between Vt and Vg , and Xg is the output inductance of the DG. In addition,

the reactive power transferred, Q [16], can be calculated by:

Q =
|Vt|
Xg

(|Vg| cos(δg)− |Vt|) . (2)

Based on the assumption that δg is small, it can be interpreted from Eqs. (1) and (2) that an increase in δg

causes a larger change in P than Q and Q is varied depending on the voltage magnitude difference between

the terminal and generating voltage [7].

2.2. Power flow through interconnection line

Figure 4 shows the phasor diagram of Vt , I , and the voltage on the bus. The angle difference between Vt and

Vbus , named δl , is varied depending on how the powers are transferred from the DG terminal to the bus via an

interconnection line.

Figure 4. Phasor diagram of the feeding powers through interconnection line.
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The active power delivered to the bus [7] is given by:

P =
|Vt|

R2
l +X2

l

[Rl (|Vt| − |Vbus| cos(δl)) +Xl |Vbus| sin(δl)] , (3)

where Rl and Xl are the resistance and inductance of the line impedance. In addition, the reactive power

delivered [7] is given by:

Q =
|Vt|

R2
l +X2

l

[−Rl |Vbus| sin(δl) +Xl (|Vt| − |Vbus| cos(δl))] . (4)

2.3. Power sharing by droop control

In the general case, the droop adjusts its voltage and frequency linearly to output power [7], as illustrated in

the following equations:

f − fo = −kp(P − Po), (5)

V − Vo = −kq(Q−Qo), (6)

where f is output frequency, V is the output voltage, kp and kq are the droop gains, and the subscript o

indicates its rated value. It can be interpreted from the equations that the frequency and voltage are changed

linearly by the power from their rated values. When compared with the relation from Eqs. (1)–(4), the feeding

power to the bus is actually nonlinear to voltage, whereas frequency adjusting of the droop is the determination

to change the active power in steady-state operation. The relationship of voltage, frequency, and power is

actually not straightforward as in the droop equations.

2.4. Extrapolation of injecting power

The preceding two phasor diagrams in Section 2.1 and 2.2 are combined in Figure 5. Based on the assumption

that DGs need to share the power while commonly regulating the voltage magnitude at the bus, it can be

assumed from the diagram that the magnitude of the voltage at the bus, |Vbus|∗ , is treated as a constant value

to determine the required constraint operation of the DGs. The magnitude of line current and the angle of

power factor, θ , can be measured at a DG terminal.

Figure 5. Phasor diagram of DG and interconnection line.

If the line impedance is known or at least can be estimated with sufficient accuracy, the angle difference

between the DG terminal and the bus voltage can be calculated by:

δl = sin−1

(
|I| (Xl cos(θ)−Rl sin(θ))

|Vbus|∗
)
, (7)
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and then the magnitude of DG terminal voltage can be calculated by:

|Vt| = |Vbus|∗ cos(δl) + |I| (Rl cos(θ) +Xl sin(θ)) . (8)

Therefore, the angle difference between terminal and generating voltage, which is the control of active power

generation, can be calculated by:

δg = tan−1

(
|I|Xg cos(θ)

|Vt|+ |I|Xg sin(θ)

)
. (9)

The magnitude of generating voltage can be calculated by:

|Vg| =
|I|Xg cos(θ)

sin(δg)
. (10)

Thus, the magnitude difference between terminal and generating voltage, ∆V , which is the control of reactive

power generation, is known and can be maintained.

2.5. Consideration of maximum output power limitation

DGs are limited by their maximum generation capacity. From Eq. (1), the maximum allowable active power,

Pm , can be translated into a maximum angle difference between DG terminal and generating voltage, δgm ,

which can be calculated by:

δgm ≈ sin−1

(
PmXg(
|Vbus|∗

)2
)
. (11)

In addition, the maximum allowable reactive power, Qm , is a maximum of the magnitude difference between

DG terminal and generating voltage, ∆Vm . From Eq. (2), it can be expressed as:

∆Vm ≈ QmXg

|Vbus|∗
. (12)

3. Reference voltage generation

The analysis is based on the assumption that the load is balanced. Therefore, the terminal voltage and current

sensing from one of the three phases is sufficient for performing the reference voltage generation. If the system is

unbalanced all three lines need to be sensed and the proposed reference voltage generation may be formulated in

the rotating d-q-0 coordinates. The reference voltage is generated by Eqs. (9) and (10), and it is revised every

cycle or at least every few cycles; therefore, the terminal voltage zero phase angle detection (it can be PLL)

is needed. To overcome the effect of inaccurate parameters, such as voltage tracking error and line impedance

mismatch, a condition is needed. The condition is that if the changes of δg and Vg from the last cycle (or last

update) are within a threshold, such as ±5% of δgm and ∆Vm , the power generation is locked by setting δg

and Vg to the last cycle’s (or last update’s) values. In addition, as soon as the terminal voltage changes by

±1% of ∆Vm from the locking point, the power generation is unlocked.

The active power is limited to the DG’s capacity by permitting P to be within zero and Pm , and when

the active power is settled outside its limit, δg is forced to increase or decrease by a small amount of angle (use
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±1% of δgm). The reactive power is controlled by varying Vg in accordance with Eq. (10), and the reactive

power is also controlled to be within zero and Qm . When the reactive power is settled outside its capacity,

Vg from Eq. (10) is changed to relax the reactive power sharing among the DGs. Vg is forced to increase or

decrease by a small amount of voltage (use ±1% of ∆Vm). The flowchart of the reference generation is depicted

in Figure 6. Figure 7 shows the VSC that uses the reference voltage generator.

Figure 6. Flowchart of the reference voltage generator.

Figure 7. A VSC for use with the reference voltage generator.
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The power is calculated at the end of voltage cycle by:

P =
VmaxImax cos(θ)

2
, (13)

Q =
VmaxImax sin(θ)

2
, (14)

where the subscript max indicates its peak value in the cycle.

4. Simulation study

The simulation is performed by MATLAB/Simulink. The operation of the network is regarded as the islanding

microgrid. The system is a balanced 3-phase 380 V/50 Hz, and the reference voltage’s frequency is a fixed 50

Hz. In each case of simulations, the system’s parameters and the simulation results are indicated in the system

diagram, and the results are in brackets. The results are the locked values when the system is in stable and

steady-state power sharing. All values in the diagrams are per unit with base MVA of 1 MVA and base kVLL

of 0.380.

4.1. System with VSC-type DG

The structure of the VSC is shown in Figure 8 and the Table gives parameters for the VSC. The simulation

result for a system with the VSC-type DG is shown in Figure 9a. The values in brackets are the voltages and

powers that have been locked due to the system reaching the stable and steady-state power sharing point. It is

shown that the system is stable even though there is a voltage tracking error by the VSC, but for the sake of

controllability, the error should be minimal.

Figure 8. Structure of the VSC for MATLAB/Simulink simulation.
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Table. Parameters for the VSC.

Item Symbol Value
PWM switching frequency fsw 10 kHz
Filter inductor Lf 1.5 mH
Filter capacitor Cf 3300 µF
DC link voltage VDC 700 V
Voltage P-control gain (d & q) KP 3000
Voltage I-control gain (d & q) KI 100
Voltage D-control gain (d & q) KD 10
Current P-control gain (d & q) KP 100
Current I-control gain (d & q) KI 10

Figure 9. (a) Results of the system with the VSC-type DG, (b) results of the system with the controlled voltage source.

4.2. Perfect tracking, case study

In order to investigate the proposed analysis of power sharing without concern for the reference voltage tracking

error, the VSC in Figure 7 is replaced by the ‘Controlled Voltage Source’ block in the ‘SimPowerSystems’

toolbox of MATLAB/Simulink. The voltage reference is fed directly to the block so that the output voltage is

perfectly generated. The controlled voltage source used in the simulation is not used to solve the problem of

the VSC, and there is no problem for the VSC to be used with the proposed method when the voltage tracking

error is minimal. The use of the controlled voltage source in the simulation is merely implemented to show

the effectiveness of the proposed method when there is no constraint over voltage tracking error. The same

reference voltage generation is used in both the controlled voltage source and the VSC case study.

The results of the system with the controlled voltage source, which is considered to have no voltage

tracking error, are given in Figure 9b; the results are slightly different from the case of the VSC-type DG (with

minimal tracking error). This demonstrates that the condition of locking the power generation by checking the

change of power is able to overcome the effect of voltage tracking error.

4.2.1. Effect of inaccurate line impedance

The simulation results of the system with inaccurate line impedance are shown in Figure 10. The value of line

impedances used for calculation in Eqs. (7) and (8) for the reference voltage generation of DG1 is 0.166+j0.021

plus 5% error, and that of DG2 is 0.166+j0.208 minus 10% error. The power generations are locked as values
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indicated in brackets; this means that even though the line impedances are not correct, the condition to lock

the power generation by checking the change of power is also able to overcome the effect of inaccurate line

impedance. For the sake of controllability, however, the inaccuracy should be minimal.

Figure 10. Results of the system with inaccurate line impedance.

Figure 11. Results comparing between the proposed method and the droop in the same system: (a) results of the

proposed method, (b) results of the droop.

4.2.2. System with resistive line

The simulation results of the system with resistive line are given in Figure 11a. The lines of DG1 and DG2 are

resistive, whereas the previous cases are inductive. This means that the proposed approach is able to operate

with either resistive or inductive line impedance.

4.2.3. Power sharing by droop control

To compare the performance of power sharing with the droop control in the same system of resistive lines, the

power sharing by droop in Eqs. (5) and (6) is implemented and the simulation results of the droop are given in
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Figure 11b. V in Eq. (6) is a generating voltage, Vg . Rated values in Eqs. (5) and (6) for both DG1 and DG2

are Po= 1 MW, Qo= 100 kVar, fo= 50 Hz, and Vo= 390 V. Vo is increased from 380 V to compensate for

voltage drop on the line and output inductor. Droop gains for both DG1 and DG2 are Kp= 1 Hz/1 MW and

Kq= 3 V/100 kVar. As it is widely known that the performance of droop control depends largely on the value

of droop gain, at this value of gain, the power sharing is stable, but there are three main problems noticed from

the results. The first problem is that the frequency deviates from its rated value, 50 Hz. The second problem

is that the reactive power of DG2 is negative; in other words, DG2 acts like a load. This means that there is

an exchange of power between DG1 and DG2 and it decreases the performance of power generation. Another

problem is that the reactive power of DG1 is over its capacity; the droop control is unable to force the power

to be within its capacity. When comparing the results between the proposed method in Figure 11a and the

droop control in Figure 11b, there is no negative Q and it operates at a fixed system frequency when the system

is controlled by the proposed approach. The results validate the superiority of the proposed method over the

droop control.

4.2.4. Effect of changing load

Figure 12 shows system for simulation of changing load. The load begins with P = 0.75, Q = 0.05, and the

locked values before the load changing are shown in Figure 12a. At 1.5 s the load is step changed to P = 1.25,

Q = 0.15 and the simulation result during load changing is given in Figure 13. The simulation results of locked

values after the load changing are given in Figure 12b.

Figure 12. Results of the system with step change of load: (a) locked values before changing, (b) locked values after

changing.

The values of locked powers and voltages cannot be predetermined; the power the DG needs to share

depends on |Vbus| . A different |Vbus| is different power sharing; |Vbus| is changing up and down while the

proposed approach is finding the locking point. It depends on time and the response of the system that the

locking point is found at any given value of |Vbus| . Even though the locking point cannot be predetermined,

the proposed approach is able to find it when sufficient conditions are met. The ratio and how the power is

shared are governed by Eqs. (3) and (4).
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Figure 13. Results of the system with step change of load: (a) result of active power, (b) result of reactive power.

4.2.5. Consideration of type of network

The simulation results of four DGs parallel connected to supply a common load are shown in Figure 14. The

ratio and how the power is shared are complex. The feeding of P and Q through line depends on Eqs. (3) and

(4), and both equations use the same variables, |Vt| , |Vbus| , and δl . It can be interpreted from the equations

that line impedance decides the relationship between P and Q of its DG, and the values of P and Q depend

on |Vt| and δl , whereas the only common value between the DGs that are connected to the same bus is |Vbus| .
It decides the relationship of power sharing among DGs in the same bus.

Figure 14. Results of 4 DGs parallel connected to supply a common load.
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The simulation results of a network with two buses are shown in Figure 15. The simulation results

of a three-bus meshed network are shown in Figure 16. DG1 in Figures 15 and 16 has no line; this is the

determination to demonstrate that the DG is directly connected to the bus. The power sharing between two

buses via a line also depends on Eqs. (3) and (4), and in this case |Vt| is replaced by another |Vbus| . The

relationship of power sharing is the same as that of the feeding of power from DG to the bus via a line.

Figure 15. Results of a network with two buses.

Figure 16. Results of three-bus meshed network.

5. Experimental results

The proposed approach is implemented in a down-scale single-phase 220 V/50 Hz system. Figure 17 shows the

configuration of the system of two DGs; all parameters are included in the figure. To simplify the operation of

the Vg control, Vg in the experiment is controlled by a direct voltage-PWM control loop. The control function

of both DGs is operated by a single dSPACE system, but modules of the proposed power sharing control for

each DG are separated. The dSPACE is operated in the following steps.

Step 1 starts by tracking the new power sharing point by sustaining the output reference voltage with

fixed magnitude and phase.

Step 2 detects the phase angle and peak of waveforms of terminal voltage and current of both DGs. This

may take a few cycles to gain accurate values.
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Figure 17. Configuration of the experimental system.

Step 3 calculates the new power sharing point by the proposed approach and updates the new sharing

point by repeating from Step 1.

Figure 18 shows the test bench of the implemented system during its operation. There are problems

related to the implementation of the VSC-type DG. The recommendation is given as follows for implementation

of the proposed approach. If there is a noisy environment, voltage fluctuation by the controlling of VSC, and

inaccuracy of the phase angle and peak detection, then the adjustment of power sharing by Eqs. (9) and (10)

may not be smooth and desirable. These problems cause sudden changing of Vg and δg in Eqs. (9) and (10),

and then the system may not be stable. In order to mitigate those effects on power sharing, it is recommended

that prior to updating the values of Vg and δg , the sudden changing should be filtered out by:

Figure 18. Test bench of the experiment during operation.

δNg = δi−1
g + fd

(
δig − δi−1

g

)
, (15)

V N
g = V i−1

g + fd
(
V i
g − V i−1

g

)
, (16)

where superscript i indicates the consecutive cycle (or update) of the calculation of Eqs. (9) and (10), and

superscript N indicates the actual new updated values of Vg and δg . The damping multiplier, fd , can be
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calculated by:

fd = Cd

(
∆Vm −

(
V i
g − V i−1

g

))
∆Vm

. (17)

Cd is a damping coefficient and the value is between 0 and 1. For the system without any concerns about

those effects, such as in the simulation study, Cd can be 1. A lower value of Cd signifies more mitigation

of the effects on power sharing, but its response would be slower. In the experiment, it has been found that

Cd= 0.2 is the optimal value in test conditions. If the change of Vg ,
(
V i
g − V i−1

g

)
, in Eq. (17) is more than

∆Vm , then it is limited to ∆Vm ; this means that the values of Vg and δg should not be changed immediately

when there is a sudden changing of Vg from its calculation in Eq. (10). In addition, the multiplication of the

damping multiplier, fd , is not necessary for the system without any concern about those problems, such as in

the simulation study.

During the experiment, the power of each DG is changing up and down a little bit, but the overall system

is stable and the sum of the power of the two DGs is the sum of the load, lines, and losses. Figure 19 shows the

results of voltage waveforms during its operation. Figure 20 shows the results of the experiment per unit, with

base kVA = 0.3 and base kV = 0.22. The parameters in the diagram are the same values as in Figure 17. As

mentioned above, during the experiment the power of each DG is changing up and down a little bit due to the

effects of noises, voltage tracking error, and inaccuracy of the detections; therefore, all the results in brackets

are average values.

Figure 19. Result of voltage waveforms: upper waveform

is Vbus , middle waveform is Vt of DG1, lower waveform

is Vt of DG2. Vertical scale is 500 V/Div, time scale is 5

ms/Div.

Figure 20. The experimental results.

6. Conclusion

This article proposes a novel methodology to control active and reactive power sharing in a microgrid. The

proposed technique is based on the extrapolation of injected power within its capacity from the DG to the

connected bus via an interconnection line. The presented technique is able to operate autonomously in islanding

mode and in the DG with either inductive or resistive lines. The simulation and experimental results also show
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that the proposed approach is suitable for most types of network, and the stable and steady-state power sharing

point is reachable even in imperfect conditions, such as when conditions include voltage tracking error, inaccurate

line impedance, and sudden load changing.
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