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Abstract:Routing under multiple independent constrains in point-to-point networks has been studied for over 10 years.

Its NP-hardness keeps pushing researchers to study approximate algorithms and heuristics, and many results have been

published in these years. To the best of our knowledge, the nature of its average case has been explored only for the self-

adaptive multiple constraints routing algorithm (SAMCRA), which is an algorithm about multiple constraints routing.

In this paper, we simplify SAMCRA into a format that is convenient for our average case analysis. This variant algorithm

gives optimal solutions also for very large dimensional networks such as with more than 1000 nodes. Although it runs in

exponential time in the worst case, we prove that its average case time complexity is bounded by a polynomial function

of the number of nodes in the network. Lastly, we give empirical results that align with our theoretical work.

Key words: Algorithm, computer network, expected polynomial time, multi-constrained routing, pareto frontier, pareto

optimisation, quality of service, routing algorithm

1. Introduction

Quality of service (QoS) is a generic term for describing the goodness of network performance in the literature.

It includes simultaneous optimisation of some dependent or independent metrics. In the context of network

routing, the metrics can be end-to-end delay, jitter, packet delivery ratio, packet loss rate, throughput, band-

width, number of hops, link stability, etc. [1–4]. The details of metrics diversification based on the network

communication layers can be observed clearly in [3]. QoS metrics are inevitably affected by the network traffic,

and different route selections in the network layer improve or worsen the performance dramatically.

1.1. Definitions and problem formulation

The network in question is a connected, and undirected, static point-to-point arbitrary graph G = (V,E), where

V = {1,2,...,n} is the set of nodes and E the edge set. Each edge has a k-dimensional cost (c1 , c2 , ... ,

ck), where cq ∈ R+ , q = 1,...,k, can be jitter, packet loss rate, bit-error rate, link stability, etc., and they are

independent. The cost of an edge can be considered as a vector, and for any path the total cost is the vector

sum of all vectors along the path.

Recall that the edge cost is k-dimensional, and hence the total cost of a path is also k-dimensional. Given

an arbitrary set of k-dimensional points, linear order is not guaranteed. For any two points (c1 , c2 , ... , ck)

and (d1 , d2 , ... , dk), if (1) [∀q∈ [1,k] cq ≤ dq ] and (2) [∃q∈ [1,k] cq < dq ], then (c1 , c2 , ... , ck) outperforms

(d1 , d2 , ... , dk). With only condition (1), we can say that (c1 , c2 , ... , ck) is at least as good as, or not worse
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than, (d1 , d2 , ... , dk). With only condition (2), we do not know their order. In short, if [∃q,r∈ [1,k] •q ̸=r, cq

< dq and dr < cr ], then their order is undetermined, else one must outperform the other. If the order of any

two elements in a set of k-dimensional points is undetermined, then the set forms a pareto frontier. A pareto

frontier is sorted in two-dimensional, but not higher dimensional space.

We now define the problem. The input is the graph G(V,E), and a source node s ∈ V , k real numbers

Cmax
1 , Cmax

2 , ..., Cmax
k , and the output is a path from s to each node for which total cost

(
CT

1 , C
T
2 , · · · , CT

k

)
is

not worse than (Cmax
1 , Cmax

2 , · · · , Cmax
k ), and F

(
CT

1 , C
T
2 , · · · , CT

k

)
is optimised, where F is a user predefined

function that maps the total cost to a value. Intuitively, this is a one-to-all shortest paths problem with k-

dimensional edge cost and k-dimensional constraints. For completeness, if there is no path satisfying both

constraints, then the output is false.

1.2. Background

Finding the multiple metric-constrained paths is known as the multi-constrained path problem (MCPP) in the

literature. It can also be turned into an optimality problem [5,6]. Several methods have been proposed to solve

the MCPP. Djarallah et al. [5] represented the metrics as a vector structure of the weight parameters. Using

this vector, they treated the metrics as noncomposite numbers, which require discrete computation for each

metric. Another multiple metric method is applied in [7]. In this method, after a user demands the QoS values

specifically, each service provider tries to find an appropriate domain link with respect to these demanding

values. Bertrand et al. [8] calculated the sum of the metric values of the links in a relaxation step by taking

into account the additive metrics.

Shin et al. [9] found a multi-constrained routing solution by starting from some subpaths and then

extending them into the whole paths. Xue and Ganz [10] made the routing process based on only two metrics,

namely delay and bandwidth. In the same way, Yuan and Liu [11] assumed a limited number of independent

metrics. They required all optimal paths to be stored and supplied the QoS requirements by using each metric’s

constraint.

There are also some studies that analyse the time complexity for the MCPP methods. Xue et al.

summarised a few works before 2007, including the NP-hardness nature of the problem when the number

of constraints is no less than two [12]. They also gave three polynomial time approximate solutions to the

problem. For optimal algorithms, exponential time complexity is expected. The well-known optimal algorithm

self-adaptive multiple constraints routing algorithm (SAMCRA), which is given by Van Mieghem et al. [13],

has no exception. However, Van Mieghem and Kuipers [14] claimed that polynomial time can be achieved in

most cases. They proved the polynomial complexity in the worst case by the help of simulation results in [15].

1.3. Our contribution

SAMCRA is a routing algorithm that is able to obtain all possible paths between a source and destination

pair in an initial search-space. It also gives the shortest path even after the search-space reduction. All paths

in the result set obey to the bounds of the constraints [13]. We simplify SAMCRA for the ease of average

case analysis. This simplicity helps us to use the same algorithm for two or more constraints. We prove that

for optimal multi-constrained routing expected time is a polynomial function to the number of nodes in the

network, as long as the number of constraints is a constant. We give experimental work for various networks

with node numbers from 100 up to 6000 and 2 to 128 constraints. We point out that there are not many

papers using such large number of nodes and network dimensions in the literature. We choose the constraint
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or metric values from various ranges and number sets such as integers or floating points, not only from the

same ranges. We represent the interaction between the processing time and the number of nodes, and compute

the effect of the edge probability on the processing time. The empirical results are consistent with our average

case analysis. Our analysis also covers a wide range of computations by considering the whole operations along

all nodes comparatively due to their final cost sets. We also assign the edge values based on two different

classifications that handle the same and different metric values in opposite directions of the full-duplex edges

respectively. For each computation the values cover various edge probabilities such as 1 that defines a fully

connected or complete graph. We also extend the network management to cope with the relationship between

the edge and node numbers in our biased and unbiased graphs. These graphs represent whether the workload

of the network is distributed on any specific area of the network or among the whole network well-balanced

respectively. We note that these complete experiments have not been done in the literature. Van Mieghem and

Kuipers [15] presented their practical solution for networks with nodes up to 800 with constraint numbers 2,

4, and 8, and also they used node numbers around 1000 only for hop count statistics. They computed their

function’s statistics for the constraint numbers 16 and 32 only for a network with 25 nodes. They also chose

the link weights from the range [0, 1] as uniformly distributed random variables. Their theoretical analysis and

practical solution cover different parameters than ours.

1.4. Organisation of the paper

The rest of this paper is designed as follows. In Section 2, we give a variant of SAMCRA as an expected

polynomial time algorithm for optimal multi-constrained routing. We give the probabilistic analysis of the

problem in Section 3. In Section 4, we present the experimental results that we obtained from several conditions

such as along various network topologies with different number of nodes and for different constraint numbers.

Finally, we give the conclusions of this study in Section 5 and then the acknowledgements part.

2. A variant algorithm

Associate each node with a set of pareto costs, which are the costs from the useful paths originated from s .

The value of a cost is represented by the k-tuple, (c1 , c2 , ..., ck) as mentioned in Subsection 1.1. By ”useful

path”, we refer to a path whose cost is not outperformed by others. We need only pareto sets because the costs

of underperforming paths are not useful in any case. The set for s is initially {(0, 0, ..., 0)} , and the sets for

the other nodes are initially empty. Let the set in node i be Si , for all i in V .

We now give a simple, but optimal, algorithm called the exponential polynomial time algorithm (Ex-

PoTA), which is given in Figure 1.

The algorithm in Figure 1 runs in expected polynomial time and contains n – 1 rounds. Each round can

be considered as one step going out from each node to all its neighbours and the cost sets S∗ are updated on

the way. The updating of the cost sets follows its requirement: no element can outperform the other, and each

one is unique. After n – 1 rounds, s can reach all nodes, leaving all cost sets optimal.

For k = 1 and k = 2, ExPoTA is not efficient, because the linear cost structure inside each Si , i = 1

ton, is not used. However, the aim of this paper is to study Si for general value of k and the algorithm is good

enough for our analysis. The algorithm runs in polynomial time of the size of Si , i = 1 to n (steps 3.1.1.1 and

3.1.1.1.1.3). In the worst case, the sizes can grow exponentially; however, in the next section, we argue that

they are bounded by linear function of n in the average case.
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1 For each node i in V, i  s.  // s is the source. 

1.1  Create empty set iS  of paths with pareto costs from s to i.  

2 Initialize sS = {(0,0, ... , 0)}.   

3 For round = 1 to n-1 

3.1  For each node i in V 

3.1.1   if iS is not empty 

3.1.1.1    For each element (c1, c2, ..., ck) in iS ,  

3.1.1.1.1     For each neighbour j of i  

3.1.1.1.1.1      Let the cost of edge (i,j) be (d1, d2, ..., dk). 

3.1.1.1.1.2      kill = false;  // kill is a boolean variable 

3.1.1.1.1.3      For each element (b1, b2, ..., bk) in jS ,  (*) 

        If cq+dq  bq , for all q [1,k] 

        kill = true; 

        Quit the For-loop labeled with (*) //Break 

        If cq+dq  bq , for all q [1,k] 

        remove (b1, b2, ..., bk) from jS ;  

3.1.1.1.1.4      If kill = false 

       Store (c1+d1, c2+d2, ..., ck+dk) in jS ; 

Figure 1. Pseudocode of ExPoTA.

2.1. Probabilistic analysis

In this section, we will argue that the size of Si , i = 1 ton,will be bounded by a linear function of n , for

small value of k , assuming that the two costs (c1 + d1 , c2 + d2 , ..., ck + dk) and (b1 , b2 , ..., bk) in step

3.1.1.1.1.3 are randomly distributed in the k-dimensional space.

The probability that (b1 , b2 , ..., bk) is removed from Sj is 1
2k

, because cq + dq ≤ bq is true for q =

1, 2, ..., k. Similarly, the probability that (c1 + d1 , c2 + d2 , ..., ck + dk) is not stored in Sj is also 1
2k

.

If there are n elements in Sj before comparison, the probability that (c1 + d1 , c2 + d2 , ..., ck + dk) is

stored in Sj is
(
1− 1

2k

)n
and the probability that no element in Sj is removed is also

(
1− 1

2k

)n
. Hence, for

one iteration of the for-loop in step 3.1.1.1.1, the probability that the size of Sj increases by one is
(
1− 1

2k

)2n
,

which is very close to zero for small k . On the other hand, the probability for a decrease in the size of Sj is

much higher, and it equals the probability that (c1 + d1 , c2 + d2 , ..., ck + dk) outperforms any two or more

elements in Sj . It is

(
n

2

)(
1
2k

)2 (
1− 1

2k

)n−2
+

(
n

3

)(
1
2k

)3 (
1− 1

2k

)n−3
+ · · · +

(
n

n

)(
1
2k

)n (
1− 1

2k

)0
=

1−

(
n

0

)(
1
2k

)0 (
1− 1

2k

)n −

(
n

1

)(
1
2k

)1 (
1− 1

2k

)n−1
, which is very close to one for large n and small k . It
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is obvious that when k is small, if the size of Sj reaches n , then it is likely to drop, rather than to rise. This

explains why Max( |Sj |), j=1,. . . n, is bounded by n in our experimental result shown below.

For theoretical interest, we briefly look into the case for larger k . When k tends to log2 n , the probability

for increasing the size of Sj tends to
(
1
e

)2
, and that for decreasing is 1 −

(
2
e

)
; and this implies a significant

chance of keeping unchanged. When k tends to 2 log2 n , the two probabilities become
(

1
n√
e2

)
≈ 1 and

1− 1
n
√
e

(
1 + n

n2−1

)
≈ 0, respectively. However, they will become

(
1
e

)2f(n) ≈ 0 and 1−
(
1
e

)f(n) (
1 + n

n2−1

)
≈ 1

again, respectively, when the size of Sj reaches n2 × f(n), where f(n) is any monotonic increasing function of

n (like log2 n, log2 log2 n, · · · ) and will tend to infinity with n . Extending this argument, we conclude that

the size of Sj will become steady at O(2k).

3. Empirical results

We built our C programs on MS Visual Studio 2012 environment. We performed our tests on a laptop with

Intel Core i5 CPU 2.67 GHz, 4.00 GB RAM and a PC with Intel Core i7-2600 CPU 3.40 GHz, 8.00 GB RAM.

We computed all experimental results over a sample of mesh network with full-duplex edges. We constructed

all edges randomly between any two nodes. We executed various computations depending on the properties

explained in the following subsections.

3.1. Processing time

We provided each edge in the network with numerical values of delay and packet loss rate. Delay values are

randomly distributed between [1, 250] and the packet loss rates should be randomly chosen from one of the

values 10−3 , 10−4 , 10−5 , 10−6 , 10−7 , and 10−8 . The value bounds are widely used similar to these selections

in network applications. Packet loss rates are also very small in general. For this reason we chose discrete values

for packet loss rates to diversify successive numbers for concrete comparisons.

We computed the log function of the average processing time of ExPoTA for each node number varying

between 100 and 1000, and used 10 different instances for each one. We illustrated the graphical representation

as in Figure 2. The average processing time for 100 nodes converges to 0; for this reason the log result of that

point is negative. The results become exponential with the increase in the number of nodes in the network.

This implies that the time is bounded by a polynomial function.

Figure 2. Log(average processing time) vs #nodes for 2-metrics (edge probability = 0.5).
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We also analysed the average processing time according to the decrease in the ‘edge probability’ between

two nodes. Edge probability represents the probability that there is a connection between the node pairs. For

Figure 2, we built all edges with a probability of 0.5. After the implementation of Figure 2, we tried the

edge probabilities of 0.5, 0.2, 0.05, 0.02, 0.005, and 0.002 between the node pairs. We planned the network

scenarios with 500 and 1000 nodes. We computed the average processing time of 10 different network instances

for each edge probability in a node number in Figure 3. As seen in Figure 3, in both of the networks, the

average processing time is proportional to the edge probability. This is because the edge number in the network

generally increases with the edge probability. Therefore, the process numbers related to the edges and total

durations also increase.

Figure 3. Average processing times for different edge probabilities.

3.2. Different number of metrics

We extended our experimental analysis in Subsection 4.1 considering additional metrics such as jitter, bandwidth

requirement, and throughput. The values of all metrics can be chosen from discrete or continuous numbers inside

the programs. For example, jitter values are randomly distributed in [1, 50], bandwidth requirements are within

[1, 100] randomly, and throughput values are chosen from several different discrete numbers. As a note, we

experienced that the nature of the value bounds would not have any impact on the results. We classified our

tests executing with 2, 3, and 4 metrics, consecutively. 2-Metrics cover delay and packet loss rate as mentioned

above. Additional to these metrics, 3- and 4-metrics involve the new ones with respect to attaining the relevant

metric number. We constructed several networks with various numbers of nodes n from 100 up to 6000. We

built all network edges with a probability of 0.5. This means that there are lots of edges in each network type.

Table 1 represents the maximum number of pareto costs staying all along Si sets, denoted as Max( |Si|) in

the designed networks. Here we note that Si stores the pareto points at the ith node as explained in Section

2. All points must be processed for each round for any algorithm; therefore, the average case and worst case

time complexities depend very much on the Max( |Si|) rather than other algorithmic issues. In fact, their sizes

depend on the input (graph, source node), but not the algorithm used. The importance of such sets is also

demonstrated in [15]. The authors proved that the upper bound on the expected size is <(N ln N)k−1 , where

k is the dimension. This result affects their time complexity analysis very much.
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Table 1. Max( |Si|) values for different number of metrics (edge probability = 0.5).

With 2-metrics With 3-metrics With 4-metrics
n Max(|Si|)
100 10 25 31
200 10 29 51
300 11 31 63
400 12 36 63
500 14 47 73
600 11 46 78
700 11 55 79
800 12 44 69
900 10 40 75
1000 11 42 79
2000 11 50 87
3000 10 52 94
4000 10 54 112
5000 11 54 113
6000 10 63 123

As seen in Table 1, the metric number raises Max( |Si|) for each n . In other words, when the metric

number is getting larger, Max( |Si|) will increase with greater probability. This is caused by the fact that

the outperformance of any cost with larger number of metrics occurs rarely with respect to the comparisons

among all metric values. Furthermore, in Table 1, the increase in Max( |Si|) related to the number of nodes

can be especially seen along about 3- or 4-metrics. There are some fluctuations in 2-metrics, because in 2-

metric classification the comparison between the costs does not have much more difference even in different

node numbers in the networks. Thus, sometimes there can be an increase and sometimes a decrease with small

units for 2-metrics.

There is also an observable difference for 2-metrics and the others in Table 1 according to both the

Max( |Si|) results for any specific node number and the changing ratio between the results of any two consecutive

node numbers. The reason is that there is a linear order for 2-metrics, but not for 3- and 4-metrics through the

cost comparisons. In 2-metrics, the increasing order in one metric is exactly the decreasing order of the other,

because the elements in Si are pareto as mentioned above. This means indirectly that the outperformance

of any cost can be seen very easily and frequently during the cost comparisons in 2-metrics. Adversely, in 3-

and 4-metrics, the outperformance of any cost occurs very rarely in terms of almost all metrics linearly. For

example, in 3-metrics, sometimes the delay and packet loss rate of a cost outperform all other costs while jitter

does not bring any support. On the other hand, for some other costs in Si , the outperforming metrics may

be the packet loss rate and jitter excluding the delay. Therefore, it is not frequent to find a cost value that

outperforms the others and removes them from the result set Si of any node i . For this reason Max( |Si|)
values of 3- and 4-metrics are larger than that of 2-metrics.

We implemented the triangular network structure in [15] to compare with our random networks that give

the results in Table 1. Because the triangular type is referred to as ‘chain topology’ in [15] we use this name

hereafter. We performed 2, 3, and 4 metrics on the chain topologies. We chose the metric values randomly as

the same bounds as in our random networks. Figure 4 represents the comparison between our random networks

and the chain topologies. In Figure 4, we refer to our network topologies working with our algorithm ExPoTA

as Random and the ones in [15] as Chain. Figure 4 shows that we have different findings of the same problem
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in the area of multi-constrained routing. We note that our network topologies give smaller Max( |Si|) values

and also these topologies are more suitable for real network applications covering randomised (dis)connections.

Figure 4. The comparison of random and chain topologies.

Moreover, in this subsection, we completed new trials for ExPoTA with very large number of metrics.

As we mentioned in Subsection 1.3, when we compare with any other multi-constrained study in the literature,

it is a favoured ability of ExPoTA to settle a lot of metrics simultaneously. We set a network with 500 nodes.

Table 2 gives the results for the experiments covering 4, 8, 16, 32, 64, and 128 metrics. As seen in Table 2, the

results converge to some similar values after a number of metrics such as 16-metrics as explained in Section 3.

Table 2. Max( |Si|) values for large numbers of metrics.

Max(|Si|)
Edge With 4- With 8- With 16- With 32- With 64- With 128-
probability metrics metrics metrics metrics metrics metrics
1 83 181 499 499 499 499
1 / 2 76 193 276 289 287 285
1 / 4 61 142 163 164 158 160
1 / 8 44 82 84 84 85 86
1 / 16 32 46 48 53 53 57

3.3. Network classification depending on edge properties

We constructed two different network classes, namely Type-I and Type-II, for the next practices. Type-I covers

the edges having the same metric values through both transmission directions in between any node pairs.

We also used this class in Table 1 samples. On the other hand, Type-II has the edges with different metric

values in both directions. We used 3-metrics on these network structures and found Max( |Si|) under the edge

probabilities of 1, 1 / 2, 1 / 4, 1 / 8, and 1 / 16, respectively. The edge probability 1 provides a fully connected

(complete) graph. Tables 3 and 4 give the results for Type-I and Type-II network, respectively. There is not

much difference between the results of these two network classes. The main difference appears during the change

of the edge probability. Tables 3 and 4 prove that Max( |Si|) is directly proportional to the edge probability.

In other words, Max( |Si|) decreases with the reduction in the edge probability in any network. Additionally as
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seen in Tables 3 and 4, when the edge probability is double, Max( |Si|) is less than double for any n between

100 and 6000.

Table 3. Max( |Si|) values depending on the edge probabilities (type-I networks).

Edge Edge Edge Edge Edge
probability = 1 probability = 1 / 2 probability = 1 / 4 probability = 1 / 8 probability = 1 / 16

n Max(|Si|)
100 46 27 14 9 6
200 92 51 30 18 11
300 123 72 40 25 15
400 168 91 54 32 19
500 208 111 67 40 23
600 250 134 77 44 26
700 282 150 86 50 28
800 322 176 99 52 32
900 370 193 110 62 35
1000 400 217 118 65 38
2000 783 406 222 120 69
3000 1160 610 331 175 99
4000 1526 793 420 225 128
5000 1887 980 512 273 144
6000 2219 1173 608 328 175

Table 4. Max( |Si|) values depending on the edge probabilities (type-II networks).

Edge Edge Edge Edge Edge
probability = 1 probability = 1 / 2 probability = 1 / 4 probability = 1 / 8 probability = 1 / 16

n Max(|Si|)
100 46 31 18 10 6
200 89 52 34 18 12
300 127 75 40 26 15
400 169 97 52 30 19
500 211 111 63 37 22
600 246 136 73 42 25
700 291 154 85 49 30
800 324 176 94 53 32
900 361 190 111 62 39
1000 399 222 116 67 37
2000 776 413 217 116 68
3000 1171 601 324 174 97
4000 1529 797 418 232 122
5000 1904 991 507 271 148
6000 2236 1161 614 324 184

3.4. Different edge numbers and edge distributions

We carried out two different experiment sets considering the 3-metrics, namely delay, packet loss rate, and jitter.

The edge probability is 0.5. We controlled the edge numbers along the network to become multiples of the node

numbers. In the first experiment set, we chose the edges starting from the smaller node indices that are small
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values of i in V as aforementioned. We say that this graph is biased because the nodes with smaller indices

have more connections on average. In the second experiment set, we chose the edges randomly from the set

E . This new graph is unbiased in which there is equity between the edge selections along the whole network.

Table 5 represents the average results per edge number |E| giving biased results before the comma and unbiased

results after the comma. We note that we obtained the average results based on 5 different executions of the

program each time. We also note as a detail that the processing time of this experiment for each n becomes

reasonably smaller than the previous executions because of the edge number bounds.

As can be seen in Table 5, for each n , the average Max( |Si|) values increase with the rise in the |E|values.
Sometimes there may also be exceptions as for biased results in |E | = 4 × n with n = 200, 800, and 900, which

represents the values not larger than that of |E | = 3 × n. The unbiased results are dramatically smaller than

those of biased form because of the fair distribution in the edge selections. In this unbiased form, the edges in

between various nodes are selected; thus every time the same nodes do not take place in the algorithm steps.

Hence the size of any set Si does not become too large.

Table 5. Average results of Max( |Si|) for biased , unbiased graphs with respect to various edge numbers.

|E| = n |E| = 2 × n |E| = 3 × n |E| = 4 × n
n Average of Max(|Si|)
100 16 , 3 21 , 5 22 , 7 22 , 8
200 26 , 3 43 , 6 43 , 8 40 , 8
300 47 , 3 59 , 7 64 , 8 65 , 10
400 52 , 3 77 , 7 79 , 8 84 , 9
500 66 , 4 91 , 7 99 , 9 106 , 9
600 97 , 4 114 , 7 118 , 9 123 , 10
700 121 , 4 135 , 7 140 , 9 141 , 11
800 137 , 5 157 , 8 165 , 9 161 , 10
900 141 , 4 166 , 7 171 , 9 171 , 11
1000 156 , 5 168 , 7 199 , 9 201 , 11
2000 332 , 5 377 , 8 394 , 9 396 , 11
3000 409 , 5 562 , 8 584 , 9 577 , 12
4000 550 , 5 763 , 8 781 , 10 784 , 11
5000 740 , 5 867 , 8 943 , 10 957 , 12
6000 921 , 6 1146 , 8 1154 , 10 1159 , 12

4. Discussion

In this paper, we present an expected polynomial time algorithm ExPoTA as a variant of SAMCRA for k-

constraint optimal routing in networks. The novelty of this paper is not in the ExPoTA, but in the analysis

of the origin of the time complexities for all algorithms of multi-constrained routing. ExPoTA is an optimal

algorithm. We skipped the proofs (of optimality and exponential time complexity in the worst case), as it is

already guaranteed by Van Mieghem and Kuipers [15]. For the analysis, we noticed that the average case and

worst case time complexities depend very much on the Max( |Si) |) rather than other algorithmic issues. As

mentioned above, Van Mieghem and Kuipers [15] proved that the upper bound on the expected size is <(N ln

N)k− 1 , where k is the dimension. It is the best existing result. In our paper, we investigate the expected size

by experiment, and the empirical result suggests a much lower value. We think that the empirical result is a

motivation for finding a better upper bound.
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Our computer program results demonstrate that the average case time complexity of our algorithm is

bounded by a polynomial function of the number of nodes in the network and the processing time is exponential

in the worst case.

We point out the conclusions of this paper as a summary as follows:

(1) The processing time is exponential in the worst case; it is indeed polynomial on average. The time

complexity depends on Max( |Si) |). Therefore, we shift our focus to Max( |Si |).

(2) Max( |Si|) results for any specific node number and the changing ratio between the results of any two

consecutive node numbers are different in between various metric numbers such as 2, 3, and 4 metrics.

After a saturation point as a large number of metrics, the results converge to each other such as in 16, 32,

64, and 128 metrics.

(3) When the same metric bounds are used for both the chain topology mentioned by Van Mieghem and

Kuipers [15] and this paper’s random topology, the former results in larger Max( |Si |) values entirely for

different metric numbers.

(4) To change the parameter values to similar or different values in both directions for an edge does not

influence the results much.

(5) When the edge probability is double, Max( |Si |) is less than double for any number n between 100 and

6000 in both Type-I and Type-II networks. It is reasonable to consider the performance for high edge-

probability only. Additionally, when the edge numbers are bounded based on the node numbers of the

networks, the processing time of the experiments become reasonably smaller.

(6) The average Max( |Si |) values increase with the rise in the |E|values in both biased and unbiased graphs.

However, the values in unbiased graphs are much smaller than those in biased graphs. One reason may be

that various nodes take place in the algorithm steps of unbiased graphs; thus the costs do not cumulate

in the same nodes especially the ones with smaller indices every time.
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[7] Yampolskiy M, Hommel W, Lichtinger B, Fritz W, Hamm MK. Multi-domain end-to-end (E2E) routing with

multiple QoS parameters-considering real world user requirements and service provider constraints. In: Second

International Conference on Evolving Internet (INTERNET); 20–25 September 2010; Valencia, Spain. Red Hook,

NY, USA: IARIA. pp. 9-18.

[8] Bertrand G, Lahoud S, Texier G, Molnár M. Computation of multi-constrained paths in multi-domain MPLS-TE

networks. In: Next Generation Internet Networks; 1–3 July 2009; Aveiro, Portugal. New York, NY, USA: IEEE.

pp. 1-8.

[9] Shin DW, Chong EKP, Siegel HJ. Multi-postpath-based lookahead multi-constraint QoS routing. J Franklin I 2012;

349: 1106-1124.

[10] Xue Q, Ganz A. Ad hoc QoS on-demand routing (AQOR) in mobile ad hoc networks. J Parallel Distr Com 2003;

63: 154-165.

[11] Yuan X, Liu X. Heuristic algorithms for multi-constrained quality of service routing. In: IEEE INFOCOM 2001

Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies; 22–26 April 2001,

Anchorage, AK. New York, NY, USA: IEEE. pp. 844-853.

[12] Xue G, Sen A, Zhang W, Tang J, Thulasiraman K. Finding a path subject to many additive QoS constraints. IEEE

ACM T Network 2007; 15: 201-211.

[13] Van Mieghem P, De Neve H, Kuipers F. Hop-by-hop quality of service routing. Comput Netw 2001; 37: 407-423.

[14] Van Mieghem P, Kuipers FA. Concepts of exact QoS routing algorithms. IEEE ACM T Network 2004; 12: 851-864.

[15] Van Mieghem P, Kuipers FA. On the complexity of QoS routing. Comput Commun 2003; 26: 376-387.

1222

http://dx.doi.org/10.1109/3PGCIC.2011.34
http://dx.doi.org/10.1109/3PGCIC.2011.34
http://dx.doi.org/10.1109/3PGCIC.2011.34
http://dx.doi.org/10.1109/3PGCIC.2011.34
http://dx.doi.org/10.1109/INTERNET.2010.12
http://dx.doi.org/10.1109/INTERNET.2010.12
http://dx.doi.org/10.1109/INTERNET.2010.12
http://dx.doi.org/10.1109/INTERNET.2010.12
http://dx.doi.org/10.1109/NGI.2009.5175757
http://dx.doi.org/10.1109/NGI.2009.5175757
http://dx.doi.org/10.1109/NGI.2009.5175757
http://dx.doi.org/10.1016/j.jfranklin.2012.01.002
http://dx.doi.org/10.1016/j.jfranklin.2012.01.002
http://dx.doi.org/10.1016/S0743-7315(02)00061-8
http://dx.doi.org/10.1016/S0743-7315(02)00061-8
http://dx.doi.org/10.1109/TNET.2006.890089
http://dx.doi.org/10.1109/TNET.2006.890089

	Introduction
	Definitions and problem formulation
	Background
	Our contribution
	Organisation of the paper

	A variant algorithm
	Probabilistic analysis

	Empirical results
	Processing time 
	Different number of metrics 
	Network classification depending on edge properties
	Different edge numbers and edge distributions

	Discussion

