
Turk J Elec Eng & Comp Sci

(2017) 25: 1173 – 1183

c⃝ TÜBİTAK

doi:10.3906/elk-1601-189

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A comparison of feature extraction techniques for malware analysis

Mohammad IMRAN∗, Muhammad Tanvir AFZAL, Muhammad Abdul QADIR
Department of Computer Science, Capital University of Science and Technology, Islamabad, Pakistan

Received: 18.01.2016 • Accepted/Published Online: 06.04.2016 • Final Version: 10.04.2017

Abstract: The manifold growth of malware in recent years has resulted in extensive research being conducted in the

domain of malware analysis and detection, and theories from a wide variety of scientific knowledge domains have been

applied to solve this problem. The algorithms from the machine learning paradigm have been particularly explored, and

many feature extraction methods have been proposed in the literature for representing malware as feature vectors to be

used in machine learning algorithms. In this paper we present a comparison of several feature extraction techniques by

first applying them on system call logs of real malware, and then evaluating them using a random forest classifier. In our

experiment the HMM-based feature extraction method outperformed the other methods by obtaining an F-measure of

0.87. We also explored the possibility of using ensembles of feature extraction methods, and discovered that combination

of HMM-based features with bigram frequency features improved the F-measure by 1.7%.

Key words: Malware analysis, feature extraction, machine learning

1. Introduction

The ever-increasing rate of malware attacks on computers, computer networks, and smart phones has emphasized

the need for aggressive measures to counter the malware threat. As a result, malware analysis and detection

has been an active area of research lately, and a multitude of techniques have been proposed in this field using

concepts from a diverse range of scientific disciplines such as graph theory [1,2], machine learning [3,4], and

information visualization [5,6].

Among the aforementioned methods, machine learning-based algorithms have gained special attention

among the malware research community. The main reason behind using these techniques is that they enable

detection of a previously unknown threat using models leaned from known malware. This is a key requirement

in today’s cyber world, where millions of new malware are reported every day

(http://www.symantec.com/security response/publications/threatreport.jsp), and a large number of the new

malware are obfuscated from existing malware [1].

The machine learning-based techniques generally require a feature vector representation of malware, where

a feature represents a particular malware attribute that can play a discriminatory role in the classification

process. Extracting discriminatory attributes pertaining to malware and representing them in a way to be

effectively used in a machine learning setting is a major challenge in the domain of malware analysis and

detection. Termed as feature extraction in the machine learning paradigm, this process is a prerequisite to every

malware detection technique proposed in the literature that employs a machine learning algorithm.

In this paper we report a comparison of nine feature extraction methods commonly used for malware

∗Correspondence: m.imran.isd@gmail.com

1173

IMRAN et al./Turk J Elec Eng & Comp Sci

detection and classification tasks, using a comprehensive dataset that contains system call logs of real malware.

Specifically, we transform sequences of system calls into fixed length feature vectors by applying different feature

extraction methods, and evaluate these transformations by performing malware classification using a random

forest classifier on the feature vectors. There is no gold standard dataset as such for performing a comparative

evaluation of malware classification techniques, and all of the feature extraction techniques have been tested on

different data. The main contribution of this paper, therefore, is that it compares different feature extraction

methods on the same data, hence providing an empirical comparative assessment of these methods. The paper

also adds value to the research by evaluating a novel approach of combining the features extracted through

different methods for the purpose of malware classification.

Liu et al. [7] performed a similar study about 10 years ago in which three feature extraction methods

were addressed. Spanning the research of the last decade and earlier, our work covers a broader range of feature

extraction methods. A recent comparison of feature extraction methods can be found in [8] but it focuses mainly

on a survey of such methods and falls short of evaluating them on some benchmark data.

This paper proceeds as follows. The next section imparts some necessary background knowledge on the

feature selection methods being compared in this paper. Section 3 covers related work while the methodology

adopted for the experiments is explained in Section 4. Results are presented and discussed in Section 5.

2. Feature extraction methods for malware analysis

Machine learning algorithms learn the patterns from fixed length feature vectors, and therefore feature extraction

is the first step before using these algorithms for malware analysis. For features that are in the form of

sequences, such as sequences of code bytes, operation codes (opcodes), system calls, or API calls, the creation

of a representative feature vector is a nontrivial problem, and hence various feature extraction methods have

been proposed in the literature for this task. Here we shall outline the most widely used feature extraction and

representation techniques applied on sequences. Let us define a finite set S = {s1, s2, . . . , sn } containing, in

a specific order, all the unique symbols si allowed to make up a sequence. The set S may be considered as a

term dictionary in the information retrieval terminology. Any arbitrary sequence containing possibly repetitive

occurrences of elements of S in any order can then be represented as S = (sk)k∈{1..|S|} .

2.1. Binary feature extraction

The baseline method of extracting features from a sequence is to identify all the distinct elements found in the

sequence. The sequence can then be represented as a binary vector of the same length as the term dictionary

S such that each feature in the vector signifies the presence or absence of the corresponding dictionary term in

the sequence. The resulting feature vector can be represented as VSb = (bs1, bs2, . . . , bsn), where bsi is 1 if S

contains at least one instance of si and 0 otherwise, and n is the size of S . This method has been used for

sequences of code bytes [4], API calls [9], etc.

2.2. Frequency feature extraction

In this feature extraction method, the count of occurrence of a dictionary term in the sequence is used instead

of just its presence or absence [10]. Mathematically, this vector can be denoted as VSf = (fs1, fs2, . . . , fsn),

where fsi is the frequency of the ith element of S in S .

1174

IMRAN et al./Turk J Elec Eng & Comp Sci

2.3. Frequency weight feature extraction

Frequency weighting methods such as term frequency-inverse document frequency (TF-IDF) have also been

employed to generate feature vectors from sequences [11]. TF-IDF is a statistic widely used in information

retrieval and text mining domains for calculating frequency-based weights for terms in a document in order to

assess their relative importance.

Frequency weighting vector for S will be VSfw = (fw s1 , fw s2, . . . , fwsn), where fwsi represents the

frequency weight for the ith element of S as computed over S .

2.4. Hidden Markov model

Another method of extracting features from sequences is based on hidden Markov models (HMMs) [12].

Although the authors of the cited text do not refer to their technique as a feature selection method, the

process that they have adopted performs the exact task of converting a given sequence into a fixed length vector

that can subsequently be used by a discriminative classifier for the classification of sequences. Imran et al. [13]

have applied the same methodology for malware classification.

An HMM represents a doubly stochastic system in the form of a finite state in which the states are not

visible. The progress of the state machine is observed through certain symbols that are emitted in each state.

Two types of probabilities govern the state machine: the state transition probabilities determine the next state

for any given state, and symbol emission probabilities indicate the possibility of each symbol being emitted in a

given state. The Baum–Welch algorithm is used to compute the transition and symbol probabilities from a given

sequence. Once an HMM has been trained or learnt from a given sequence (or a set of sequences) of symbols,

an unknown symbol sequence can be evaluated for its resemblance with the model using the forward–backward

algorithm [14], which returns the likelihood of the unknown sequence being generated by the HMM.

The technique presented in [12] involves training one HMM for every class of sequences. Let us suppose

the input sequences belong to and are labeled with m classes. Symbols in this case are represented by the

individual system calls. Let us further assume the total number of sequences to be k . After the training of

HMMs has been done, there are m HMMs representing different classes of sequences. The next step is to

evaluate all k sequences against the mHMMs and for each sequence its likelihood score is recorded as a feature.

In this way, a feature space consisting of k feature vectors is produced where each vector is of length m . In

mathematical notation, the feature vector for a sequence S would be VShmm = (lS,1, lS,2, . . . , lS,m), where lS,i

is the likelihood score obtained by evaluating S against the ith HMM.

3. Related work

Considerable research efforts have made use of machine learning methods for the task of malware detection and

classification using static, dynamic, and hybrid features. Here we briefly describe some representative research

efforts that have used the methods discussed in the previous section for extracting features from sequential

representation of malware.

Tian et al. [9] proposed a binary feature technique for malware detection and classification using API

calls. The authors also experimented with the frequency based methods on the same data but no improvement

was observed over the binary representation. In a similar approach, Devesa et al. [15] monitored API calls of

malware and benign programs, and derived rules for extracting actions performed by the programs from the

API call logs. The term dictionary therefore consisted of the performed actions, and a binary feature extraction

was performed.

1175

IMRAN et al./Turk J Elec Eng & Comp Sci

Alazab et al. [16] represented the API sequences with n -grams for values of n from 1 to 5. To keep

the feature space to a manageable size, frequencies of all n -grams for a given n were computed for the whole

dataset of malware and benign samples, and the 100 most frequent n -grams were selected to be included in the

feature vector. Altaher et al. [17] extracted API calls from the PE executables and the frequency of each API

call was considered as a potential feature. All the API calls were then ranked according to their information

gain and frequencies of the top 50 API calls constituted the final feature vector.

Schultz et al. [4] used three kinds of static features extracted from DLL-related information, printable

strings, and binary code of malicious files. In case of the code bytes, all the two-byte words found in malware

code were combined into the term dictionary and binary feature representation was used for each malware

sample. Following in their footsteps, Kolter and Maloof [18] created features using 4-grams of byte codes from

executables. Since the feature space grows rapidly with increasing n , the authors used information gain to select

the 500 most representative 4-grams and used them as binary features in various machine learning algorithms.

Lee et al. [19] modeled each 7-gram of system calls observed during execution of normal and intrusive

executions of the Unix sendmail program as a feature in their intrusion detection scheme. Another feature

extraction method in the domain of intrusion detection is found in [20] in which Liao and Vemuri constructed

fixed length feature vectors from system call sequences by computing the TF-IDF as the weight for each unique

system call in the corpus and using this weight as a feature.

Research reported in [11] made use of TF-IDF on frequencies of low-level kernel calls to represent kernel

calls made by a program as a weight vector that was then used for cosine similarity computation. In recent

works, Lin et al. [21] suggested computing of TF-IDF within each malware family, instead of on the whole

corpus, for feature selection.

One of the few approaches employing an HMM as a feature extraction method was proposed by An-

nachhatre et al. [22], who used opcode sequences extracted from various compilers and virus generators to

train HMMs. Opcode sequences from malware samples were then scored against the HMMs to generate the

feature vectors, which were then used for clustering of malware samples. Imran et al. [13] varied this method by

modeling malicious behavior instead of compiler behavior. In their approach, malware behavior was represented

as a sequence of system calls used to train separate HMMs for different malware families. Known malware were

evaluated against the malware family HMMs and the resulting score vectors were used to classify unknown

malware using a discriminative classifier.

4. Methodology

In this section we describe the dataset used and methodology adopted for performing the comparison of different

feature selection techniques proposed in the literature.

4.1. The dataset

As discussed above, various methods of capturing malware behavior have been proposed in the quest for finding

the most descriptive dynamic feature. System calls have been shown to represent a program’s behavior effectively

and therefore we opted for sequences of system calls as the input to the feature selection methods being compared.

Specifically, we exploited a subset of the system call data used by Rieck et al. [3] in the Malheur project. The

original dataset includes system call logs for over 32,000 malware samples, belonging to more than 400 families.

For the purposes of this paper, system call logs for 8828 malware samples were selected from 36 families. The

malware families were chosen in a way so that each family had at least 100 samples. The maximum number of

1176

IMRAN et al./Turk J Elec Eng & Comp Sci

samples in a family was also limited to 400 because we think it is a reasonable sample size for training machine

learning algorithms.

4.2. Data preprocessing

The original dataset used by Rieck et al. was encoded in the MIST format [23], which represents a system call

in the form of a string of hexadecimal numbers symbolizing the high level category of the call, the actual call,

and any arguments passed to the call. A representation of the load dll system call is shown in Figure 1.

Figure 1. MIST representation of the load dll system call [23].

The MIST representation was further processed in order to strip the high level category and the argu-

ments, and to keep only the system call IDs. Using the information given in [23] about the total number of

system call categories and the number of system calls within each category, we were able to code each system

call as a decimal number from 1 to 120, where 120 is the total number of system calls monitored and recorded by

Rieck et al. In this way, the sequence of system calls for a particular program is now represented as a sequence

of numbers in the range from 1 to 120.

4.3. Feature extraction

Nine sets of feature vectors were generated against the system call sequences for comparative evaluation of

the feature extraction methods, as described below. First, the feature extraction methods based on binary,

frequency, and frequency weighting factors were applied on system call unigrams of all the 8828 sequences in

the dataset. This resulted in three sets of feature vectors, namely unigram binary, unigram frequency, and

unigram frequency weighting sets.

Since the sequential information in the input data is lost by applying the above-mentioned feature

extraction methods on unigrams, the use of bigrams is suggested in the literature to preserve the order of

items (system calls in this case) in the input data. For this reason, three more feature sets were obtained by

applying the binary, frequency, and frequency weighting feature extraction methods on bigrams of system calls.

The term dictionary for the system call bigrams was populated with 2745 unique bigrams extracted from the

dataset, and therefore each of the feature vectors for the bigram schemes included 2745 features.

Some of the reviewed schemes performed feature selection based on information gain. In order for this

study to cover the feature selection aspect, we performed feature ranking on the bigram frequency feature set

based on information gain using Weka [24]. The top 100 highest ranked (most significant) frequencies were then

selected as features in the seventh feature set, which will be referred to as the bigram freq IG set later in the

document.

The eighth set of feature vectors was obtained by training 36 HMMs on system call sequences belonging to

the corresponding malware families. Each malware sample was then scored against each of the HMMs to obtain

1177

IMRAN et al./Turk J Elec Eng & Comp Sci

the feature vector composed of likelihood scores. HMM model creation and evaluation (scoring) were done in

MATLAB using the HMM toolbox (http://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm download.html).

Another experiment was carried out to judge the impact of combining feature vectors obtained through

different feature extraction methods. As a trial, the HMM-based feature vectors were truncated with bigram

freq IG feature vectors to obtain the ninth and final feature set.

Figure 2 shows the number of features extracted by the nine schemes discussed above. The HMM-based

feature extraction method proved to be the most concise in terms of the feature count, with only 36 features

representing arbitrarily long sequences of system calls. On the other extreme, the number of bigram features

exceeded 2700.

0

500

1000

1500

2000

2500

3000

Unigram
Binary

Unigram
Freq

Unigram
TF-IDF

Bigram
Binary

Bigram
Freq

Bigram
TF-IDF

Bigram
Freq IG

HMM HMM+
Bigram
Freq IG

N
u

m
b

er
 o

f
fe

at
u

re
s

Figure 2. Number of features extracted through different feature extraction schemes.

4.4. Evaluation using a random forest classifier

For evaluating the nine sets of feature vectors obtained by applying various feature extraction methods, these

sets were subjected to classification using a random forest classifier in Weka version 3.7. The random forest

classifier was selected after comparing its performance against various other classification algorithms including

J48 decision tree, k -NN, näıve Bayes, and support vector machine (SVM) in small-scale experiments.

The random forest classifier belongs to the ensemble learning paradigm within the domain of machine

learning, in which results of multiple tree classifiers are aggregated to predict a sample’s class [25]. More

specifically, it leverages the concept of bagging, which corresponds to the process of creating tree classifiers on

different samples of data and then taking a majority vote for reaching a classification decision. The randomness

is involved when splitting a node in a classification tree: instead of choosing the best variable (predictor) from

the whole set of variables for splitting a given node, the random forest classifier randomly creates a subset of

predictors at each node and selects the best predictor from the subset. Using this simple strategy, the random

forest classifier is not only able to outperform other classification algorithms such as SVMs and neural networks

[25], but it also deals effectively with the problem of overfitting [26].

4.5. Classifier validation

Weka offers multiple choices of validation methods for testing how well a classifier is modeled on some given

data. These validation methods include the following:

1. Using the same data for training and testing

2. Choosing separate datasets for training and testing

1178

IMRAN et al./Turk J Elec Eng & Comp Sci

3. Splitting the dataset into training and testing partitions by a specific percentage

4. k -fold cross validation.

The first method is obviously not desirable because it does not judge how generalized a trained classifier is.

Sometimes the classifier memorizes the training set instead of learning from it and therefore does not represent

a generalization of the given instances. As a result such a classifier performs well on the data that has been

used for training but does not classify previously unseen samples correctly [27]. The second method tests the

classifier on unseen data, hence providing a better judgment about classifier performance, but requires different

data files for training and testing. The third method is a simplification of the second such that it allows splitting

the same data file into training and testing partitions without the need for separate files. The problem with

the second and third evaluation methods is that they evaluate the classifier for just one set of training and test

partitions. In such a case, the distribution of data instances in the two partitions might affect the classifier

performance in a favorable or adverse manner. The k -fold cross validation method solves this problem by

dividing the dataset into k partitions and performing k classification sessions such that in every session, or

fold, a separate set of k -1 partitions is used for training and the remaining partition is used for testing the

classifier. In this way, each partition is used k -1 times as training partition and once as test partition, hence

reducing the effects of any bias in the data. The classification results of k folds are then averaged to obtain the

overall classification performance of the classifier over all the data. Due to this comprehensive nature of k -fold

cross validation method, we used it to validate the random forest classifier in our experiments with k= 10.

4.6. Evaluation metrics

Two metrics that are commonly used for reporting the performance of a classifier are precision and recall.

Precision represents how many of the identified samples are correct and recall describes how many of the total

samples are correctly identified. Mathematically, these two metrics are represented as

Precision =
TruePositives

TruePositives+ False Positives
(1)

Recall =
TruePositives

TruePositives+ FalseNegatives
(2)

Precision and recall are often combined into a unified metric, called F-measure, for convenience of comparisons

between various classification methods. The value of F-measure is in the range from 0 to 1, where 0 depicts

that no sample was identified correctly and 1 signifies a perfect classification. F-measure is defined as

F measure = 2 × Precision ×Recall

Precision+Recall
(3)

The chart in Figure 3 shows the effectiveness of the feature extraction methods on the random forest classifier

in terms of average F-measure across all the families. Subsequently in this document, the term F-measure

represents the averaged value.

To analyze the overall classifier performance for the top feature extraction methods (bigram binary and

HMM methods), we present two types of comparison graphs: a chart for the family-wise F-measure values

against these two methods is given in Figure 4, while Figure 5 shows the confusion matrices for classification

using the two methods respectively.

1179

IMRAN et al./Turk J Elec Eng & Comp Sci

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Unigram
Binary

Unigram
Freq

Unigram
TF-IDF

Bigram
Binary

Bigram
Freq

Bigram
TF-IDF

Bigram
Freq IG

HMM HMM+
Bigram
Freq IG

F
-M

ea
su

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
D

U
L

T
B

R
O

W
SE

R

A
G

E
N

T

A
L

L
A

P
L

E
A

U
T

O
IT

A

U
T

O
R

U
N

B

A
SU

N

B
IF

R
O

SE

B
U

Z
U

S
C

A
SI

N
O

E

JI
K

F

R
A

U
D

L
O

A
D

F

R
A

U
D

P
A

C
K

H

U
P

IG
O

N

K
R

A
P

L
IP

L
E

R

L
O

O
P

E
R

M
A

G
A

N
IA

M

A
G

IC
C

A
SI

N
O

O

B
F

U
SC

A
T

E
D

P

A
T

C
H

E
D

P

O
D

N
U

H
A

P

O
IS

O
N

R

B
O

T

R
E

F
R

O
SO

R

O
T

A
T

O
R

SA
L

IT
Y

SM
A

L
L

SP
Y

G
A

M
E

S
SW

IZ
Z

O
R

T
D

SS

T
E

X
E

L
U

D
R

V
B

V
IK

IN
G

_
D

L
L

V
IR

U
T

Z
B

O
T

F
-m

ea
su

re

Malware families

Bigram Binary HMM

Figure 3. Comparison of feature extraction methods us-

ing a random forest classifier.

Figure 4. Family-wise F-measure for bigram binary and

HMM methods.

A
D
U
L
T
B
R
O
W
S
E
R

A
G
E
N
T

A
L
L
A
P
L
E

A
U
T
O
IT

A
U
T
O
R
U
N

B
A
S
U
N

B
IF
R
O
S
E

B
U
Z
U
S

C
A
S
IN
O

E
JI
K

F
R
A
U
D
L
O
A
D

F
R
A
U
D
P
A
C
K

H
U
P
IG
O
N

K
R
A
P

L
IP
L
E
R

L
O
O
P
E
R

M
A
G
A
N
IA

M
A
G
IC
C
A
S
IN
O

O
B
F
U
S
C
A
T
E
D

P
A
T
C
H
E
D

P
O
D
N
U
H
A

P
O
IS
O
N

R
B
O
T

R
E
F
R
O
S
O

R
O
T
A
T
O
R

S
A
L
IT
Y

S
M
A
L
L

S
P
Y
G
A
M
E
S

S
W
IZ
Z
O
R

T
D
S
S

T
E
X
E
L

U
D
R
V
B

V
IK
IN
G
_
D
L
L

V
IR
U
T

Z
B
O
T

ADULTBROWSER
AGENT
ALLAPLE
AUTOIT
AUTORUN
BASUN
BIFROSE
BUZUS
CASINO
EJIK
FRAUDLOAD
FRAUDPACK
HUPIGON
KRAP
LIPLER
LOOPER
MAGANIA
MAGICCASINO
OBFUSCATED
PATCHED
PODNUHA
POISON
RBOT
REFROSO
ROTATOR
SALITY
SMALL
SPYGAMES
SWIZZOR
TDSS
TEXEL
UDR
VB
VIKING_DLL
VIRUT
ZBOT0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Using HMM features

A
D
U
L
T
B
R
O
W
S
E
R

A
G
E
N
T

A
L
L
A
P
L
E

A
U
T
O
IT

A
U
T
O
R
U
N

B
A
S
U
N

B
IF
R
O
S
E

B
U
Z
U
S

C
A
S
IN
O

E
JI
K

F
R
A
U
D
L
O
A
D

F
R
A
U
D
P
A
C
K

H
U
P
IG
O
N

K
R
A
P

L
IP
L
E
R

L
O
O
P
E
R

M
A
G
A
N
IA

M
A
G
IC
C
A
S
IN
O

O
B
F
U
S
C
A
T
E
D

P
A
T
C
H
E
D

P
O
D
N
U
H
A

P
O
IS
O
N

R
B
O
T

R
E
F
R
O
S
O

R
O
T
A
T
O
R

S
A
L
IT
Y

S
M
A
L
L

S
P
Y
G
A
M
E
S

S
W
IZ
Z
O
R

T
D
S
S

T
E
X
E
L

U
D
R
V
B

V
IK
IN
G
_
D
L
L

V
IR
U
T

Z
B
O
T

ADULTBROWSER
AGENT
ALLAPLE
AUTOIT
AUTORUN
BASUN
BIFROSE
BUZUS
CASINO
EJIK
FRAUDLOAD
FRAUDPACK
HUPIGON
KRAP
LIPLER
LOOPER
MAGANIA
MAGICCASINO
OBFUSCATED
PATCHED
PODNUHA
POISON
RBOT
REFROSO
ROTATOR
SALITY
SMALL
SPYGAMES
SWIZZOR
TDSS
TEXEL
UDR
VB
VIKING_DLL
VIRUT
ZBOT0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Using bigram binary features

Figure 5. Confusion matrices for classification.

5. Results and discussion

As is obvious from Figure 3, features extracted through the HMM were the best representatives of malware

behavior among all the other individual methods. Classification using HMM features resulted in the highest

F-measure value of 0.87, which was 3.2% more than the next highest F-measure of 0.843 for the bigram binary

features. This result, combined with the observations made from Figure 2, signifies the expressiveness of HMM-

based features since they were responsible for the best classification while being smallest in number among all

other feature extraction methods.

A comparison of family-wise F-measures for bigram binary and HMM features is given in Figure 4.

Although for most of the malware families the classification results for features extracted through the two

1180

IMRAN et al./Turk J Elec Eng & Comp Sci

methods are close, a significant difference is observed in a few malware families such as BIFROSE, BUZUS,

FRAUDLOAD, and POISON. For these malware families, the bigram binary features had scored a relatively

low F-measure, but the HMM-based features proved to be more discriminative as depicted by their higher

F-measure scores. Figures 5a and 5b, which show the confusion matrices for classification using the same two

feature extraction methods, reveal the reason for the difference in F-measures. The confusion matrices are

mostly similar, hinting that the classifier was able to discriminate between malware families on the basis of

features extracted through the HMM and bigram binary methods alike. The difference is seen in BIFROSE

and BUZUS samples, which were misclassified as belonging to the POSION family in the case of bigram binary

features, but for HMM-based features these misclassifications were significantly less. This is an indication of the

supremacy of HMM-based features because the classifier was able to differentiate between closely resembling

families (BIFROSE and POISON, for example) on the basis of these features.

The feature extraction methods using bigrams were only marginally better than unigram-based methods

with the exception of the binary feature method, in which case the unigram method showed slight improvement

over bigram features. At first glance this observation may seem to be erroneous, since losing the sequence

information in the case of unigram should result in a higher false positive rate, thus making a significant

difference in the overall classification performance. A plausible explanation for the comparable results is that

the system calls for performing a particular task are usually grouped together, and the sequence of calls within

a short group is generally maintained across all malware families. Therefore, there do not seem to be many out

of sequence system calls present in the dataset that would lead to false positives. One could, however, engineer

a sequence by injecting dummy or redundant system calls, thus making a new malware look different from the

known malware, which would result in a misclassification.

Applying the TF-IDF weighting scheme had an insignificant, albeit slightly negative, effect on classifica-

tion performance as compared to using absolute (raw) frequencies on both unigram and bigram sets. This result

suggests that the patterns of individual system call frequencies are quite specific to malware families; therefore,

using the normalized and corpus-wise frequencies did not add any useful and discriminative information to the

feature set.

The binary feature method remained below the frequency feature scheme in unigram-based representation

but was better using bigrams, although the difference was negligible in both cases. The fact that the binary

and frequency methods produced similar results further strengthens our earlier observation that system calls

made by malware belonging to a specific malware family are distinct from those for other malware.

The average F-measure for the bigram frequency IG feature set, obtained after applying feature selection

to the bigram frequency set, decreased to 0.833 from 0.841 for the original feature set. In other words, an

approximately 1% decrease in classification performance was observed for a 96.4% decrease in the number of

features. The loss in classification performance is negligible against the reduction in features, yet these two

factors should be weighed before using feature selection in a given malware analysis scenario.

In the case of the combined HMM and bigram frequency IG feature vector, the average F-measure

increased to 0.885, which is a gain of 1.7% as compared to the F-measure value of 0.87 for the individual HMM

feature set and 5.2% more against the F-measure of 0.841 for the bigram frequency IG feature set. This is an

encouraging result and paves the way for further research on using various combinations of feature vectors for

the task of malware detection and classification.

The feature extraction methods used in this research have been evaluated on system calls at a somewhat

middle level of granularity. A higher level, according to MIST format, would be the category level (file

system, registry, communication, etc.) and a lower granularity would include system call parameters as

1181

IMRAN et al./Turk J Elec Eng & Comp Sci

well. Experimenting with lower granularity may produce better results for all the schemes but will incur

more computational overheads since the combination of a system call with different parameters will result in

a greater number of distinct elements in the term dictionary. A possible extension of this study, thus, could

include evaluating the feature extraction methods for different granularities of the input sequences.

In this paper we compared, through experimental evaluation, various feature extraction methods proposed

in the malware analysis and detection domain. The feature extraction methods were implemented and applied

to a dataset of system call sequences representing malware behavior. Features extracted through the HMM

produced the best classification results on the random forest classifier. It was also observed that using bigrams

of system calls did not have a significant edge over unigrams, and representing a sequence with binary features

was comparable to using the frequency or frequency weighting representation. Another important finding was

that better classification can be achieved by combining features extracted through different feature extraction

methods.

References

[1] Elhadi AAE, Maarof MA, Barry BI, Hamza H. Enhancing the detection of metamorphic malware using call graphs.

Comput Secur 2014; 46: 62-78.

[2] Hu X, Chiueh T, Shin KG. Large-scale malware indexing using function-call graphs. Proc of CCS’09 2009; 611-620.

[3] Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior using machine learning. J Comput

Sec 2011; 19: 639-668.

[4] Schultz MG, Eskin E, Zadok E, Stolfo SJ. Data mining methods for detection of new malicious executables. IEEE

Proc of S&P 2001; 38-49.

[5] Nataraj L, Karthikeyan S, Jacob G, Manjunath B. Malware images: visualization and automatic classification. Proc

of VizSec’11 2011; 4.

[6] Saxe J, Mentis D, Greamo C. Visualization of shared system call sequence relationships in large malware corpora.

Proc of VizSec’12 2012; 33-40.

[7] Liu A, Martin C, Hetherington T, Matzner S. A comparison of system call feature representations for insider threat

detection. Proc of IAW’05 2005; 340-347.

[8] Ranveer S, Hiray S. Comparative analysis of feature extraction methods of malware detection. Int J Comput App

2015; 120.

[9] Tian R, Islam R, Batten L, Versteeg S. Differentiating malware from cleanware using behavioural analysis. In:

Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on; 2010; New York, NY,

USA: IEEE. pp. 23-30.

[10] Santos I, Brezo F, Ugarte-Pedrero X, Bringas PG. Opcode sequences as representation of executables for data-

mining-based unknown malware detection. Info Sci 2013; 231: 64-82.

[11] Marian T, Weatherspoon H, Lee KS, Sagar A. Fmeter: Extracting indexable low-level system signatures by counting

kernel function calls. In: Middleware 2012 Springer; 2012. pp. 81-100.

[12] Bicego M, Murino V, Figueiredo MA. Similarity-based classification of sequences using hidden Markov models.

Pattern Recog 2004; 37: 2281-2291.

[13] Imran M, Afzal MT, Qadir MA. Similarity-based Malware Classification using Hidden Markov Model. Proc of

CyberSec2015 2015; 129-134.

[14] Rabiner L, Juang BH. An introduction to hidden Markov models. ASSP Mag 1986; 3: 4-16.

[15] Devesa J, Santos I, Cantero X, Penya YK, Bringas PG. Automatic Behaviour-based Analysis and Classification

System for Malware Detection. In: ICEIS (2); 2010; pp. 395-399.

1182

http://dx.doi.org/10.1016/j.cose.2014.07.004
http://dx.doi.org/10.1016/j.cose.2014.07.004
http://dx.doi.org/10.3233/JCS-2010-0410
http://dx.doi.org/10.3233/JCS-2010-0410
http://dx.doi.org/10.1109/MALWARE.2010.5665796
http://dx.doi.org/10.1109/MALWARE.2010.5665796
http://dx.doi.org/10.1109/MALWARE.2010.5665796
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1007/978-3-642-35170-9_5
http://dx.doi.org/10.1007/978-3-642-35170-9_5
http://dx.doi.org/10.1016/S0031-3203(04)00162-1
http://dx.doi.org/10.1016/S0031-3203(04)00162-1
http://dx.doi.org/10.1109/MASSP.1986.1165342

IMRAN et al./Turk J Elec Eng & Comp Sci

[16] Alazab M, Layton R, Venkataraman S, Watters P. Malware detection based on structural and behavioural features

of API calls. Edith Cowan University, 2010.

[17] Altaher A, Ramadass S, Ali A. Computer virus detection using features ranking and machine learning. Aus J Bas

App Sci 2011; 5: 1482-1486.

[18] Kolter JZ, Maloof MA. Learning to detect malicious executables in the wild. Proc of KDD’04 2004; 470-478.

[19] Lee W, Stolfo SJ, Chan PK. Learning patterns from unix process execution traces for intrusion detection. In: AAAI

Workshop on AI Approaches to Fraud Detection and Risk Management; 1997; pp. 50-56.

[20] Liao Y, Vemuri VR. Using Text Categorization Techniques for Intrusion Detection. In: USENIX Security Sympo-

sium; 2002; pp. 51-59.

[21] Lin C-T, Wang N-J, Xiao H, Eckert C. Feature selection and extraction for malware classification. J Info Sci Eng

2015; 31: 965-992.

[22] Annachhatre C, Austin T, Stamp M. Hidden Markov models for malware classification. J Comput Virol Hack Tech

2014; 1-15.

[23] Trinius P, Willems C, Holz T, Rieck K. A malware instruction set for behavior-based analysis. 2009.

[24] Garner SR. Weka: The waikato environment for knowledge analysis. The University of Waikato, 2007.

[25] Liaw A, Wiener M. Classification and regression by Random Forest. R News 2002; 2: 18-22.

[26] Breiman L. Random forests. Mach Learn 2001; 45: 5-32.

[27] Bascil MS, Temurtas F. A study on hepatitis disease diagnosis using multilayer neural network with Levenberg

Marquardt training algorithm. J Med Syst 2011; 35: 433-436.

1183

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s10916-009-9378-2
http://dx.doi.org/10.1007/s10916-009-9378-2

	Introduction
	Feature extraction methods for malware analysis
	Binary feature extraction
	Frequency feature extraction
	Frequency weight feature extraction
	Hidden Markov model

	Related work
	Methodology
	The dataset
	Data preprocessing
	Feature extraction
	Evaluation using a random forest classifier
	Classifier validation
	Evaluation metrics

	Results and discussion

